C2000 Digital Control Library

Version 3.4

User’s Guide

Wi} TEXAS INSTRUMENTS

February 2020

Preface

Read This First

About This Manual

This User's Guide covers version 3.4 of the C2000 Digital Control Library (DCL). It
contains technical descriptions of the library functions and how to use them. The DCL
User's Guide does not cover control applications, control theory, or technical details of
C2000 devices; however some information on these topics may be found in the
references listed in chapter 6.

The User’'s Guide is divided into six chapters. Chapter 1 presents a general introduction
to the library and provides background information. Chapter 2 describes the library
contents and structure, how to add library functions to a user’s program, and how to
migrate existing source code. Chapter 3 describes the controllers and supporting
functions, and provides information on their use. Chapter 4 describes the utilities supplied
with the library, including data loggers, a transient capture module, and simulation
models. Chapter 5 describes a set of supporting software examples which illustrate the
use of the library. A list of relevant technical references and training can be found in
Chapter 6.

How to Use This Manual

New users are advised to begin by reading the library overview in chapter 1. Chapter 2
provides a useful step-by-step guide of how to integrate the library into an existing C
program as well as how to migrate from earlier versions, and should be read carefully by
all users. Once the user has decided on the type of controller to implement, performance
and other important information in the relevant sub-section of chapter 3 should be read
carefully. If data array management or performance measurement is required, the utilities
described in chapter 4 may be of interest. The library includes a number of software
examples which illustrate the use of most of the controllers. These are described in
chapter 5 and should serve as a good starting point for new users. Finally, for further
reading and other resources, users are directed to the list of technical references and
training materials in chapter 6.

Related Documentation from Texas Instruments

Technical documentation and development tools for the C2000 device can be found
online on the Texas Instruments website at www.ti.com/c2000.

If You Need Assistance

Technical support for C2000 products is available online via the Tl “E2E” Community:
e2e.ti.com/support/microcontrollers/c2000

Contents

L= Lo IO N 0 T =T T] S iii
ADOUL TS MANUALo e e e e et e e e e e e e e e ettt e e e eeaeeeeesaaanans iii

[(o1 (o =T I T AV F= T o T U iii
Related Documentation from Texas INSIrUMENtS.............uuuiiuiiiiiiiiiiii e iii

If YOU NEEA ASSISTANCE ...ttt e e e e e e e e ettt e e e e e aeeeeeeaaaaans iii
00 1 1= 1 £ PSPPI iv
o [T S xii
L= 1 o1 (= xiii
011 o o 11 o3 1o o SR 1
L S 0T o] o ToT4 (Yo I D11V ot SRR 1

1.2 OVerview Of the LIDIaryoo et e e 2

1.3 NEW IN ThiS VEISIONt e e e e e e e et e e e e e e e e eestaa e eeaeeeaaeeees 3

T.301 NEBW FRAIUIES ... e e 3

(R T2 = 1 To TN o (T T PP PTPT 4

1.3.3 FUNCHON NAMING ... e e e e e et e e e e e s e et ab e e eeeaaeessanasreeaaesaeannns 4

1.3.4 SHrUCIUIE NAIMING ...t e e e e e e et e e e e e e s essbareeeeeaeeessanssreeaaesaeanes 5

1.3.5 SUPPOIt SUD-SIIUCIUIES ... e e e e e e e e e e s e reeeaeeeeaanes 5

1.3.6 Calling CONVENTIONeiiiiiiiiii ettt ettt e e e sb e e e s bt e e e e sbbe e e e eanbeeeeanbeeeeens 5

L B A B = 1 = 3 o= PSPPSR 5

1.3.8 The ZPK3B SHTUCIUIE ... 5

1.3.9 Compensator Stability TESESooi i 6

1.3.10 Deprecated MOUUIESo i et e e e e e e e e e e e e e e e e nneeeeeaaaeeaaannnnneeaeeaaannns 6

1.4 CPU CompPatiDilityceeieiieeee e e e e e e e e e e e e 6

ST = 1= o e o = g 7

1.5.1 Controller BENCAMAIKS..... ... 7

1.5.2 Controller Support Function BeNChMarkscoooiiiiiiiiii e 9

1.5.3 Fast Update Function BenChmarks......... ...t 11

1.54 FPUB4 FuNction BENCAMAIKSiiiiiiieiieie e 13

Using the Digital Control Libraryccccoiiiiiiiimmssssss s ssssssss s 14
2.1 What the Library CONAINScooviiiiiiiiiiiiiieiiee ettt ettt eeeeeeeeeeeseessesessasssesssasssassrensees 14

D I T o 1=T= o [T {1 U 14

2,12 SOUICE FilES ..., 15

D I T e 0]][SRS 16

2.2 Header File DEPENUENCYccoiiiiiiiiiiieiiee ettt e e e e e e e eeeeaeeaans 16

2.3 How to Add the DCL t0 USEI COEceeviiiiiiiiiiiiiiiiiiiiieeeeeeeeeveesreesesssssessssssssssssssarssesssansaerenane 18
2.3.1 Steps to Add the DCL t0 EXiSting C COde.......coiiiiiiiiiiiiiiiee e e e 18

2.3.2 Calling the Library Functions from ASSEMDIY...........c..uviiiiiiiiiiiee e 21

2.4 Updating Controller ParameEters ...t 21

2.5 ErrOr HAnAIING ...ooo oottt ettt e e e e e et e e e e e e e e e e e 23

2.6 How to Modify the Library COUE..........uuuiiiiiiiiiiiiiiiiiiiieeeeieeeeeeeeeeereeseeesseessssssesssasssarsrarsarararreaane 25

Lo 411 o | 1= RO 26
3.1 LiNEAr PID CONIOIEIS.... ..ottt et e e e et e e e e 27

G TR P B 19 =T 4o)T 27

3.1.2 IMPIEMENTALION ...ceeeeeeee e 29

G TR UG T U o o1 1T T 32

DCL _rUNPID_CT . 32

Contents

10O B (o] d |3 I O R P P 32
DCL _rUNPID_C3 ... 33
DCL _rUNPID_CA4 ... 33
1O B V[d |3 R PP 34
DCL _FUNPID _L2..........ccc e 34
DCOL_FESEIPIDeeeeeeeeeeeeeeeeeeeeeee e 34
DCOL_UPAALEPID ...ttt ettt e ettt e e e e e e e st e e e e e e e e e e e nnnsneeaeaaeeeeannnnees 35
1O B 7o Lo [1 (=] d | 5 PP 35
DCL_SEIPIDFMEIBW.cceeeeeeeeeeeeeeeeeeeeeee e 35
DCL_SetACtiVEPIDIMErBW ..o 36
DCL_GEIPIDFMEEIBWY ...ttt e e ettt e e e e e e e e st e e e e e e e e e annneseeeeas 36
DCL_10adSerieSPIDASZPKccccoeeeeeeeeeeeeeeeeeeee e 36
DCL_10adParallelPIDasSZPKooo e 37
3.2 Lin€ar Pl CONIIOIIEIS.ccoe ettt e et e e e e e e e e e e e e e e e e e e e nnnnseeeeas 37

K 0 B B =Yo7y o] (o o T PSR PRP 37

3.2.2 IMPIEMENTALION......coiieeii e e e e e e naeas 38

0 B U oV o) o SRR 40
106 R 47) d O R 40
1O B (o] = I PSRRI 40
1O B o o I O PR 40
DCOL _FUNPL_C4 ... 41
DCOL _rUnPL _Cb..... 41
1O B o] = I O PR 42
DCOL _FUNPL_C7 ... 42
DCOL _rUNPL LT e 42
1O B (o] d I PSRRI 43
1O I o d I T B PR 43
DCOL _FUNPI LA ... 43
1O I (o] = I X S SEEER 44
DCOL _FSEIPI.........ccceeeeeeeeeeeeeeeeee 44
DCOL _UPAALEPI...........c.cceeeeeeeeeeeeeeeeeeeeee 44
DCOL_FUPAALEPI. ... 45
DCL _10adSerieSPIASZPKccooooe e 45
DCL_10adParallelPIaSZPKooo oo 45
3.3 Non-linear PID CoNntroller.........coo oo 46

3.3.1 DESCIIPLON . 46

3.3.2 Implementation........ccooooiiii i 50

K 0 2R T U1 g Tox 1] 1= SRRSO 51
DCL_TUNNLPID _CT ..ottt e oo e ettt e e e e e e e st e e e e e e e e e nnb ittt e e e e e e e e e ennnnenaeeeas 51
DCL _FUNNLPID _C2.........ccoeeeeeeeeeeeeeeeeeeee e 51
DCL_rUNNLPID _C3......eeeeeeeeeeeee e 52
DCL_setActiveNLPIDGAmMMacccoeeeeeee e 52
DCL_SEINLPIDGAMMAccc oo 52
DCL_FeSEINLPIDeeeeeeeeeeeeeeeee e 53
DCL_UPAAIENLPID ...ttt e et e e e e e e e st e e e e e e e e e s nnnbe e e e aeeeeeaannnsneeeas 53
DCL_SetACtiVENLPIDFIEIBW ... 53
DCL_SEINLPIDIMEIBWcc e 54
DCL_GEINLPIDFEIBWYccooe ettt ettt e e e e e n ettt e e e e e e e et e e e e e e e e e ennnnnsneeeas 54
DCL _getNLPIDQamMMacccoee oo 54
DCL_GEINLPIDAEILA.ccooeiiaiiieeie ettt e e a e e 55
3.4 Non-linear Pl Controllers ... 55

Contents

Vi

g B D =Y Tor | o[T RSP URPPR 55

3.4.2 IMPIEMENTATION e anarrrnaaaeeaaann 55

K N U T[] o SRR 56
DCOL _FUNNLPL _C e 56
DCOL _FeSEINLPI............eeeeeeeeeeee e 56
1O Voo == AN/ o PSR 56
3.5 Double Integrator Pl CONrOIENoooi i 57

5 Tt B I =T | 1 T SRR 57

3.5.2 IMPIementation e e e e e e e e e e e e e e e nnrneaeeeaaanne 57

R TR B U T o) USSR 57
1O I o] d 2 O PSR 57
DCOL _1eSEIPI2 ... 58
DCOL _UPAALEPI2 ... 58
DCL_FUPAALEPI2 ... 59
3.6 Direct Form 1 (First Order) Compensators ..., 59

KGR B B =TTy o] (o o PSP PRPRORRSP 59

3.6.2 IMPIEMENTAtION ... e e e nt e e anreeaeea 60

TG 0 B U T[] SO PEERR 60
DCOL _rUNDFTT G e 60
DOL_TUNDFTT_C2 ..ottt ettt e e e e ettt e e e e e e e e e saeseeeaaaeeeeeannnssaeeeeeaeeeeaannnes 60
1O B Vo1 e I N P RRRRR 61
DO 1ESEIDF 1T e 61
1O IV« To == B i PSRRI 61
L O I (7o To =1 (=T 3 e RO EERRR 62
1D B) =T o) =] B e By PP 62
1007 M (oT- o /B Iy - VA o GO 62
1O I (- To /B i B = XY o PSRRI 63
3.7 Direct Form 1 (Third Order) Compensatorsccoovviiiiiieiiieeceeeeeeee e 63

T At B I =T | [TSR 63

T A2 | o 01111 0.4 1= 01 = (o T o SRR 65

A U T o) USSR 67
1O I 7o iy I T O SRR 67
DCOL_TUNDFFT3_C2 ...ttt ettt e e ettt et e e e e e e e b bttt e e e e e e e eannstteneeeaeeeeaaannns 67
DCOL _rUNDFT13 G .. 67
DCL _rUNDFT3 G4 ... 68
DCOL_TUNDFT3_CB ...ttt ettt e e e e ettt e e e e e e e e s saeeeeaeaeeeeeannnssteeeeeeaeeeaannnes 68
DCL _FUNDFT3 _CB ... 68
DCOL _FUNDFT3 LT 69
DOL_TUNDFFT3 L2ttt ettt e e e e ettt e e e e e e e st eeeeaeeeeeannnssaeeeeeaaeeeaannnes 69
DOL_TUNDFT3 L3ttt e ettt e e e e e e e ettt e e e e e e e eannnsteeeeeaeeeeaannnes 69
DCOL _FUNDFT3 LA 70
DCOL_TUNDFT3 L.ttt e e ettt e e e e e e e et e e e e e e e e e eannnssteeeeeaeeeeaannnes 70
DCOL_FTUNDFFT3 L.ttt ettt e e e e e e ettt e e e e e e e e e nnsteeeeeaeeeeaannnes 70
DCOL _FeSEIDF 13 ... 71
107 Y] oo =1 =] B o I 71
1O I (7o To =1 (=T B iy PSRRI 72
LD O B) =1 o) 1= B O ERRRR 72
1007 M (oT: o /B iy KT VA o GO 72
3.8 Direct Form 2 (Second Order) Compensators ..o 73

G Tt B =Y Tor 1 o[TS PERPPR 73

3.8.2 IMPIEMENTATION e e e e e e e e e e e e e e — e e e e e e e e anaarrnaaaeeaaanns 74

< 20 S U T[] S PEERR 75

Contents

DCL_TUNDIF22 _CT ...ttt oo oottt e e e e e e sttt e e e e e e e e s nn st e e e e e e e e e e e annnnseeeeas 75
DCL _ruUnDF22 C2 ... 75
DCL _runDF22 _C3 ... 75
DCL_TUNDIF22 _CA4 ...ttt e ettt e e e e e e e ettt e e e e e e e e s nn bbb e e e e e e e e e ennnnseeeeas 76
DCL _runDF22 C5 ... 76
DCL _rUNDF22 _C6 ... 76
10O B (V11D o B SRR 77
DCOL_FTUNDIF22 _L2.........oeeeeeeeeeee ettt ettt e e e e e e e ettt e e e e e e e s et e e e e e e e e e e ennnneseeeeas 77
DCL _ruUNDF22 L3........ e 77
DCOL_TUNDIF22 L4 ...ttt e e e e e e ettt e e e e e e e st e e e e e e e e e s nns bt eeeaaeeeeeennnnnnneees 78
DCL _reSEIDF22c.cceeeeeeeeeeeeeeeeeeeeeeeeeee 78
DCL _UPAALEDF22c.cceeeeeeeeeeeeeeeee e 78
DCL_fUPAAtEDF22 ... 79
DCL_ISSEADIEDIF22 ...ttt e e e e e e et e e e e e e e e e et e e e e e e e e e e nnanaeees 79
DCL _10AADF228SZPK...........c.c.cceeeeeeeeeeeeeeeeeeee e 79
DCL_10aADF228SZWN ... 80
DCL 10adDF22asParallelPID.................ccccccooooiiiiie e 80
DCL _10adDF22aSSErESPIDccccccoeeeeeeeeeeeeeeeeeeeeeeee 81
3.9 Direct Form 2 (Third Order) COMPENSALOrScoiiuiiiiiiiieee e 81

3.9.1 DESCIIPLON .. 81

3.9.2 Implementation........cccooooiiiiii 83

RS R B o U 0T i o PRSP 83
10O B 1o A S O PRSP 83
DCL _runDF23 _C2 ... 84
DCL _runDF23 _C3 ... 84
DCL_TUNDF23 _CA4 ...ttt e e e e et ettt e e e e e e e ettt e e e e e e e e e s nnsbseeeaeeeeeeennnssneeeas 84
DCL_TUNDIF23 _C8 ...ttt ettt e e e e e e ettt e e e e e e e e s bt e e e e e e e e e ennnnsaeeeas 85
DCL _rUNDF23 _C6 ... 85
1O B (Vo1 A S PSP 85
DCOL_FTUNDIF23 _L2........ceeeeeeeeeeeeeeeeeeee ettt ettt e e e e e e sttt e e e e e e e s e e e e e e e e e e e ennnnnsneeeas 86
DCL _ruUNDF23 L3......eeeeeee 86
DCOL_FeSEIDF23ceeeeeeeeeeeeeeeeeeeeee e 86
DCOL_UPAAIEDIF23 ...ttt e et ettt e e e e e e e st e e e e e e e e e s nnnsee e eeaeeeeeennnnnnnees 87
DCL_fUPAALEDF23 ... 87
DCL_ISSEabIEDF23 ... 87
DCL_I0QUDF238SZPKccoeeeeeeaaeeeeee ettt e e e e e e et e e e e e s st e e e e e e e e e s nnseeeeaaaeeeeeannnnssaeeens 88
3.10 Fixed-Point PID CONLrOIIEISuueiiiiiee e e e e e e e e 88

I 00T B =Ty o (o o OSSR 88

I Tt 02 [T 1= 0.4 1= 01 =1 (o o SR 88

I Tt 10 O U T o) SRR 90
DCOL _rUNPID AT 90
DCL _reSetPID32 ... 91
DCL _updatePID32 ... 91
DCL_fupdatePID32cco e 91
3.11 Fixed-Point Pl CONIIOIIEISeeiiiiieieee ettt e e e e e e e e e e e e e e e 92

R Tt I P T 0 =Y o 1) PRSPPI 92

I I B 2 o o 1= 0 1T] = o] o SRR PRP 92

K Tt I R O U T o) SRR 93
DOL _rUNPL AT e 93
DCL _reSEtPIB2.........c.ccooeeeeeeeeeeeeeeeee 93
1O B Voo [(=] d I ¥/ PRSP 94
DCL_fUPAALEPIB2...........c.cceeeeeeeeeeeeeeeeee 94

Vi

Contents

3.12 Gain Scheduler MOAUIE ... e e e e e e e e e e e 94
K T 7 B B =TTy o (o o PSPPSR 94

I Tt 2 | o 1111 0.4 1= 01 = (o T o OSSPSR 95

K Tt 22 U T o) SRR 96
DCOL _FUNGSM _C . 96
DCL reSEtGSM ..o 96
DCL_UPAAtEGSM ... 96
DCL_fupdateGSM ... 97
DCL _10adGSMOISELS ... 97
DCL _10adGSMQGAINS ... 97
3. 13 Non-linear Control Lawccooeiiieeeee 98
G TR G T B 19T 4o)T T 98
3.13.2 IMPIEMENTALIONeeiiiiie e 98

R Tt 1 0 R U T o) 3RS PERPPR 98
DOL_FTUNNLF _CT oottt ettt e e e e ettt et e e e e e e s s bttt e e e e e e e e eannssteneeeaeeeeaannnes 98
3.14 Double Precision PID CONIrOlIErScooeiiiiieeeeeeeeeeee e 98
K Tt g I =TT | [SRR 98

I Tt I | o 4T 111 0.4 1= 01 = (o T o OSSPSR 99

R Tt e B U T o] 3 TR PURPPR 99

IO B (Vo I3 o S SRR 99
DCL _reSEIPIDFG4 ... 99
DCL_UPAALEPIDF G4 ... 99
DCL_SEIPIDFGAIMEIBWVoeeeeeeeeeeeeeeee ettt ettt e e e e e e et e e e e e e e e e s nnnrseeeaeeeeeeannns 100
DCL_SEtACHIVEPIDFGATTEIBWYeeeeeeeeeeeeeeeeeeeee ettt e e e e e et e e e e e e e e anns 100
IO e (=T 1 B ST 1 =Yg =1 100
3.15 Double Precision DF22 COmMPENSators.ooiiiiiiiiieeieeee e 101
G T o T B 19 =T 4o T 101
3.15.2 IMPIEMENTATIONeeiiiiiieee et e aeanrrnaaaaeaeaaan 101

K T TR T U T 1 T RSP 101
DCL_TUNDF22F 64 _ST ...ttt ettt ettt e e e e e e e ettt e e e e e e e e e s nnnreeeeaeeeeeeann 101
1D O] R 47 11D o T Y 101
DCL_TUNDF22F64_S3 ...ttt ettt e e e e e e ettt e e e e e e et e e e e e e e e asnnnssaaeeeeeeeeeaanns 102
DCL_1ESEIDF22F64...........eeeeeeeeeee ettt ettt ettt e e e e e e ettt e e e e e e e e e e et neaeeeeeeaaan 102
1D O] Y| o Lo =1 (=] B ¥ o o 102
L] o SRRt 104
o B 0o a1 o I O3 =T 4o o 1= P 104
3 Ot B I 1= (o [o P TR PRR 104

e O U | o 1T 1= 105

110 B 47 1107 - T o N O 105
DCL runClamp_C2 ...t 105
1D 1 B 47 1101 - T o N iy 106
1D 1O B 47 10107 - T o] o T X 106
4.2 Floating Point Data Logging FUNCLIONSuuiiiiiiiiii e 107
421 DESCHIPON.. ..o 107
3 U] o1 o] SRR 108

[0 o =1 =] (=] e o B 108
O I (=T 1= 1 Mo o PR PP PPPPPPPRRPPR 108
10107 B] { X Yo 109
[0 R /o1 (=T Mo e BT 109
11O B 1 oo P 109
DCL_CIBAILOQGcceieeeeieeee ettt e e e e et e e e e e e e e e e e e e e e e aae 110
DCL r8AGLOG ... 110

viii

Contents

DCL _COPYLOG ..., 110
O B 4T Lo | o o PP PPPRPP PP 111
DOL_TWITEELOG ..ottt e e et e e e e e e et e e e e e e e e nnnnee s 111
4.3 4-channel Floating Point Data LOGQer.........coviiiiiiiiiiiciie et 111

3 Tt B I 1= 1o o [] o [P SRR 111

T2 U | o7 110 1= U OUPEERP 112
DCOL _JNItMLOGc.cc oo 112
DCL reSEtMLOGcccoooieeeee e 113
DCL armMLOG ..., 113
DCL _rUNMLOG ... 114
4.4 Transient Capture Module............ooo i 114

St B O/ 1o | L= 1Y o T [ORI 115

4,42 TCM_ armMed MOGEcoccoiioieeeiee ettt e e e e e et e e e e e e s e s e e eeeaaeeeessnsbaaseeaaeeeaansnes 115

4.4.3 TCM _CAPIUIE MOGEccoieeieeeiiee et e e e e e e e e e e e s e e e e eaeeeeeeansraeeeaaeeeeansnes 116

444 TCM _complete MOAE.........c..uiiiiiiiie et e e e e e e e e e e e e e e abraeeeeaeeeeaannes 118

3 T U | o 1] 1= OSSR 118
DCOL _JNIETCM.......c e 118
1D O B =TT o I L 119
DCL armTCM ..., 119
DCOL _FUNTCOM ... 119
4.5 Performance MeasUremMeENt...........ooviiiiiiiiiiiiiie e 120

Tt I I 1YY o] 1T o 120

L T2 ¥ [o7 (1] I OO PPURPR 121
O B 7o | = S O PSP 121
DCL _FUNIES _C2 ... 121
DCOL _FUNIAE _CT e 122
DCOL_TUNIAE _C2 ...ttt e e e e e ettt e e e e e e e st e e e e e e e e e e nnnseaeeeaeeeeeennnnneees 122
DOL_TUNITAE _CT ettt e e et e ettt et e e e e e e et e e e e e e e e e e nnne e e e eeaaeeeeennneneees 122
DCOL _FUNITAE_C2 ... 122
4.6 Fixed Point Data Logger SUPPOIt.........ooiiiiiiiiiieeeee e 123

TR B B T Tty o] i (o o SO OUPPUPPRN 123

I U] o1 o) RSP 123
DCL_dEIBELOG32 ...ttt et a e e 123
DCL_1ESEILOG32 ...ttt e e e et e e e e e e e 123
DO I [T Mo o I PSSR 124
DCL WIIELOG32 ... 124
DCOL_FilILOG32.........cceeeeeeeeeeeeeeeeeeee e 124
DCL _Cle@rLOg32ccooo oo 125
DCL _re@dlog32..........ccoo oo 125
DCL_COPYLOGI2 ...ttt ettt e ettt e e e e e e e e e e e e e e e e e 125
DCOL _JNItMLOGS32........cceeeeeeeeeeeeeeeeeeeeeee e 125
DCL reSetMLOGS32ccoooee e 126
DCL _armMLOG32cco oo 126
DCL _FUNMLOG32 ... 127
4.7 SIMUIALION IMOUEIS ...t e e e e e e e s et e e e e e e s e s nnsrnaeeeeaeeeennne 127

o O T I U= B T I =] T Yo = T SRR 127

4.7.2 SIMUIAtion EXAMPIEccoiieiieiiiie ettt e e e et e e e e e e ———raaaeeaaannae 128
4.8 Double Precision Data Logging FUNCHONScooiiiiiiiiiiiiii e 128

L TR B I T~ y o oo USSR 128

L T2 U | o7 (1] 1= SO OUPSERR 129
DCL _deleteLogb4ccoooeeeeeeeeeeeeeeeeeeeeeee 130
DCL _reSEILOGOAc.ccceeeeeeeeeeeeeeeeeeeeeeeeeee e 130

Contents

0O R [T 1 o o [PSPPSR 130
DOL_WHEELOGOEA ...ttt e e ettt e e e e e e e e bbb e e e e e e e e e e aann 130
11O B 1/ oo o 131
DCL _ClEAIrLOGO4..........c.cceeeeeeeeeeeeeeeeeeeeeee e 131
DCL_1EAMALOGEA ..ottt ettt e e e e e e e e e e e 131
DCL_COPYLOGOA ...ttt ettt e e e e e e e e e e e e e e e e e e e 132
=0 1] o == PPt 133
5.1 Example 1: DF22 Compensator Running on FPU32...............cciiiieeeeeeee, 134
5.1.1 EXAMPIE OVEIVIEW ...ooiiiiiiiiiiiie ettt et e e sttt e e s et e e s ennne e e e aneeeas 134

LSt 2 0o o [T I 1= 4 o] (o o S SPRUURR 134
5.1.3 RUNNING the EXaMPIE ...ccneiiiii e e 135

5.2 Example 2: DF23 Compensator Running on CLA ..., 136
521 EXAMPIE OVEIVIEW ...ooeiiiiiiiiiiiiie ittt et e et e e e e e e s et e e e e e e e e saaastaeeeaaeeesannsssreeeaaaeaannns 136

I A 0o o [N B 1= 4 o] (o] o WSO OPPPPPRRR 136
5.2.3 RUNNING the EXAMPIEccccoieeeeeee e e e e e e e e e e e s re e e e e e e eaaans 137

5.3 Example 3: NLPID Controller Running on FPU32ooiiiiiiiiieeeeee e 138
5.3.1 EXAMPIE OVEIVIEW ...ttt e e e e e e e et e e e e e e e e s e nneeeeeaaaeeeaannseneeeaaeaanns 138

LR J0Z O o [T I 1= 4o} (o o USSR 138
5.3.3 RUNNING the EXamMPIE ...t e e e e 139

5.4 Example 4: Pl Controller Running on CLA...........ooiiiiiiiieeeeeeeeeeeeeeeeee, 140
541 EXAMPIE OVEIVIEW ...ooeiiiiiiiiiiitiiee ettt e e e e et e e e e e e s et e e e e eaeessaassbaeeeaaeeesaasnsreeeaaeeaaanns 140
ST O T [N Lo T oy o) 1T o RO 140
5.4.3 RUNNING the EXaMPIE ...ccneiiiii e e 140

5.5 Example 5: PID Controller Running on FPUSB2.........ooiiiii e 141
551 EXAMPIE OVEIVIEW ..ottt e e e e e e e e ettt e e e e e e e e s e anaeeeeeaaeeaaannseneeeaaeaanns 141
5.5.2 COdE DESCIIPHIONveeiiiie et e et e e e e e e e ettt e e e e e e e eaeatrrereaeeeeaans 141
553 RUNNING the EXamMPIE ...t e e e ee e e e e 142

5.6 Example 6: TCM Running on FPUS32............ooiiiieeeeeeeeeeeeeeeee, 142
5.6.1 EXAMPIE OVEIVIEWooiiiiiiiiiiiiiie ettt st e sttt e e st e e s enne e e e e aneeeas 142

T G O T [N B LTy o) 1] RO PRP 143
5.6.3 RUNNING the EXaMPIEc..eeiiie e e 143

5.7 Example 7: Smith Predictor Running on FPUSB2 ... 144
571 EXAMPIE OVEIVIEW ...oooiiiiiiiiiitieie ettt ettt e e e e e ettt e e e e e e e eeebabeeeeeaeeeeaeaasrereeaaeaanns 144
5.7.2 CodE DESCIIPHIONuveeiiiiiii it e e e e e e e e ettt e e e e e e e e eaeaarrereeeeeeaans 145
5.7.3 RUNNING the EXAMPIEcccoieeeeee e e e e e e e e e e s aeeeaaaeeeaans 145

5.8 Example 8: GSM RunNning on FPUS32 ..., 145
5.8.1 EXAMPIE OVEIVIEWoiiiiiiiiieiieie ettt et e e st e e st e e s annne e e e anneeeas 145
TR Oo T [N B Lo T oy o) 1] o PP 145
5.8.3 RUNNING the EXaMPIEconeiiiiie e 146

5.9 Example 9: Multiple Controller System with ERAD Running on FPU32...........ccccceveeiiiines 147
5.9.1 EXAMPIE OVEIVIEW ...ooeiiiiiiiiiitieiee ettt e et e e e e e ettt e e e e e e e seebabeeeeeaeeeseeassrereeaaeaaans 147
5.9.2 COdE DESCIIPHIONuteeiiiiee ittt e e e e e s e e e e e e e e s s b a e e e e e aaeeeaanarreraaeeeeaaan 149
5.9.3 RUNNING the EXAMPIEcccoieeeeee et e e e e e e e e e e s b e e e e e e e eaans 149
5.10 Example 10: PID RUNNIiNg 0N FPUBAot 150
5.10.1 EXAMPIE OVEIVIEWooiiiiiiiiieiiiiee et e et ee e e e e e e e et eeeeeaaaeeeaannaeeeeaaeeeaaannseneeeaaeaanns 150
5.10.2 Code DESCIIPHION ...ttt e e e e e e et e e e e e e e e e s nn et eeeaae e e e nnneeeeaeeeeanns 150
5.10.3 RUNNING the EXaMPIEcneiiiiie e 151

5.11 Example 11: NLPID Running on FPU32 (TMU1). 152
5.11.1 EXAMPIE OVEIVIEW ...oeeiiiieiiiiitieee ettt e et e e e e e e s et e e e e e e e e saesataeeeeaeeesannsssreneaaaeaannns 152
5.11.2 COdE DESCIIPHIONuieeiiiiee ettt e e e e e s e e e e e e e e seeas b e e e e aaaeesanansseneaeeeeannns 152
5.11.3 RUNNING the EXaMPIE ...cc.neeiiie e 152
K51 o o o N 154
T B = =T =T g o7 154
G0 I A 057010 T I T Yo 0 4 1= o1 = 1T o 1 SRR 154

Contents

I 1 (= = (1] SRR 154
G 22 I - 1o 11 T 155
8.3 SUP PO ... 155

Xi

Figures

Figures

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.

Xii

(D103 IR {973 o3 4 o o I8 4 P-4 1[5 T [4
DCL Controller Header File DependencCyccccciiiiiiiimmmmmnssnnnssssssssssss s sssssssssnnns 17
DCL Data Logger Header Dependencyccccreriiiiniiiimmmsssnnnssssssns s sssssssssnnns 17
CCSV6 INclude OPLIONSccooeeiiiiiiieeicccceer e e e e e e e e e e e e e e e eeaennnes 19
Parallel form PID cONtroller...........coooiiiiieiicciirerrrrsrsrrssrsss s 28
(S T e oY 11 o] I Ve i e o NSO P 29
DCL_PID C1, C2, & L1 architectureccoouieieiiiiiiiiccrcccrcccrrcrrrrrrsr s 31
DCL_PID C3, C4, & L2 architecturecccooveviiiiiiiiiirrrcssrrrrrrsrrss s 32
DCL_PI C1, C2, L1, & L3 architecture........coceeeeiiiiiiiirecciee e 38
DCL_PIC3, C4,L2 & L4 architecture........ooueiiircccs s 38
DCL_PI C5 architeCtureccooeeviiiiiiii e s 39
DCL_PI C6, C7, & L5 architecture............oocciiiiiiirrrreecen s e s s escessss e e e e e 39
DCL_NLPID C1 input architectureccooo s 46
DCL_NLPID C1 output architecture..........cccoooiiiiiiiiiiiiirccccccccccrrrrrrrr s 47
DCL_NLPID C2 & C3 architecture..........ccceevieiiiiiiii s 47
Non-linear control law input-output plot...........ccoorriiiiiirr s 438
Gain vs error curves for varying alpha ... 49
NLPID linearized region..........ccceeeeeeuceiiniemnnrcessssssssssssssmsssssssssssssssnmsssssssseeesssnnnsnssns 50
The DCL_NLPI_C1 architecture ... 55
DCL_PI2 C1 architeCture ..o 57
DCL_DF11 C1, C2, & L1 architecture.........ccccccerrreriiiiiieii e 60
DCL_DF13 C1, C4, & L1 architecture......cccccuuueeiiiiiiiieccccr st 64
DCL_DF13 C2,C3, C5, C6, L2, & L3 architecture ..., 65
DCL_DF13 data & coefficient layout............cccceeeriieiiiiiiicreeee e 66
DCL_DF22 C1, C4,L1, & L4 architecturecccceeeeeeeeeieeieeeeeereeereeeee e 73
DCL_DF22 C2, C5, & L2 architecture......ccccceuciiiiiiiieccccc et 74
DCL_DF22 C3, C6, & L3 architecture.........cccccceerrririiiiiiiiieeeeeeeeeeeeeeee e 74
DCL_DF23 C1, C4, & L1 architecture.........ccccceeereeeiiiiieerieeeeeeeeererereeee e 82
DCL_DF23 C2, C5, & L2 architecture......cccccuuceiiiiiiirecccce st e e 82
DCL_DF23 C3, C6, & L3 architecture......cccccumueeiiiiiiiirccccn st r e 83
DCL_PID32 A1 architecture..........coooiiiiiiiiiiiiiccircrrrrr s s 20
(D103 I o N =T e 11 (=Y o2 {1 93
DCL_GSM sector NUMDEriNgccccemiiiiiiiiiinniir s 95
Data log pointer allocation ... e 107
MLOG architeCture.........cccooiiiiiiiieiirri s s 112
TCM operation in TCM_idle MOde ... e 115
TCM operation in TCM_armed mode........ .. 116
TCM operation in capture mode (monitor frame un-winding)........cccccccccccinnnneene 117
TCM operation in TCM_capture mode (lead frame complete)cccccccunnnnnneeee 117
TCM capture complete....... s 118
TranSienNt SEIVO EITOr e e e 120
FDLOGG64 pointer allocation.............cooveeiiiii i 129
Smith Predictor control 100P.........ccoiveiiiiiiimmiieeieeeeee s e e e s e e s e neennes 144

Tables

Tables

Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.

Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.

CPU compatibility - controllers............oooueeieeeiieie e e 6
CPU compatibility — support modules............ooooemiimieiiiiieie e 7
Controller execution & code size benchmarks............cooooviiiiiiiiiiiiiiiiieeieeeeeeeeeeeeeeees 7
Support function execution benchmarks.........cccccceevieeiiiiiii 10
Fast update function execution benchmarkscccccccieiiiiccccccrreee e, 1
Double precision function execution benchmarks (no optimization) 13
Double precision function execution benchmarks (-02 optimization) 13
List of DCL header files ..o 14
List of DCL source files ... s e 15
List of DCL code eXamples........cccooiiiiiiiiiniiiiiiee e es s s e e s e s s e s e e 16
List of fast parameter update function execution cyclesccceevvevvieviieeveeeeenn, 23
List of CSS enumerated error CoOdescccviiiiiiiiiiiiiiisssnss s e eeees 23
Data log read/write benchmarkscccciimmmmiii 108
Performance index function benchmarks............coccciimiinicccccernr s 121
FDLOG64 read/write benchmarks...........cccoocmmmmriiiinninnn e 129

Xiii

Chapter 1

Introduction

1.1

This chapter contains a brief introduction to the Texas Instruments C2000 Digital Control
Library (DCL).

Section

1.1 Supported Devices
1.2 Overview of the Library

1.3 New in this Version

1.4 Benchmarks

Supported Devices
The DCL is compatible with four different C2000 CPUs:
e A 64-bit floating point CPU, denoted “FPU64”
o A 32-bit floating point CPU with trigonometric accelerator, denoted “FPU32”
e A 32-bit floating point “Control Law Accelerator”, denoted “CLA”
e A 32-bit fixed point CPU, denoted “C28x”

Controller functions contain a suffix which identifies which CPU they are intended to be
used with (see section 1.3.3). The following list provides an overview of the CPU
availability on each class of C2000 device. Users should consult the datasheet for their
chosen device to determine which CPU combination is present.

The FPU64 can be found on F2838x devices.

Among those devices which contain an FPU32 are:
e TMS320F28002x
e TMS320F28004x
e TMS320F2838x
e TMS320F2837x
e TMS320F2807x
e TMS320F2833x
e TMS320C2834x

Introduction

1.2

e TMS320F2806x
e TMS320F28M35x
e TMS320F28M36x

Some FPU32 devices also contain a Trigonometric Math Unit (TMU) which extends the
instruction set to provide support for trigonometric and other math operations. The DCL
makes use of the TMU wherever possible. Refer to the controller descriptions for more
information.

The library also includes functions optimized for use on the Control Law Accelerator
(CLA). This CPU is only found on certain C2000 devices, including:

e TMS320F28004x
e TMS320F2838x
e TMS320F2837x
e TMS320F2807x
e TMS320F2806x
e TMS320F2805x
e TMS320F2803x

The DCL includes limited support for fixed-point C28x platforms in the form of two
controllers and two data logging modules. Among the devices supported in this way are:

e TMS320F2805x
e TMS320F2804x
e TMS320F2803x
e TMS320F2802x
e TMS320F281x
e TMS320F280x

Fixed-point (C28x) DCL library functions will also run un-modified on any device which
contains an FPU32. The DCL does not support the C24x CPU.

The C28x Run Time Support (RTS) library allows FPU32 functions written in C to be run
on the fixed point C28x, however RTS emulation of the floating point data type is not cycle
efficient and the library has not been tested in this way. Users are advised to run only
those controller and CPU combinations recommended in this User's Guide. A list of
controllers and compatible CPUs can be found in Table 1.

Overview of the Library

The C2000 Digital Control Library (DCL) provides a suite of robust software functions for
developers of digital control applications using the Texas Instruments C2000 MCU. All
functions in the library are supplied in the form of C or assembly source code. There is no
object code in the library. The library is deployed in the C2000Ware software suite, which
is available for free download at: www.ti.com/tool/c2000ware.

The DCL functions are intended for use in any system in which a C2000 device is used.
The DCL may not be used with any other devices. Refer to the C2000Ware license
agreement for further information.

Introduction

The DCL is independent of other application specific C2000 software libraries and
Software Development Kits (SDKs), however providing attention is paid to data type and
numerical range, integration with those packages is straightforward.

The DCL contains PID and “Direct Form” controller types. The former are typically used
to tune properties of a transient response, while the latter are typically used to shape the
open loop frequency response. The DCL contains functions to convert controller
parameters from one type to the other; for example, the user may emulate PID control
using a direct form 2 controller structure. The library also contains a gain scheduler
module.

Supporting functions include: data logging, performance measurement, transient capture,
and reference generation. Support functions run on the C28x, FPU32, or FPUG4 only;
they not compatible with the CLA. Most are supplied in C code form; however a small
number of time-critical functions are also supplied as C callable assembly functions.

The library includes a set of example projects which illustrate how DCL functions might be
applied in a user project. The library itself contains no device specific code and users of
other C2000 devices will find it straightforward to apply the examples to their own
projects.

The DCL does not contain tools to measure frequency response or perform compensator
parameter selection; however similar features can be found in the “Compensation
Designer” utility which is part of the Tl “powerSUITE” package. A Software Frequency
Response Analyzer (SFRA) utility can be found at: www.ti.com/tool/sfra.

1.3 New In This Version

1.3.1 New Features

Version 3.4 of the DCL adds a reference generator module. The module is documented
in a separate user’'s guide which can be found in the \docs sub-directory of the DCL
installation path.

Also added in version 3.4 is support for the DF22 compensator in double precision floating
point. The controller is designated DF22F64 and more information can be found in
chapter 3. A double precision clamp has also been added to support this controller.

The macro DCL_CLEAR_ERROR_CODE has been added to DCL.h to set the stored
error in the CSS sub-structure to ERR_NONE.

Controller update and run functions which are coded as static inline are now placed in the
“dclfuncs” section using a CODE_SECTION pragma. This allows time critical functions to
be copied into RAM at run-time. This change has been made to the files: DCLF32.h,
DCLF64.h, and DCL_NLPID.h. Some functions in the new reference generator module
are also placed in this section.

Library break-points now insert the ESTOPO assembly instruction instead of NOP. This
instruction inserts a software break-point so the user no longer has to manually set a
break-point in CCS. In stand-alone mode, ESTOPO is replaced by a NOP instruction. As
before, break-points can be disabled by commenting out the definition of
DCL_BREAK_POINTS_ENABLED in DCL.h.

The C code in DCL_error.c has been simplified. This code is intended for users to modify
to implement their own custom error handlers.

Introduction

The code in DCL_NLPID _C3.asm has been slightly modified. An attempt to build a
project with this module included but without TMU support will now generate an error
(rather than a warning) at compile time.

1.3.2 Bug Fixes

Starting from version 3.4, the controller reset functions will no longer clear the error code
in the CSS. This makes the reset functions compatible with situations in which the user
does not wish to use the support sub-structures.

1.3.3 Function Naming
No changes have been made to the function naming convention from v3.3.

The naming convention allows several controllers of similar type, but with different
implementations, to be used together in the same program without conflict. An example
of a library function name, together with a description of the constituent fields, is shown
below.

DCL_runDF23_C1

Library Identifier

A unique field which identifies the
controller implementation

Operation
re;uerl CPU core
A = C28x
dat
upaate C =FPU32
L=CLA
Controller type S = FPU64
PID
PI
DF13
Figure 1. DCL function naming

In this format, both the controller type and the CPU on which it runs are explicit. This
allows future expansion of the library with variations of each controller type. An example
is the PID controller, which exists in both “ideal” and “parallel” forms in the library. The
final digit is an arbitrary number which identifies the implementation. Users may add their
own controller variations to the DCL controllers by changing the final two characters of the
function name. Refer to section 2.6 for further information.

In addition to “run”, all control structures have associated “reset” and “update” functions.
The first resets all internal non-parametric data to its default values without changing any
controller parameters. The second performs a safe parameter update without changing
any non-parametric control data. Note that the “update” function requires both SPS and
CSS structures. The same “verb-noun” function name construction shown in Figure 1
applies to all supporting functions.

The DCL includes an implementation of a 64-bit floating point PID controller. This
controller uses the letter “S” as the CPU identifier to distinguish it from the similar FPU32
controllers. It may be compiled and run on an FPU32, however without hardware support

Introduction

for the double precision data type relatively poor cycle performance should be expected.
Refer to Table 6 and Table 7 for further information.

1.3.4 Structure Naming

No changes have been made to the structure naming convention from v3.3.

1.3.5 Support Sub-structures

Each controller structure contains two 32-bit pointers, each of which holds the address of
a separate support sub-structure.

The first such sub-structure contains a Shadow Parameter Set (SPS), which the user
loads prior to executing a parameter update sequence. The update sequence performs a
safe copy of the SPS parameters into the main controller structure by disabling interrupts
before the copy sequence and re-enabling them afterwards. This ensures the controller
never runs with a partially updated parameter set, and allows controller parameters to be
updated without disturbing the control loop.

The second sub-structure is a Common Support Structure (CSS). The CSS contains
supporting data used for error checking and parameter updates.

The use of SPS and CSS is optional. Users who do not need the additional features
provided by SPS and CSS may safely ignore these structures.

1.3.6 Calling Convention

All functions in the DCL are designed to be called from a C program. The context save &
restore in each function assumes the standard parent register save is performed be the
compiler. If any of the assembly functions are called from an assembly program,
additional context save & restore instructions must be added by the user. See section
2.2.2 for further details.

1.3.7 Data Types

Library floating-point variables are declared with either the float32 t or the
float64 t data type. Unsigned and signed integers are declared as uintl6_t and
intl6_t respectively. Fixed-point controllers use the signed long integer type int32 t.
Data type definitions can be found in the DCL.h header file. The DCL is compatible with
both COFF and EABI compilers.

1.3.8 The ZPK3 Structure

Equation 1. F(z)

The library header file DCL.h contains a type definition of a third order transfer function in
the form of zero and pole frequencies, and a real gain. This “ZPK3” structure enables
direct form compensators to be configured from specifications involving pole and zero
frequencies. Functions also exist to load Pl and PID controllers in the same way. Refer
to chapter 3 for more information on controller configuration using ZPKS.

The general form of the linear third order DT transfer function is

— g Z-aD(E=a2)(z=q3)

(z—p1)(z-p2)(z—p3)

Introduction

In Equation 1, g1, g2, and q3, represent the frequencies of the three zeros in Hz; p1, p2,
and p3 represent the frequencies of the three poles in Hz; and K is the real gain.

The ZPK3 structure is also used in the library to represent first and second order transfer
functions. In each case, poles and zeros on the right being ignored. For example, in a 1-
pole, 1-zero description, only K, g1, and p1 are relevant; the user function will ignore g2,
q3, p2, & p3.

The DCL functions which take ZPK3 arguments allow complex poles and zeros providing
they exist in conjugate pairs, thereby resulting in real polynomial coefficients. Error
checking is built into those functions to ensure this is always the case.

1.3.9 Compensator Stability Tests

The library contains functions to test stability of all direct form compensators. Stability is
determined from the pole locations based on the transfer function denominator
coefficients. Generic polynomial stability functions are found in the library header file
DCL.h. In the first order case, determination is trivial. For second and third order
compensators, the Jury array method is used. All stability test functions return the bool
data type: ‘true’ if all compensator poles lie within the unit circle, otherwise ‘false’.

1.3.10 Deprecated Modules

All multi-channel data loggers (MLOG & MLOG32) will be removed in a future version of
the library.

1.4 CPU Compatibility

The tables below list the CPU compatibility of the controller and support structures in the

DCL.
Table 1. CPU compatibility - controllers
Controller C28x FPU32 FPU64 CLA
DCL_PID No Yes No No
DCL_PI No Yes No No
DCL_PI2 No Yes No No
DCL_NLPID No Yes No No
DCL_NLPI No Yes No No
DCL_DF11 No Yes No No
DCL_DF13 No Yes No No
DCL_DF22 No Yes No No
DCL_DF23 No Yes No No

Introduction

DCL_GSM No Yes No No
DCL_PID_CLA No No No Yes
DCL_PI_CLA No No No Yes
DCL_DF11_CLA No No No Yes
DCL_DF13_CLA No No No Yes
DCL_DF22_CLA No No No Yes
DCL_DF23 CLA No No No Yes
DCL_PID32 Yes No No No
DCL_PI32 Yes No No No
DCL_PIDF64 No Yes Yes No
Table 2. CPU compatibility — support modules
Controller C28x FPU32 FPUG64 CLA
FDLOG No Yes No No
MLOG No Yes No No
TCM No Yes No No
FDLOG32 Yes No No No
MLOG32 Yes No No No
FDLOG64 No Yes Yes No

1.5 Benchmarks

1.5.1 Controller Benchmarks

Table 3 lists the performance of each library function by cycle count and code size. In all
cases, cycle count benchmarks were measured by logging a free-running PWM timer
before and after each function call. Therefore the measured cycle count includes the
function calling overhead from the C environment. In cases where the cycle count is
dependent on input data, such as in anti-windup logic, the maximum figure is always
given. Compiler optimization was disabled in all tests. Function sizes are given in units of
16-bit words, as reported in the “.map” file.

Table 3. Controller execution & code size benchmarks

Function Cycles Size (W)
DCL_runPID_A1 99 80

Introduction

DCL_runPID_C1 83 99
DCL_runPID_C2 197 207
DCL_runPID_C3 186 196
DCL_runPID_C4 86 92
DCL_runPID_L1 53 70
DCL_runPID_L2 45 58
DCL_runPI_A1l 62 46
DCL_runPI_C1 52 54
DCL_runPIl_C2 117 121
DCL_runPI_C3 122 126
DCL_runPI_C4 48 37
DCL_runPIl_C5 194 180
DCL_runPI_C6 140 133
DCL_runPIl_C7 51 40
DCL_runPI_L1 34 42
DCL_runPI_L2 33 40
DCL_runPI_L3 118 238
DCL_runPI_L4 122 248
DCL_runPI_L5 138 272
DCL_runNLPID_C1 28412

DCL_setGamma 2090% 312
DCL_runNLPID_C2 33531 3297
DCL_runNLPID_C3 117 185
DCL_runNLPI 2230 2197
DCL_runPI2_C1 218 201
DCL_runDF11_C1 37 23
DCL_runDF11_C2 60

DCL_runDF11_L1 30 34
DCL_runDF13_C1 71 66
DCL_runDF13_C2 20

DCL_runDF13_C3 74 7
DCL_runDF13_C4 175 162
DCL_runDF13_C5 40 38
DCL_runDF13_C6 121 126
DCL_runDF13_L1 61 86
DCL_runDF13_L2 20

DCL_runDF13_L3 58 100
DCL_runDF22_C1 44 45
DCL_runDF22_C2 19

DCL_runDF22_C3 39 48
DCL_runDF22_C4 71 75

DCL_runDF22_C5 29 26
DCL_runDF22_C6 60 67
DCL_runDF22_L1 33 40
DCL_runDF22_L2 20

DCL_runDF22_L3 34 00
DCL_runDF22_L4 83 146
DCL_runDF23_C1 62 64
DCL_runDF23_C2 20

DCL_runDF23_C3 54 69
DCL_runDF23_C4 98 107
DCL_runDF23_C5 29 26
DCL_runDF23_C6 82 97
DCL_runDF23_L1 44 60
DCL_runDF23_L2 20

DCL_runDF23_L3 44 80
DCL_runGSM_C1 50 TBD
DCL_runNLF_C1 1075 1075
DCL_runPIDF64_S1% 2840 310
DCL_writelLog 48 N/A
DCL_readlLog 39 N/A
DCL_freadlLog 22 11
DCL_fwriteLog 22 14
DCL_runClamp_C1 28

DCL_runClamp_C2 71 20
DCL_runClamp_L1 25 26
DCL_runITAE_C1 @

DCL_runlAE_C1 @) 00
DCL_runlES_C1 @

Introduction

) All paths operating in linearized error region. For all paths in non-linear operation, total
cycle count is approximately 1,433. See section 3.3.1 for more information.

@ Measured with run-time library support for the powt () function.
@ Cycle count depends on buffer length. Refer to section 3.4.1 for more information.

@ Refer to Table 6.

1.5.2 Controller Support Function Benchmarks

The table below shows execution benchmarks for the supporting functions new in v3.0 of
the DCL. Execution figures include C function calling overhead. Separate measurements
are given for update performed and not performed according to the sts flag status (see
section 2.4). In all cases, compiler optimization was turned off.

Introduction

Table 4. Support function execution benchmarks
Function File Cycles Cycles ?
DCL_resetPID DCLF32.h 85 85
DCL_updatePID DCLF32.h 964 / 796 201/33
DCL_setPIDfilterBW DCLF32.h 1060 771
DCL_getPIDfilterBW DCLF32.h 509 509
DCL_loadSeriesPIDasZPK DCLF32.h 3226 2939
DCL_loadParallelPIDasZPK DCLF32.h 2741 2454
DCL_resetPI DCLF32.h 71 71
DCL_updatePI DCLF32.h 326/191 166 /33
DCL_loadSeriesPlasZPK DCLF32.h 668 306
DCL_loadParallelPlasZPK DCLF32.h 433 71
DCL_resetPI2 DCLCLA.h 82 82
DCL_updatePI2 DCLCLA.h 267 /179 131/33
DCL_resetDF11 DCLF32.h 71 71
DCL_updateDF11 DCLF32.h 113 /33 113 /33
DCL_isStableDF11 DCLF32.h 62 /62 62 /62
DCL_loadDF11asPI DCLF32.h 611 548
DCL_loadDF11asZPK DCLF32.h 291 102
DCL_resetDF13 DCLF32.h 110 110
DCL_updateDF13 DCLF32.h 200/ 33 201/33
DCL_isStableDF13 DCLF32.h 1532 /1524 1532 /1524
DCL_loadDF13asZPK DCLF32.h 5333 4962
DCL_resetDF22 DCLF32.h 72 72
DCL_updateDF22 DCLF32.h 144 /33 144 /33
DCL_isStableDF22 DCLF32.h 794 794 /793
DCL_loadDF22asZPK DCLF32.h 1419 1155
DCL_loadDF22asZwn DCLF32.h 465 406
DCL_loadDF22asParallelPID DCLF32.h 1208 826
DCL_loadDF22asSeriesPID DCLF32.h 1191 823
DCL_resetDF23 DCLF32.h 78 78
DCL_updateDF23 DCLF32.h 182 /33 182 /33
DCL_loadDF23asZPK DCLF32.h 7138 4950
DCL_isStableDF23 DCLF32.h 1531/ 1516 1531/ 1516
DCL_resetPID32 DCL32.h 52 52
DCL_updatePID32 DCL32.h 154 /34 154 /34
DCL_resetPI32 DCL32.h 32 32
DCL_updatePI32 DCL32.h 103 /34 103 /34
DCL_resetGSM DCL.h 327 327
DCL_updateGSM DCL.h 504 /33 504 /33

10

Introduction

1.5.3

Table 5.

DCL_loadGSMgains DCL.h 389 389
DCL_loadGSMoffsets DCL.h 501 501
DCL_runGSM_C1 DCL.h 73 /52 73 /52
DCL_fupdatePID DCL_futils.asm 77 /37 N/A
DCL_fupdateP!I DCL_futils.asm 64 /37 N/A
DCL_fupdatePI2 DCL_futils.asm 57/37 N/A
DCL_fupdateDF11 DCL_futils.asm 58 /37 N/A
DCL_fupdateDF13 DCL_futils.asm 78 /37 N/A
DCL_fupdateDF22 DCL_futils.asm 66 /37 N/A
DCL_fupdateDF23 DCL_futils.asm 74 /37 N/A
DCL_fupdateGSM DCL_futils.asm 114 /37 N/A
DCL_fupdatePID32 DCL futils32.asm 73 /37 N/A
DCL_fupdatePI32 DCL_futils32.asm 57 /37 N/A
DCL_resetNLPID DCL_NLPID.h 84 85
DCL_updateNLPID DCL_NLPID.h 1190/ 871 353/33
DCL_setNLPIDfilterBW DCL_NLPID.h 1066 771
DCL_setActiveNLPIDfilterBW DCL_NLPID.h 1028 743
DCL_getNLPIDfilterBW DCL_NLPID.h 509 509
DCL_getNLPIDgamma DCL_NLPID.h 998 999
DCL_getNLPIDdelta DCL_NLPID.h 1273 1274
DCL_setNLPIDgamma DCL_NLPID.h 3284 3057
DCL_getNLFgamma DCL_NLPID.h 995 995
DCL_setActivePIDfilterBW DCLF32.h 1027 743
DCL_resetPIDF64 DCLF64.h 106 106
DCL_updatePIDF64 DCLF64.h 546 /35 237 /33
DCL_setPIDF64filterBW DCLF64.h 10599 8132
DCL_setActivePIDF64filterBW DCLF64.h 10503 7982
DCL_getPIDF64filterBW DCLF64.h 5163 5135

M) Built with no optimization and error checking enabled.

@ Built with no optimization and error checking disabled.

Fast Update Function Benchmarks

The table below shows execution benchmarks for the fast update functions of the DCL. All functions are
implemented in assembly code. The right-most column shows the number of CPU clock cycles for which
global interrupts are disabled while the copy takes place. Interrupts are not disabled if an update is not

pending and no update is performed.

Fast update function execution benchmarks

Function File

Cycles
(update)

Cycles

(no update)

Interrupts blocked
(cycles)

Introduction

12

DCL_fupdatePID DCL_futils.asm 77 37 37
DCL_fupdatePI DCL_futils.asm 64 37 24
DCL_fupdatePI2 DCL_futils.asm 57 37 17
DCL_fupdateDF11 | DCL_futils.asm 58 37 31
DCL_fupdateDF13 | DCL_futils.asm 78 37 38
DCL_fupdateDF22 | DCL_futils.asm 66 37 26
DCL_fupdateDF23 | DCL_futils.asm 74 37 34
DCL_fupdateGSM | DCL_futils.asm 114 37 74
DCL fupdatePID32 | DCL_futils32.asm 73 37 33
DCL_fupdatePI32 | DCL_futils32.asm 57 37 17

Introduction

1.5.4 FPU64 Function Benchmarks

The following two tables show execution benchmarks in CPU cycles for the double precision floating point
functions of the DCL. In each case, figures for “fpu32” and “fpu64” settings of the ““—float_support’
compiler option are shown. The right-most column shows the percentage reduction in cycle count resulting
from hardware support of the double precision data type.

Table 6. Double precision function execution benchmarks (no optimization)
Function fpu32 fpu6d Reduction (%)
DCL_setPIDF64filterBW 8090 174 97.85
DCL_updatePIDF64 251 241 3.98
DCL_updatePIDF64 55 55 0.00
DCL_getPIDF64filterBW 5180 124 97.61
DCL_setActivePIDF64filterBW 7998 154 98.07
DCL_resetPIDF64 127 110 13.39
DCL_runPIDF64 2840 275 90.32
DCL_fillLoge4™ 573 534 6.81
DCL_writeLog64 96 80 16.67
DCL_readLog64 78 66 15.38

Table 7. Double precision function execution benchmarks (-o2 optimization)
Function fpu32 fpu6ed Reduction (%)
DCL_setPIDF64filterBW 5141 76 98.52
DCL_updatePIDF64 121 105 13.22
DCL_updatePIDF64 22 22 0.00
DCL_getPIDF64filterBW 5104 74 98.55
DCL_setActivePIDF64filterBW 15 8 46.67
DCL_resetPIDF64 35 35 0.00
DCL_runPIDF64 2693 98 96.36
DCL_fillLog64™ 443 443 0.00
DCL_writeLogb64 32 30 6.25
DCL_readLog64 32 26 18.75

" Data log size = 21 elements.

" Data log size = 21 elements.

Using the Digital Control Library

Chapter 2

Using the Digital Control Library

This chapter describes how to use the Digital Control Library.

Section

2.1 What the Library Contains

2.2 Header File Dependency

2.3 How to Add the DCL to User Code
2.4 Updating Controller Parameters
2.5 Error Handling

2.6 How to Modify the Library Code

2.1 What the Library Contains

The DCL library is supplied entirely in source code form; there are no object or “.lib” files
in the library. This allows the user to modify the library controller functions, or to add their
own functions if different functionality is required. Controller functions are supplied in the
following formats.

¢ Inline C code

e FPU32 assembly code

e (C28x assembly code

e CLA assembly code

2.1.1 Header Files

The following header files are included in the library.

Table 8. List of DCL header files
Filename Type Description
DCL h Common library definitions
DCLF32 h FPU32 controller functions
DCLF64 h Double precision controller functions
DCLCLA h CLA controller functions

14

Using the Digital Control Library

DCLC28
DCL_NLPID
DCL_MLOG
DCL_fdlog
DCL_fdlog64
DCL_TCM
DCL_log32
DCL_MLOG32

2.1.2 Source Files

> o o -5 T O T T

C28x fixed point controller functions
FPU32 non-linear PID

Four channel FPU32 data logger
FPU32 data logger

Double precision data logger

FPU32 Transient Capture Module
C28x data logger functions

C28x four channel data logger

The following source files are included in the library.

Table 9.
Filename
DCL_PID_A1
DCL_PID_C1
DCL_PID_C4
DCL_PID_L1
DCL_PID_L2
DCL_PI_A1
DCL_PI_C1
DCL_PI_C4
DCL_PI_C7
DCL_PI_L1
DCL_PI_L2
DCL_NLPID_C3
DCL_DF11_C1
DCL_DF11_L1
DCL_DF13_C1
DCL_DF13_C2C3
DCL_DF13_L1
DCL_DF13_L2L3
DCL_DF22_C1
DCL_DF22_C2C3
DCL_DF22_l1
DCL_DF22_L213
DCL_DF23_C1
DCL_DF23_C2C3
DCL_DF23_L1
DCL_DF23_L213
DCL_frwlog
DCL_clamp_C1
DCL_clamp_L1

List of DCL source files

Type
asm
asm
asm
asm
asm
asm
asm
asm
asm
asm
asm
asm
asm
asm
asm
asm
asm
asm
asm
asm
asm
asm
asm
asm
asm
asm
asm
asm

asm

CPU
C28x
FPU32
FPU32
CLA
CLA
C28x
FPU32
FPU32
FPU32
CLA
CLA
FpU32®
FPU32
CLA
FPU32
FPU32
CLA
CLA
FPU32
FPU32
CLA
CLA
FPU32
FPU32
CLA
CLA
FPU32
FPU32
CLA

Description

Fixed-point linear PID

Ideal linear PID

Parallel linear PID

Ideal linear PID

Parallel linear PID

Fixed-point linear PI

Ideal linear PI

Parallel linear PI

Parallel linear Pl (Tustin)

Ideal linear PI

Parallel linear PI

Nonlinear PID

Full DF1 (1% order)

Full DF1 (1* order)

Full DF1 (3rd order)
Pre-computed DF1 (3rd order)
Full DF1 (3rd order)
Pre-computed DF1 (3rd order)
Full DF2 (2nd order)
Pre-computed DF2 (2nd order)
Full DF2 (2nd order)
Pre-computed DF2 (2nd order)
Full DF2 (3rd order)
Pre-computed DF2 (3rd order)
Full DF2 (3rd order)
Pre-computed DF2 (3rd order)
Fast read/write log functions
Data clamp

Data clamp

Using the Digital Control Library

Table 10.

16

2.1.3

DCL_index asm FPU32 Performance measurement
DCL_error C FPU32 Template error handler
DCL_futils asm FPU32 Fast parameter updates
DCL_futils32 asm C28x Fast parameter updates

) Requires TMU type 1. Refer to device datasheet for more information.

Examples

A set of code examples is supplied with the Digital Control Library. These were prepared
using CCS version 8.3.0 and run without modification on either the F28069, F280049, or
F28388D device. The examples include linker command files which show how to allocate
device memory when using the DCL. Further details can be found in Chapter 5.

List of DCL code examples

2.2

Example | Description Core Device
1 DF22 compensator FPU32 F28069
2 DF32 compensator CLA F28069
3 NLPID controller FPU32 F28069
4 PI controller CLA F28069
5 PID controller FPU32 F28069
6 TCM FPU32 F28069
7 Smith predictor FPU32 F28069
8 Gain scheduler FPU32 F28069
9 Multiple control loops + ERAD FPU32 F280049
10 PID controller FPU64 F28388D
11 NLPID controller FPU32 F280025

Header File Dependency

In the DCL, the file DCL.h is a central repository of common data types and sub-structure
definitions. The naming convention in the DCL is that header files which contain basic
controller functions for a specific CPU are named “DCLxyz.h”, where “xyz” identifies the
CPU designator and there is no underscore. Header files which contain specific
controllers or utilities have an underscore immediately following the library designator, for
example “DCL_NLPID.h". Header file dependency is shown diagrammatically below.

Using the Digital Control Library

64-bit
DCL Generic 32-bit Fixed Point 32-bit Floating Point CLA Nonlinear PID Floating
Point

DCLC28.h DCLF32.h
A\

DCL_PID_A1.asm

>I

DCLCLA DCL_NLPID.h DCLF64.h
JAY

DCL_error.c

DCL_NLPID_C3.asm

DCL_PID_C1.asm

DCL_PIA1.asm

DCL_DF11_C1.asm
DGL_PID_L1asm DCL_DF13_L1.asm

DCL_DF13_C1.asm
DF13 EELERe— DCL_DF13_L2L3.asm

IDCL_DF13_C2C3.asm
DGL_PI_L1 asm DCL_DF11_L1.asm

DCL_DF22_C1.asm
DL PI_L285m DCL_DF22_L1.asm
IDCL_DF22_C2C3.asm| DCL_DF22_L2L3.asm

DCL_clamp_L1.asm -

DCL_DF23_C1.asm

DCL_PID_C4.asm
DCL_futils32.asm

DCL_PI_C4.asm

DCL_PI_C7.asm

T
T

DCL_PI2_C2.asm

DCL_DF23_L1.asm

DCL_clamp_C1.asm ICL_DF25_C2C3.aam| DCL_DF23_L2L3.asm

JHITHHIH

N
ALfJ;

E]

Figure 2. DCL Controller Header File Dependency

32-bit Fixed Point 32-bit Floating Point 64-bit Floating Point Reference
Data Logger Data Logger Data Logger Generator
‘ DCL_LOG32 h ‘ ‘ DCL_fdlog.h ‘ ‘ DCL_LOG64.h ‘ ‘ DCL_refgen h ‘ ‘ DCL_refgen64.h ‘

A A

DCL_MLOG32.h

DCL_frwlog.asm

DCL_MLOG.h
DCL_TCM.h
JA

DCL_index.asm

Figure 3. DCL Data Logger Header Dependency

Using the Digital Control Library

18

2.3 How to Add the DCL to User Code

The Digital Control Library is intended to be used with a CCS project written in the C
programming language. The user is responsible for initializing elements of the controller
structure prior to calling the controller ‘run’ function. Typically the desired controller
functions are inserted into an Interrupt Service Routine (ISR) triggered by a hardware
event. This ensures that the controllers are executed at a fixed rate and that their timing
is synchronized with the availability of incoming data. Control functions for use on the
CLA would be called from a CLA task, which again, would typically be triggered at a fixed
rate by a hardware event.

Controller parameters and dynamic data are encapsulated in a C structure, a pointer to
which is passed as a parameter to the controller ‘run’ function. Typically, the controller
structure would be a global variable in the user's program and its’ contents initialized prior
to the first call to the ‘run’ function. The controller ‘run’ functions are not re-entrant, since
they rely on a global variable (in this case the controller structure). It is the responsibility
of the user to ensure that a controller function is not called while a similar controller
function is in progress.

2.3.1 Steps to Add the DCL to Existing C Code

The following is a recommended sequence of steps to add the DCL to an existing C
program. Refer to chapter 5 for code examples which illustrate configuration and use of
the DCL with the CLA.

Step 1. Specify the include file(s)

Before you can begin using the library you must add the appropriate controller header file
to your project.

To use the 32-bit floating-point DCL functions include the file DCL.F32 . h.

#include “DCLF32.h”

To use fixed-point CLA functions include the file DCLCLA. h.

#include “DCLCLA.h”

To use fixed-point DCL functions include the file DCL.C28 . h.
#include “DCLC28.h”

To use double precision floating point DCL functions include the file DCLF64 . h.
#include “DCLF64.h"

To use any of the nonlinear controllers include the file DCL_NLPID.h.
#include “DCL NLPID.h”

It is not necessary to explicitly include the common library file DCL.h since that file is
included in the controller header files above.

CCS must be configured in such a way that the DCL header files are visible to all program
source files which reference controller variables or functions. The include file search
options in CCS allow users to specify header file paths for each project. In CCS, the

Using the Digital Control Library

Figure 4.

include options can be configured by right-clicking on the project name, selecting
“Properties”, and navigating to the “Include Options” section.

~
¥ Properties for F28069_PID S
type filter text Include Options (=T v -
- Resource
General
. Build Configuration: IDEBUG [Active] 'I IManageConﬁguratlons..‘J
a C2000 Compiler
Processor Options
Optimization
Include Options Add dir to #include search path (--include_path, -T) [ERER=] &
Performance Advisor *${C2000WARE_F2806X_ROOT1}"
Advanced Options "${C2000WARE_F2806X_ROOT2}"
P "§{C2000WARE_DCL_INCLUDE_ROOT}"
» €200 Linker "${CG_TOOL_ROOTYinclude”
C2000 Hex Utility [Disabled]
Debug
Specify a preinclude file (--preinclude) &
‘/?) Show advanced settings QK] I Cancel

CCSv6 Include Options

If you wish to use the data logger, MLOG, or TCM, you must also include the respective
header file(s) (note that the MLOG and TCM modules include the relevant data log header
file). Refer to section 2.2 for more information on header file dependency.

Step 2. Add the source files to the project

If you wish to use any of the assembly coded controllers, the source file(s) for the
controller(s) you wish to use must be added to your CCS project. You can manually copy
the files into your project directory, or specify the library pathname in the CCS compiler
options. Refer to Table 9 for a list of controller source files. It is only necessary to add
the source files for those functions you wish to use.

Step 3. Allocate the controller functions in the linker command file

DCL functions which run on the FPU32 or C28x core can be allocated to a specific
memory block in the linker command file. It is common to place the controller functions in
zero wait-state internal RAM since this allows them to run at the maximum speed of the
device. Note that all CLA functions must run from internal zero wait-state RAM.

All DCL library functions are placed in the user defined code section .dclfuncs. An
example showing how this section might be mapped into the internal L4 RAM memory
block is shown below.

dclfuncs : > RAML4, PAGE = 0
See also the linker command file F28069 DCL. cmd in the project examples (chapter 5).

In a stand-alone application, code must be stored in non-volatile memory (such as internal
flash) and copied into RAM at run-time. For information on how to do this, refer to the

Using the Digital Control Library

20

application note “Running an Application from Internal Flash Memory on the
TMS320F28xxx DSP”, Tl literature number SPRA958.

Information on linker section allocation can be found in the “TMS320C28x Assembly
Language Tools User’s Guide”.

Step 4. Create an instance of the controller

You must declare an instance of the controller you wish to use. For example, to create an
initialized instance of a 32-bit floating-point PID controller with the name “pid1”:

DCL PID pidl = PID DEFAULTS;

This step will create an instance of a PID controller structure the elements of which are
loaded with default parameter and data values specified in the file DCLF32 . h.

Note that CLA variables must be initialized at run-time by user code (i.e. they cannot be
initialized at the variable declaration). Typically this is done using a separate CLA task
(see code examples 2 & 4).

Step 5. Create instances of the support structures (optional)

If you wish to make use of the error checking or safe parameter update features in the
library, you must declare instances of both the SPS and CSS sub-structures, and initialize
them appropriately. If you do not wish to use these features, this step can be ignored.

To declare an initialized instance of the SPS for the PID controller, you would do the
following:

DCL_PID SPS spid = PID SPS DEFAULTS;
To declare an initialized instance of the CSS for the PID controller, you would do the
following:

DCL_CSS cpid = DCL CSS DEFAULTS;

Assign each of the above structures to the PID control structure in step 4.
pidl.sps = &spid;
pidl.css = &cpid;

This creates a variable of type “DCL_PID”, the elements of which are initialized to default
values specified in the DCL.h header file. Like any C variable, the structure must be
visible to any source files which reference it.

Functions which use the update rate of the controller require the “T” element of the CSS
sub-structure to be loaded in advance. This can be done using the
DCL_SET_CONTROLLER_PERIOD macro. For example, an update period of 100 ms
would be loaded as follows:

DCL_SET CONTROLLER PERIOD (pidl, 0.1f);

Step 6. Declare variables

In addition to a pointer to the controller structure, each DCL controller function requires
certain input variables to be passed as arguments to the function, and will return a control
output. You should declare instances of these variables in your code and ensure they can
be referenced by all files which call the controller functions. For example:

float uk; // control

Using the Digital Control Library

float rk = 0.0f; // reference
float yk = 0.0f; // feedback

float 1k 1.0f; // saturation

Note that CLA variables cannot be initialized at the declaration. Refer to the CLA code in
chapter 5 for examples of how to initialize CLA variables.

Step 7. Initialize the controller

The elements of the (FPU32 or C28x) controller structure were initialized to default
settings in step 3. The user program must configure any controller elements with specific
values before the function is called. For example:

pidl.Kp = 9.4f; // set proportional gain to 9.4
pidl.Umax = 10.0f; // upper output clamp limit = 10

If a CLA based controller is being used, its parameters must always be initialized using a
separate task. For more information on the CLA C compiler, see Chapter 10 of the
“TMS320C28x Optimizing C/C++ Compiler User’s Guide”.

Direct Form control structures incorporate one or two delay lines which hold previous
controller data. These must be initialized to zero before calling the controller functions,
which can be done with the appropriate “DCL_reset” function. If this is not done, it is
possible that uninitialized delay line data, especially in the recursive path, might cause the
controller to saturate or deliver incorrect results. Initialization of the delay line elements is
the responsibility of the user. Refer to the code in examples 1 and 2 described in chapter
4 for examples of delay line initialization.

Step 8. Call the controller function

Typically the controller functions would be inserted into an Interrupt Service Routine (ISR)
which is triggered by a hardware timer. Each control function returns a single floating-
point variable which represents the controller output. An example of an FPU32 controller
function call is shown below.

uk = DCL runPID Cl1(&pidl, rk, yk 1k);

2.3.2 Calling the Library Functions from Assembly

24

The assembly coded functions in the DCL have been written to be called from a C
program. The context save and restore sections within each function protect only those
core registers which are not already protected by the C environment. In applications
where the DCL controller functions must be called from an assembly program, the user
must place additional register save and restore instructions near the start end end of each
called function.

For the C28x, refer to sections 7.2 and 7.3 of the “TMS320C28x Optimizing C/C++
Compiler User’s Guide” for detailed information on register usage and calling conventions.
For the CLA, refer to section 10.2.4 of the same document.

Updating Controller Parameters
The DCL allows controller parameters to be safely updated “on-the-fly”, without stopping

the control loop. To accomplish this, the user must declare and initialize the SPS and
CSS sub-structures as described in section 2.3.1, step 5.

21

Using the Digital Control Library

22

To update controller parameters, follow these steps:

Step 1. Load the shadow parameter set

Load all the elements of the SPS sub-structure with the new controller values. Continuing
the example in section 2.3.1, one might do this:

pidl.sps.Kp = 10.987f%;
pidl.sps.Ki = 0.0023f;

Ensure all the SPS elements are loaded before performing the update, even if they do not
need to change.

Step 2. Enable the update flag

Set the update flag in the CSS status register to enable the parameter copy on the next
call to the update function. There is a C macro in DCL. h to do this.

DCL REQUEST UPDATE (&pidl);

This sets the LSB in the status element sts in the CSS sub-structure to indicate that an
update is pending.

Step 3. Call the update function

Call the appropriate controller update function. This would typically be done in the
background loop.

DCL updatePID (&pidl);

This function tests the update flag to determine whether an update is pending. If so, it
blocks the device interrupts, performs the shadow to active parameter set copy, re-
enables device interrupts, and clears the update request flag previously set in step 1.

In blocking interrupts, the library will save the prior state of the global interrupt flag (INTM)
into a local variable. The state is restored when interrupts are re-enabled at the end of
the update. In this way, update functions may be called by the user irrespective of
whether interrupts are already enabled: the function will not change the prior interrupt
state. A similar method of interrupt blocking and protection is implemented in the ‘reset’
functions to ensure controllers do not run with partially reset internal variables. Interrupt
blocking macros and functions can be found in the library header file DCL. h.

Updating controller parameters is a time critical task since interrupts must be disabled
while copying takes place. For this reason the library includes a set of assembly coded
update functions which are used in the same way described above, but which execute
faster than their C counterparts and are deterministic. In all cases, the same update
function names are pre-fixed with the letter ‘f’, so the above example becomes

DCL fupdatePID (&pidl) ;

The floating point assembly update routines are contained in the source file
DCL_futils.asm which must be added to the user’s project. At the top of this file is a
list of “. set” directives which allows the user to selectively disable those functions which
are not required in order to reduce code space.

Fixed point update routines are contained in the file DCL. futils32.asm.

The table below lists the fast parameter update functions together with the cycle counts
when an update is performed and when the update is by-passed. Also shown are the
number of CPU cycles for which global interrupts are masked when the update takes

Using the Digital Control Library

Table 11.

Table 12.

place. Note that the assembly functions do not perform any error checking prior to the
update.

List of fast parameter update function execution cycles

Function Update taken No update Interrupts blocked
DCL_fupdatePID 77 37 37
DCL_fupdatePI 64 37 24
DCL_fupdatePI2 57 37 17
DCL_fupdateDF11 58 37 31
DCL_fupdateDF13 78 37 38
DCL_fupdateDF22 66 7 26
DCL_fupdateDF23 74 37 34
DCL_fupdateGSM 114 37 74
DCL_fupdatePID32 73 37 33
DCL_fupdatePI32 57 37 17

2.5 Error Handling

The DCL contains limited support for error detection and handling. Many of the
supporting functions perform range checks on parameters and input variables to ensure
they fall within allowable ranges. These checks consume cycles, and in performance
critical situations the user may elect to disable error checking by commenting out the
following line in DCL. h.

#define DCL_ERROR_HANDLING ENABLED

Users should inspect the source code for the relevant functions to determine which
checks are performed.

If an error is detected, the code will set the “err” field of the CSS sub-structure of the
controller with an error code. An enumerated list of error codes can be found in DCL. h.

List of CSS enumerated error codes

Name Description

ERR NONE No error present.

ERR_PARAM_RANGE A parameter was passed to a function, or a controller
element found, which lay outside its allowable range.

ERR PARAM INVALID | An invalid parameter was passed to a DCL function.

23

Using the Digital Control Library

24

ERR_PARAM_ WARN A non-critical parameter error was found.

ERR_INPUT_RANGE An input was supplied which lies outside the allowable

range.
ERR_OVERFLOW A variable exceeded its’ allowable range.
ERR_UNDERFLOW A variable was below its’ allowable range.

ERR_VERSION The version of the DCL is incorrect.

ERR_DEVICE A function was called which requires hardware features

not present on the selected device.

ERR_CONTROLLER A control operation was called before the same operation
had completed.

ERR_TIMING A timing error has occured.

ERR_COMPUTATION A computation error has occured.

After each test sequence, if the err field is non-zero, the code will load the source line
number of the error and call an error handler function using the following C macros.

if (p->css->err)
{
DCL_GET ERROR_LOC (p->css) ;
DCL_RUN ERROR HANDLER (p->css) ;
}

The default error handler function is located in the source file DCL _error.c. The DCL
does not perform sophisticated error handling, however the user is free to add their own
code to this file, or to re-direct the error handler to their own custom error function if
desired. Note that the enumerated error list is likely to be appended in future versions of
the library.

Among those errors in the standard enumerated list is ERR_CONTROLLER. This error is
used to detect over-run conditions, where a non-atomic controller function fails to
complete before being called again. This is potentially dangerous since the second call
will run with a partially updated data set. To detect this condition, the file DCL.h defines
the macros DCL_CONTROLLER_BEGIN and DCL_CONTROLLER_END which the user
may place at the start and end of a controller function to set and clear respectively the
STS_CONTROLLER_RUNNING bit in the STS field of the CSS sub-structure. This can
be examined inside the function to detect a partially complete control operation as follows.

At the start of the controller function: check whether the STS_CONTROLLER_RUNNING
bit is set, then set it.

p->css->err |= (p->css—->sts & STS CONTROLLER RUNNING) ? ERR CONTROLLER :
ERR_NONE;
if (p->css->err)
{
DCL GET ERROR LOC (p->css);
DCL_RUN_ERROR_HANDLER (p->css) ;
}
DCL_ CONTROLLER BEGIN (p) ;

Using the Digital Control Library

2.6

At the end of the controller function: clear the STS_CONTROLLER _RUNNING bit.

DCL CONTROLLER END (p) ;

In the above code, p represents a pointer to the controller structure. Refer to the
controller code in DCL_NLPID.h for examples of the above method.

How to Modify the Library Code

The DCL is supplied entirely in source code form so it is possible (indeed, encouraged) for
users to modify the functions freely to meet specific needs or improve performance.
However, the library is in continuous development at Tl and users should exercise care to
ensure any changes do not conflict with future releases. To modify the library while
maintaining compatibility with future releases, the following precautions should be
observed.

¢ Do not modify the DCL functions directly. To modify library code, first copy the
code into a new function with a different name, then modify the new function.
This will ensure that user code remains compatible with future library releases.

e Select a name which will not conflict with future library versions. See section
1.3.3 for a description of function naming. Controller numbers of 20 and above
are reserved for customer use. For example, the Tl library will never contain a
function DCL_runPI C20, so users are free to use that function name for their
own code.

o Users are not obliged use the DCL controller structures, however they are free to
do so. Itis suggested that any new custom structures use a name which is pre-
fixed differently from the library, for example, by replacing DCL_ with DCLU _.

typedef volatile struct {
float32 t Kp;
float32 t Ki;
} DCLU PID;

e Users need not apply the parameter update or error checking methods described
in sections 2.4 and 2.5, however they are free to do so. It is intended that future
library versions will be compatible with v3.4 in this respect.

25

Controllers

Chapter 3

Controllers

This chapter provides detailed information on the controller functions in the Digital Control
Library.

Section

341
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13

Linear PID Controllers

Linear PI Controllers

Nonlinear PID Controllers

Nonlinear PI Controller

Double Integrator Pl Controller

Direct Form 1 (first order) Compensators
Direct Form 1 (third order) Compensators
Direct Form 2 (second order) Compensators
Direct Form 2 (third order) Compensators
Fixed Point PID Controllers

Fixed Point Pl Controllers

Gain Scheduler Module

Non-linear Law

3.14 Double Precision PID Controllers

The DCL contains the following controller types:

26

Linear PID

Linear PI

Non-linear PID
Non-linear PI

Double Integrator

Direct Form 1 (first order)

Direct Form 1 (third order)

Controllers

e Direct Form 2 (second order)
e Direct Form 2 (third order)
e Gain scheduler

In this guide, the four direct form types are referred to as ‘compensators’. This reflects a
situation common in power supply design, in which the design objective is to compensate
some feature of the open loop frequency response, such as phase shift. The
compensator is usually specified using a set of pole & zero frequencies, which leads
naturally to a transfer function description. The term ‘Direct Form” comes from transfer
function descriptions of digital filters which have a similar structure.

Controllers are either coded in C, or in assembly using three different instruction sets
(C28x, FPU32, and CLA). Additionally, most of the Direct Form compensators are
implemented in both full and pre-computed forms. There may therefore be several
different functions for each controller to allow the user to balance execution time with
ease-of-tuning. Different implementations of the same controller are identified using a two
character suffix to the ‘run’ function name (refer to section 1.3.2 for information on function
naming).

The description of each controller in this chapter is broken down into three sub-sections:
e A general description of the controller
e Information of the implementation of the controller
e A description of functions

The ‘implementation’ sub-section always includes a block diagram showing the internal
structure and the variables used in the code. Local variables, which do not need to be
preserved between functions, are pre-fixed with the letter “v”. Variables which are part of
the controller structure and are therefore preserved between function calls are pre-fixed
with some other letter according to their purpose: for example, “i10” refers to a variable
used in the PID integrator. The prefix letter “I” is reserved for logical signals. The same
variable names are used in the library source code, making it straightforward to compare

the controller diagrams with the source code.

It is sometimes useful to monitor internal controller variables (i.e. which are not elements
in the controller structure) for debugging purposes. The CSS sub-structure contains a
test-point element named “tpt” which is intended to be used for this purpose. Controller
test-points are globally enabled using the following definition in DCL.h. Note that by
default, this definition is commented out to reduce execution cycles.

#define DCL_TESTPOINTS ENABLED

Users may un-comment the above line, and then assign any internal variable to the tpt
element for monitoring, perhaps in the CCS “Expressions” window or using a data logger.

3.1 Linear PID Controllers

3.1.1 Description

The basic controller type described here is a linear PID. The PID implementations in the
DCL include several features not commonly found in basic PID designs, and this
complexity is reflected the benchmark figures. Applications which do not require

27

Controllers

Figure 5.

t
Equation 2. u(t) =K, et)+K, [e(r)dr + K, —=

28

derivative action, or are more sensitive to cycle efficiency, may be better served by the
simpler PI controller structure described in the next section.

PID control is widely used in systems which employ output feedback control. In such
systems, the controlled output is measured and fed back to a summing point where it is
subtracted from the reference input. The difference between the reference and feedback
corresponds to the control loop error and forms the input to the PID controller.

Conceptually, the PID controller output is the parallel sum of three paths which act
respectively on the error, error integral, and error derivative. The relative weight of each
path may be adjusted by the user to optimize transient response, or to emulate the
behavior of a specified transfer function expressed in terms of its’ poles and zeros.

(f) 4?)%.

W)

Parallel form PID controller

The diagram above shows the structure of a continuous time ‘parallel’ PID controller. The
output of this controller is captured in the following equation:

de(t)
dt

Conceptually, the controller comprises three separate paths connected in parallel. The
upper path contains an adjustable gain term (K;). Its effect is to fix the open loop gain of
the control system. Since loop gain is proportional to this term, K, is known as
proportional gain.

A second path contains an integrator which accumulates error history. A separate gain
term acts on this path. The output of the integral path changes continuously as long as a
non-zero error (e) is present at the controller input. A small but persistent servo error has
the effect of driving the output of the integrator such that the loop error will eventually
disappear. The principal effect of the integral path is therefore to eliminate steady state
error. The effect of the integral gain term is to change the rate at which this happens.
Integral action is especially important in applications such as electronic power supplies,
which must maintain accurate regulation over long periods of time.

The third path contains a differentiator. The output of this path is large whenever the rate
of change of the error is large. The principal effects of the derivative action are to damp
oscillation and reduce transients.

The operation of the PID controller can be visualized in terms of the transient error
following a step change of set-point.

Controllers

Figure 6.

WD),

/ (1)

\J
~

e(f) a

[e(e)
me 7) d 0

T ‘Fz/wmwmwm
I\

IS

) h Hh+ky

PID control action

The figure above shows the action of the PID controller in terms of the control loop error
at time t;. The proportional term contributes a control effort which is proportional to the
instantaneous loop error. The output of the integral path is the accumulated error history:
the shaded area in the lower plot. The contribution of the derivative path is proportional to
the rate of change of the loop error. Derivative gain fixes the time interval over which a
tangential line to the error curve is projected forward in time.

Tuning the PID controller is a matter of finding the optimum combination of these three
effects. This in turn means finding the best balance of the three gain terms. For more
information on PID control & tuning, see the references in section 6.1.

The PID shown above is known as the “parallel” form because the three controller gains
appear in separate parallel paths. A slightly different PID architecture in which the
proportional gain is moved into the output path (i.e. after the summing point), so that the
proportional path becomes a direct connection between the controller input and the
summing point, is known as the “series” or “ideal” form. In the ideal form, the open loop
gain is directly influenced by the proportional controller gain, and there is less interaction
between the controller gains. However the proportional gain cannot be zero (since the
loop would be opened), and to maintain good control cannot be small. The parallel form
allows the proportional gain to be small, however there is slightly more interaction
between the controller gains, complicating the tuning process. The DCL contains both
ideal and parallel PID functions.

3.1.2 Implementation

The linear PID controllers in the DCL include the following features:

e Parallel and ideal forms

29

Controllers

Equation 3.

Equation 4.

Equation 5.

Equation 6.

Equation 7.

30

e Programmable output saturation

¢ Independent reference weighting on proportional path
e Anti-windup integrator reset

e Programmable low-pass derivative filter

o External saturation input for integrator anti-windup

e Adjustable output saturation

It is important to note that the controller sample period is not accounted for in the selection
of integral gain (Ki). This is relevant when computing the integral gain as opposed to
manual tuning against a transient response, for example. In such situations, users must
multiply the computed integral gain by the sample period before loading Ki (either directly
or through the SPS). The element T in the CSS sub-structure can be used to store the
sample period for this purpose.

All PID type controllers in the library implement integrator anti-windup reset in a similar
way. A clamp is present at the controller output which allows the user to set upper and
lower limits on the control effort. If either limit is exceeded, an internal floating-point
controller variable changes from 1.0 to 0.0. This variable is multiplied by the integrator
input, such that the integrator accumulates zero data only when the output is saturated,
thus preventing the well-known “wind-up” phenomenon.

The PID controllers in the library make provision for anti-windup reset to be triggered from
an external part of the loop. This is useful in situations where a component outside the
controller may be saturated. The floating-point variable 1k is expected to be either 1.0 or
0.0 in the normal and saturated conditions respectively. If this feature is not required, the
functions should be called with the 1k argument set to 1.0. Note that all the controllers
here require non-zero proportional gain to recover from loop saturation.

The derivative PID path includes a digital low-pass filter to avoid amplification of un-
wanted high frequency noise. The filter implemented here is a simple first order lag filter
(with differentiator), converted into discrete form using the Tustin transform. Referring to
Figure 6, the difference equation of the filtered differentiator is

Vo (K) = v, (k) —d, (k) - d; (k)

The temporary storage elements d, & d; must be preserved from the (k - 1)th interval, so
the following must be computed after the differentiator update.

d,(k)=v,(k=1)

ds(k) = sz4(k -1

The derivative filter coefficients are

Controllers

r(k) ——

Both the sample period (T) and filter time constant () must be determined by the user.
The time constant is the reciprocal of the desired filter bandwidth in radians per second.

All linear PID controller functions use a common C structure to hold coefficients and data.
Refer to the header file DCLF32 . h for details of the DCL_PID controller structure.

The library PID controller architectures are shown below:

—» u(k)

Ik

(k)

Figure 7.

DCL_PID C1, C2, & L1 architecture

31

Controllers

K;
}‘(k) + Vs \%i + : Vg + J+ Vo
- + Ay
Wk)
1(k)
Figure 8. DCL _PID C3, C4, & L2 architecture

3.1.3 Functions

Run the Ideal Form PID Controller

Header File: DCLF32.h

Source File: DCL_PID_C1.asm
Declaration: float32_t DCL_runPID_C1(DCL_PID *p, float32_t rk, float32_t yk, float32_t Ik)

Description: This function executes an ideal form PID controller on the FPU32. The function is
coded in assembly.
Parameters: p The DCL_PID structure
rk The controller set-point reference
yk The measured feedback
Ik External output clamp flag
Return: The control effort

Run the Ideal PID Form Controller

Header File: ~ DCLF32.h

32

Controllers

Source File:
Declaration:

Description:

Parameters:

Return:

DCL_runPID_C3

Header File:
Source File:
Declaration:

Description:

Parameters:

Return:

DCL_runPID_C4

Header File:
Source File:
Declaration:

Description:

Parameters:

N/A
float32_t DCL_runPID_C2(DCL_PID *p, float32_t rk, float32_t yk, float32_t Ik)

This function executes an ideal form PID controller on the FPU32, and is identical
in structure and operation to the C1 form. The function is coded in inline C.

p The DCL_PID structure

rk The controller set-point reference
yk The measured feedback

Ik External output clamp flag

The control effort

Run the Parallel Form PID Controller

DCLF32.h
N/A
float32_t DCL_runPID_C3(DCL_PID *p, float32_t rk, float32_t yk, float32_t Ik)

This function executes a parallel form PID controller on the FPU32. The function
is coded in inline C.

p The DCL_PID structure

rk The controller set-point reference
yk The measured feedback

Ik External output clamp flag

The control effort

Run the Parallel Form PID Controller

DCLF32.h
DCL_PID_C4.asm
float32_t DCL_runPID_C4(DCL_PID *p, float32_t rk, float32_t yk, float32_t Ik)

This function executes a parallel form PID controller on the FPU32, and is
identical in structure and operation to the C3 form. The function is coded in inline
C.

p The DCL_PID structure

rk The controller set-point reference
yk The measured feedback

Ik External output clamp flag

33

Controllers

DCL_runPID_L1

DCL_runPID L2

DCL resetPID

34

Return:

Header File:
Source File:

Declaration:
k)

Description:

Parameters:

Return:

Header File:
Source File:

Declaration:
Ik)

Description:

Parameters:

Return:

Header File:

Source File:

Declaration:

The control effort

Run the Ideal Form PID Controller

DCLCLA.h
DCL_PID _L1.asm
float32_t DCL_runPID_L1(DCL_PID_CLA *p, float32_t rk, float32_t yk, float32_t

This function executes an ideal form PID controller on the CLA. The function is
coded in CLA assembly.

p The DCL_PID_CLA structure

rk The controller set-point reference
yk The measured feedback

Ik External output clamp flag

The control effort

Run the Parallel Form PID Controller

DCLCLA.h
DCL_PID_L2.asm
float32_t DCL_runPID_L2(DCL_PID_CLA *p, float32_t rk, float32_t yk, float32_t

This function executes a parallel form PID controller on the CLA. The function is
coded in CLA assembly.

p The DCL_PID_CLA structure

rk The controller set-point reference
yk The measured feedback

Ik External output clamp flag

The control effort

Resets the PID Controller

DCLF32.h
N/A
void DCL_resetPID(DCL_PID *p)

Controllers

Description:

Parameters:

Return:

Updates the PID Controller Parameters

Header File:

Source File:
Declaration:

Description:

Parameters:

Return:

Updates the PID Controller Parameters

Header File:
Source File:
Declaration:

Description:

Parameters:

Return:

Set the PID Derivative Filter Bandwidth

Header File:
Source File:

Declaration:

This function resets the internal variables in the DCL_PID structure to default
values. The integrator accumulator and store derivative path values are set to 0.0,
and the integrator clamp variable set to 1.0. The function also sets the err field
in the CSS sub-structure to NONE. Note that the function is atomic.

p The DCL_PID structure
Void

DCLF32.h
N/A
void DCL_updatePID(DCL_PID *p)

This function tests the sts field in the CSS sub-structure to determine whether a
parameter update is required. If so, the parameters stored in the SPS sub-
structure are copied into the PID structure and sts is cleared. Note that the
function is atomic. Refer to section 2.4 for more information on updating
controller parameters.

p The DCL_PID structure
Void

DCLF32.h
DCL_futils.asm
void DCL_fupdatePID(DCL_PID *p)

This function tests the sts field in the CSS sub-structure to determine whether a
parameter update is required. If so, the parameters stored in the SPS sub-
structure are copied into the PID structure and sts is cleared. Note that the
function is atomic. Refer to section 2.4 for more information on updating
controller parameters. The function is implemented as an assembly module.

p The DCL_PID structure
Void

DCLF32.h
N/A
void DCL_setPIDfilterBW(DCL_PID *p, float32_t fc)

35

Controllers

Description:

Parameters:

Return:

DCL_setActivePIDfilterBW Set the Active PID Derivative Filter Bandwidth

Header File:

Source File:
Declaration:

Description:

Parameters:

Return:

Get the PID Derivative Filter Bandwidth

Header File:
Source File:
Declaration:

Description:

Parameters:

Return:

Load the Series Form PID Controller from ZPK

Header File:
Source File:

Declaration:

36

Loads the derivative filter coefficients c1 & c2 in the SPS based on the desired
filter bandwidth specified in Hz. Coefficients in the active parameter set are
unaffected until the controller is updated using DCL_updatePID().

p The DCL_PID structure
fc The desired filter bandwidth in Hz
Void

DCLF32.h
N/A
void DCL_setActivePIDfilterBW(DCL_PID *p, float32_t fc, float32_t T)

Loads the derivative filter coefficients c1 & c2 in the active PID structure based
on the desired filter bandwidth specified in Hz and the controller update date in
seconds. This function does not use or modify the SPS.

p The DCL_PID structure

fc The desired filter bandwidth in Hz

T The controller update rate in seconds
Void

DCLF32.h
N/A
float32_t DCL_getPIDfilterBW(DCL_PID *p)

Finds the bandwidth of the current derivative filter in Hz by examining the
coefficients in the active parameter set (i.e. not the SPS).

p The DCL_PID structure

The active derivative filter bandwidth in Hz

DCLF32.h
N/A
void DCL_loadSeriesPIDasZPK(DCL_PID *p, DCL_ZPKS *q)

Controllers

Description:

Parameters:

Return:

Load the Parallel Form PID Controller from ZPK

Header File:

Source File:
Declaration:

Description:

Parameters:

Return:

Loads the SPS coefficients to implement a series form PID controller (e.g. C1, C2
or L1) based on a ZPK3 definition. The ZPK3 is expected to be in the form of a
complex zero pair, plus one real pole, plus an integrator. The real pole
corresponds to the pole in the derivative path filter. Note that the active
coefficients are not affected until the controller is updates using

DCL updatePID (). Referto section 1.3.8 for more information on the ZPK3

structure.

p The DCL_PID structure
q The ZPK3 structure
Void

DCLF32.h
N/A
void DCL_loadSeriesPIDasZPK(DCL_PID *p, DCL_ZPKS *q)

Loads the SPS coefficients to implement a parallel form PID controller (e.g. C3,
C4 or L2) based on a ZPK3 definition. The ZPK3 is expected to be in the form of
a complex zero pair, plus one real pole, plus an integrator. The real pole
corresponds to the pole in the derivative path filter. Note that the active
coefficients are not affected until the controller is updated using

DCL updatePID(). Refer to section 1.3.8 for more information on the ZPK3
structure.

p The DCL_PID structure

q The ZPK3 structure

Void

3.2 Linear Pl Controllers

3.2.1 Description

The continuous time parallel Pl control equation is

t
Equation 8. u(t) =K, e(t)+ K, [e(z)dz

The linear PI controllers in the DCL differ from the PID in the following respects.

Removal of derivative path
Removal of set-point weighting

No provision for external saturation input

37

Controllers

In all other respects, the Pl controllers are similar to the PID controllers described in
section 3.1.
3.2.2 Implementation

All linear PI controller functions use a common C structure to hold coefficients and data,
defined in the header files DCLF32.h and DCLCLA. h.

The PI controller architectures are shown in the following diagrams.

V2

» u(k)

(k)

Figure 9. DCL PI C1, C2, L1, & L3 architecture

K[’

| J
+ \%
r(k) - " A i . > /— » u(k)

Wk)
71 | =()? | Ve
= J _J
Figure 10. DCL _PI C3, C4, L2 & L4 architecture

38

Controllers

Lol

V2

Vi

+ v Umax Vi
(k) -) . » j . > u(k)
Lo
y(k)
Vo
==(? |+——
115 113 imax -
5 s
EOR
A A
>0‘> lI4 ll() >Or7 <
-y
Figure 11. DCL_PI C5 architecture

Note that the C5 parallel form PI controller contains enhanced anti-windup reset logic which allows the
integral path to recover from saturation even when the proportional gain is zero.

Figure 12.

» u(k)

DCL _PI C6, C7, & L5 architecture

39

Controllers

The C6, C7, & L5 controllers combine a series form Pl with a Tustin integrator. This configuration
is best suited to applications in which the controller gains are selected on the basis of high
frequency loop gain and zero frequency, because Kp and Ki are effectively un-coupled in the
series form controller. Furthermore the Tustin integrator has fixed 90 degree phase lag at all
frequencies below the Nyquist limit, simplifying design of the compensator.

3.2.3 Functions

Run the Ideal Form PI Controller

Header File: DCLF32.h

Source File: DCL_PI_C1.asm
Declaration: float32_t DCL_runPl_C1(DCL_PI *p, float32_t rk, float32_t yk)

Description: This function executes an ideal form PI controller on the FPU32. The function is
coded in assembly.

Parameters: p The DCL_PI structure
rk The controller set-point reference
yk The measured feedback

Return: The control effort

Run the Ideal Pl Form Controller

Header File: DCLF32.h

Source File: N/A
Declaration: float32_t DCL_runPl_C2(DCL_PI *p, float32_t rk, float32_t yk)

Description: This function executes an ideal form Pl controller on the FPU32, and is identical in
structure and operation to the C1 form. The function is coded in inline C.

Parameters: p The DCL_PI structure
rk The controller set-point reference
yk The measured feedback

Return: The control effort

Run the Parallel Form Pl Controller

Header File: ~ DCLF32.h

Source File: N/A
Declaration: float32_t DCL_runPl_C3(DCL_PI *p, float32_t rk, float32_t yk)

40

Controllers

Description:

Parameters:

Return:

Run the Parallel Form Pl Controller

Header File:
Source File:
Declaration:

Description:

Parameters:

Return:

Run the Parallel Form Pl Controller

Header File:
Source File:
Declaration:

Description:

Parameters:

Return:

This function executes a parallel form PI controller on the FPU32. The function is
coded in inline C.

p The DCL_PI structure
rk The controller set-point reference
yk The measured feedback

The control effort

DCLF32.h
DCL_PI_C4.asm
float32_t DCL_runPl_C4(DCL_PI *p, float32_t rk, float32_t yk)

This function executes a parallel form Pl controller on the FPU32, and is identical
in structure and operation to the C3 form. The function is coded in inline C.

p The DCL_PI structure
rk The controller set-point reference
yk The measured feedback

The control effort

DCLF32.h
DCL_PI_C5.asm
float32_t DCL_runPl_C5(DCL_PI *p, float32_t rk, float32_t yk)

This function executes a parallel form Pl controller on the FPU32. The
configuration includes enhanced anti-windup reset logic which produces faster
recovery from integral path saturation. Note that this controller cycle count is a
little higher than C4. The function is coded in inline C.

p The DCL_PI structure
rk The controller set-point reference
yk The measured feedback

The control effort

41

Controllers

DCL runPl_C6

DCL runPl_C7

DCL_runPI_L1

42

Header File:
Source File:
Declaration:

Description:

Parameters:

Return:

Header File:
Source File:
Declaration:

Description:

Parameters:

Return:

Header File:
Source File:
Declaration:

Description:

Parameters:

Run the Series Form PI Controller

DCLF32.h
N/A

float32_t DCL_runPl_C6(DCL_PI *p, float32_t rk, float32_t yk)

This function executes a series form Pl controller with Tustin integrator on the

FPU32. The function is coded in inline C.

p
rk

yk

The DCL_PI structure
The controller set-point reference

The measured feedback

The control effort

Run the Series Form PI Controller

DCLF32.h

DCL_PI_C7.asm

float32_t DCL_runPl_C7(DCL_PI *p, float32_t rk, float32_t yk)

This function executes a series form Pl controller with Tustin integrator on the

FPU32. The function is implemented in an external assembly module.

p
rk

yk

The DCL_PI structure
The controller set-point reference

The measured feedback

The control effort

Run the Ideal Form PI Controller

DCLCLA.h

DCL_PI _L1.asm
float32_t DCL_runPl_L1(DCL_PI_CLA *p, float32_t rk, float32_t yk)

This function executes an ideal form Pl controller on the CLA. The function is

coded in CLA assembly.

p
rk

yk

The DCL_PI_CLA structure
The controller set-point reference

The measured feedback

Controllers

Return:

DCL _runPI_L2

Header File:
Source File:
Declaration:

Description:

Parameters:

Return:

DCL_runPl_L3

Header File:
Source File:
Declaration:

Description:

Parameters:

Return:

DCL runPl L4

Header File:
Source File:

Declaration:

Description:

Parameters:

The control effort

Run the Parallel Form Pl Controller

DCLCLA.h
DCL_PI _L2.asm
float32_t DCL_runPI_L2(DCL_PI_CLA *p, float32_t rk, float32_t yk)

This function executes a parallel form PI controller on the CLA. The function is
coded in CLA assembly.

p The DCL_PI_CLA structure
rk The controller set-point reference
vk The measured feedback

The control effort

Run the Ideal Form PI Controller

DCLCLA.h
N/A
float32_t DCL_runPl_L3(DCL_PI_CLA *p, float32_t rk, float32_t yk)

This function executes an ideal form Pl controller on the CLA. The function is
coded in C.

p The DCL_PI_CLA structure
rk The controller set-point reference
yk The measured feedback

The control effort

Run the Parallel Form Pl Controller

DCLCLA.h
N/A
float32_t DCL_runPl_L4(DCL_PI_CLA *p, float32_t rk, float32_t yk)

This function executes a parallel form PI controller on the CLA. The function is
coded in C.

p The DCL_PI_CLA structure

rk The controller set-point reference

43

Controllers

yk The measured feedback

Return: The control effort

Run the Series Form PI Controller

Header File: DCLCLA.h

Source File: N/A
Declaration: float32_t DCL_runPl_L5(DCL_PI_CLA *p, float32_t rk, float32_t yk)

Description: This function executes a series form Pl controller with Tustin integrator on the
CLA. The function is coded in inline C.

Parameters: p The DCL_PI_CLA structure
rk The controller set-point reference
yk The measured feedback

Return: The control effort

Resets the Pl Controller

Header File: DCLF32.h

Source File: N/A
Declaration: void DCL_resetPI(DCL_PI *p)

Description: This function resets the internal variables in the DCL_PI structure to default
values. The integrator accumulator is set to zero, and the err field in the CSS
sub-structure is set NONE. Note that the function is atomic.

Parameters: p The DCL_PI structure

Return: Void

Updates the PI Controller Parameters

Header File: DCLF32.h

Source File: N/A
Declaration: void DCL_updatePI(DCL_PI *p)

Description: This function tests the sts field in the CSS sub-structure to determine whether a
parameter update is required. If so, the parameters stored in the SPS sub-
structure are copied into the PI structure and sts is cleared. Note that the
function is atomic. Refer to section 2.4 for more information on updating
controller parameters.

44

Controllers

Parameters:

Return:

Updates the PI Controller Parameters

Header File:
Source File:
Declaration:

Description:

Parameters:

Return:

Load the Series Form PI Controller from ZPK

Header File:
Source File:
Declaration:

Description:

Parameters:

Return:

Load the Parallel Form PI Controller from ZPK

Header File:
Source File:
Declaration:

Description:

p The DCL_PI structure
Void

DCLF32.h
DCL_futils.asm
void DCL_fupdatePI(DCL_PI *p)

This function tests the sts field in the CSS sub-structure to determine whether a
parameter update is required. If so, the parameters stored in the SPS sub-
structure are copied into the Pl structure and sts is cleared. Note that the
function is atomic. Refer to section 2.4 for more information on updating
controller parameters. The function is implemented as an assembly module.

p The DCL_PI structure
Void

DCLF32.h
N/A
void DCL_loadSeriesPlasZPK(DCL_PI *p, DCL_ZPKS *q)

Loads the SPS coefficients to implement a series form Pl controller (e.g. C1, C2
or L1) based on a ZPK3 definition (one real zero plus integrator). Note that the
active coefficients are not affected until the controller is updates using

DCL_updatePI(). Refer to section 1.3.8 for more information on the ZPK3
structure.

p The DCL_PI structure

q The ZPKS structure

Void

DCLF32.h
N/A
void DCL_loadSeriesPlasZPK(DCL_PI *p, DCL_ZPK3 *q)

Loads the SPS coefficients to implement a parallel form Pl controller (e.g. C3, C4,
C5, or L2) based on a ZPK3 definition (one real zero plus integrator). Note that

45

Controllers

the active coefficients are not affected until the controller is updates using

DCL updatePI (). Refer to section 1.3.8 for more information on the ZPK3
structure.

Parameters: p The DCL_PI structure
q The ZPKa3 structure

Return: Void

3.3 Non-linear PID Controller

3.3.1 Description

The DCL includes two implementations of a non-linear PID controller, denoted NLPID.
The controllers are broadly similar to the ideal PID_C1 controller, except that there is no
set-point weighting and in one case the derivative path sees the servo error instead of the
feedback. A non-linear gain block appears in series with each of the three paths.

To improve computational efficiency, the non-linear law is separated into two parts: one
part which is common to all paths, and a second part which contains terms specific to
each path. The non-linear part of the high-level controller structure is shown below:

A\

P-term
non-linear block

4

————» V4

Vi o
Pre-conditioning Va o I-term
k) block Vs "| non-linear block Vs
0.5
Y(k) >
-~ D-term
| non-linear block >V
Figure 13. DCL_NLPID C1 input architecture

The linear part of the DCL_NLPID_C1 controller is shown below:

46

Controllers

”Pf/u' > u(k)

neg

I(k)

Figure 14. DCL _NLPID C1 output architecture

P-term Vi
non-linear block &
05
Vi
) + & Pre-conditioni v Lterm
) ——=(—> block ” non-linear block k)

(k)

ky .,, d
D-term \3 l vis r . v m
(k) non-linear block + 5=
I, @&
Figure 15. DCL_NLPID C2 & C3 architecture

The non-linear control law is based on a power function of the modulus of the servo error,
with a linearized region about the zero error point. In the equation below, x represents the

input to the control law, y, the output, and a is a user selectable exponent representing
the degree of non-linearity.

Equation 9. 'y =|x|"sign(x)

47

Controllers

Figure 16.

48

The following plot shows the x-y relationship for values of a between 0.2 and 2. Notice
that the curves intersect at x = 0, and x = 1.

Non-linear control law input-output plot

The gain of the control law is the slope of the x-y curve. Observe that with a = 1 the
control is linear with unity gain. With a > 1 the gain is zero when x = 0, and increases as x
increases. In the controller, a value of a in this range produces controller gain which
increases with increasing control error. With 0 < a < 1 the gain at x = 0 is infinite, and falls
as x increases. This range of a setting produces controller gain which decreases with
increasing servo error.

The plots below show the gain vs. control loop error curves for different values of a.
Notice particularly the singularity at x = 0 when a < 1.

Controllers

0.2
0.3 7
0.4
0.5 |
0.6 6
0.7
0.8 5+
0.9
1 £
(0] L
1.1 o4 ‘
1.2 n
. i
13 3l i

1.4
1.5
1.6
1.7
1.8
1.9

Figure 17. Gain vs error curves for varying alpha

The presence of zero or infinite gain at the zero control error point leads to practical
difficulties. With a > 1 the response becomes sluggish for small errors; with a < 1 it is
common to encounter oscillation or “chattering” near steady-state. These issues can be
overcome by limiting the controller gain in a region close to x = 0. This is done by
modifying the control law to introduce a user selectable region about x = 0 with linear gain
is applied. The non-linear control law becomes

|x|“sign(x) :x|=&
Equation 10. y =
x5! |x|<6

When the magnitude of servo error falls below & the linear gain is applied, otherwise the

gain is determined by the non-linear law. For computational efficiency, we pre-compute
the gain in the linear region (y) as follows.

Equation 11. y = 5"
A typical plot of the linearized control law is shown below. Observe that when x = & the

linear and non-linear curves intersect, so the controller makes a smooth transition
between the linear and non-linear regions as the servo error passes through x = +0.

49

Controllers

Figure 18.

50

NLPID linearized region

In addition to the P, I, and D gains, the user must select two additional terms in each
control path: a and 6. The library includes a separate function to compute and update y
for each path using the SPS structure. The use must initialize y parameters before calling
the NL controllers.

The NLPID controller has been seen to provide significantly improved control in many
cases, however it must be remembered that increased gain, even if only applied to part of
the control range, can lead to significantly increased output from the controller. In most
cases, this ‘control effort’ is limited by practical factors such as actuator saturation, PWM
modulation range, and so on. The corollary is that not every application benefits equally
from the use of non-linear control and some may see no benefit at all. In cases where
satisfactory performance cannot be achieved through the use of linear PID control, the
user is advised to start with all a = 1, and experiment by introducing non-linear terms
gradually while monitoring both control performance and the magnitude of the control
effort. In general, P and | paths benefit from increased gain at high servo error (a > 1),
while the D path benefits from reduced gain at high servo error (a < 1), but this is not
universally true. Further information on tuning the nonlinear PID controller can be found
in the Nonlinear PID Controller Tuning Guide in the \docs directory of the DCL.

Further information on this control law can be found in: “From PID to Active Disturbance
Rejection Control’, Jingqing Han, IEEE TRANSACTIONS ON INDUSTRIAL
ELECTRONICS, VOL. 56, NO. 3, MARCH 2009

3.3.2 Implementation

The NLPID controller uses a C structure to hold coefficients and data, defined in the
header file DCL NLPID.h. Note that the NLPID functions make use of the pow ()
function in the standard C library. For this reason the header file math.h must be
included, which is not supported by the CLA compiler. To allow different DCL functions to
be run on both the CPU and CLA in the same program, the NLPID functions are located in
a separate header file. Refer to the file DCL NLPID.h for details of the NLPID controller
structure.

As with all DCL controllers, it is the responsibility of the user to initialize the DCL_NLPID
structure before use. A set of default values is defined in the library header file and can

Controllers

be used with the variable declaration. An example of an initialized DCL_NLPID structure
declaration is shown below.

DCL NLPID myCtrl = NLPID DEFAULTS;

3.3.3 Functions

Run the Non-linear PID Controller

Header File:
Source File:

Declaration:

Description:

Parameters:

Return:

Run the Non-linear PID Controller

Header File:
Source File:

Declaration:

Description:

Parameters:

Return:

DCL_NLPID.h

N/A

float32_t DCL_runNLPID_C1(DCL_NLPID *p, float32_t rk, float32_t yk,
float32_t Ik)

This function executes a parallel form non-linear PID controller on the FPU32.
The function is coded in inline C.

p The DCL_NLPID structure

rk The controller set-point reference
yk The measured feedback

Ik External output clamp flag

The control effort

DCL_NLPID.h

N/A

float32_t DCL_runNLPID_C2(DCL_NLPID *p, float32_t rk, float32_t yk,
float32_t Ik)

This function executes a series form non-linear PID controller on the FPU32. This
controller is broadly similar to C1 except that the derivative path feedback comes
from the loop output rather than the error. The function is coded in inline C.

p The DCL_NLPID structure

rk The controller set-point reference
yk The measured feedback

Ik External output clamp flag

The control effort

51

Controllers

DCL_runNLPID_C3

DCL_setActiveNLPIDGamma

DCL_setNLPIDGamma

52

Header File:
Source File:

Declaration:

Description:

Parameters:

Return:

Header File:

Source File:
Declaration:

Description:

Parameters:

Return:

Header File:
Source File:
Declaration:

Description:

Run the Non-linear PID Controller

DCL_NLPID.h

DCL_NLPID_C3.asm

float32_t DCL_runNLPID_C3(DCL_NLPID *p, float32_t rk, float32_t yk,
float32_t Ik)

This function executes a series form non-linear PID controller on the FPU32. This
controller is similar to C2 except that it is coded in assembly for the TMU type 1.
If executed on a device without TMU type 1, the function will return the input
reference, rk.

p The DCL_NLPID structure

rk The controller set-point reference
yk The measured feedback

Ik External output clamp flag

The control effort

Compute the Non-linear PID Gain Limits

DCL_NLPID.h
N/A
void DCL_setGamma(DCL_NLPID *p)

This function computes the three gain limits for the non-linear PID controller and
loads them directly into the active NLPID structure. The function is coded in C.

p The DCL_NLPID structure
Void

Compute the Non-linear PID Gain Limits

DCL_NLPID.h
N/A
void DCL_setGamma(DCL_NLPID *p)

This function computes the three gain limits for the non-linear PID controller and
loads them into the SPS sub-structure. Parameters in the active structure are
updated on the next call to DCL_updateNLPID(). The function is coded in C.

Controllers

Parameters:

Return:

Reset the NLPID Controller

Header File:
Source File:
Declaration:

Description:

Parameters:

Return:

Update the NLPID Controller Parameters

Header File:
Source File:
Declaration:

Description:

Parameters:

Return:

Set the Active NLPID Derivative Filter Bandwidth

Header File:
Source File:
Declaration:

Description:

p The DCL_NLPID structure
Void

DCL_NLPID.h
N/A
void DCL_resetNLPID(DCL_NLPID *p)

This function resets the internal variables in the DCL_NLPID structure to default
values. The integrator accumulator and store derivative path values are set to 0.0,
and the integrator clamp variable set to 1.0. The function also sets the err field
in the CSS sub-structure to NONE. Note that the function is atomic.

p The DCL_NLPID structure
Void

DCL_NLPID.h
N/A
void DCL_updateNLPID(DCL_NLPID *p)

This function tests the sts field in the CSS sub-structure to determine whether a
parameter update is required. If so, the parameters stored in the SPS sub-
structure are copied into the PID structure and sts is cleared. Note that the
function is atomic. Refer to section 2.4 for more information on updating
controller parameters.

p The DCL_NLPID structure
Void

DCL_NLPID.h
N/A
void DCL_setActiveNLPIDfilterBW(DCL_NLPID *p, float32_t fc, float32_t T)

Loads the active derivative filter coefficients c1 & c2 in the NLPID structure based
on the desired filter bandwidth specified in Hz and controller update rate in
seconds. Coefficients in the SPS and CSS are unaffected.

53

Controllers

DCL_setNLPIDfilterBW

DCL_getNLPIDfilterBW

DCL_getNLPIDgamma

54

Parameters:

Return:

Header File:
Source File:
Declaration:

Description:

Parameters:

Return:

Header File:
Source File:
Declaration:

Description:

Parameters:

Return:

Header File:
Source File:
Declaration:

Description:

Parameters:

p The DCL_NLPID structure

fc The desired filter bandwidth in Hz

T The controller update rate in seconds
Void

Set the NLPID Derivative Filter Bandwidth

DCL_NLPID.h
N/A
void DCL_setNLPIDfilterBW(DCL_NLPID *p, float32_t fc)

Loads the derivative filter coefficients c1 & c2 in the SPS based on the desired
Coefficients in the active parameter set are

filter bandwidth specified in Hz.
unaffected until the controller is updated using DCL_updateNLPID().

p The DCL_NLPID structure
fc The desired filter bandwidth in Hz
Void

Get the NLPID Derivative Filter Bandwidth

DCL_NLPID.h
N/A
float32_t DCL_getNLPIDfilterBW(DCL_NLPID *p)

Finds the bandwidth of the current derivative filter in Hz by examining the
coefficients in the active parameter set (i.e. not the SPS).

p The DCL_NLPID structure

The active derivative filter bandwidth in Hz

Get the NLPID Steady State Gain

DCL_NLPID.h
N/A
float32_t DCL_getNLPIDgamma(float32_t alpha, float32_t delta)

Finds the steady state gain in the linearized region for the specified alpha & delta

choice.

p The DCL_NLPID structure

Controllers

Return: The steady state gain

Get the NLPID Linearized Region Semi-width

Header File: DCL_NLPID.h
Source File: N/A
Declaration: float32_t DCL_getNLPIDdelta(float32_t alpha, float32_t gamma)

Description: Finds the semi-width of the linearized region from the specified alpha and gamma
choice.

Parameters: p The DCL_NLPID structure

Return: The linearized region semi-width

3.4 Non-linear Pl Controllers

3.4.1 Description

The DCL contains one non-linear PI controller, similar in form to DCL_PI_C1. Refer to
section 3.3.1 for information on the non-linear control law.

3.4.2 Implementation

The NLPI controller is similar to a linear series form implementation, but with non-linear
law blocks in the P and | paths. The controller uses a common C structure to hold
coefficients and data, defined in the header files DCL NLPID.h and DCL.h. The
NLPI_C1 controller architecture is shown below.

P-term
non-linear block

Vi

) + Pre-conditioning Va | | I-term
T - CTS block Vi non-linear block
0.5

(k)

Figure 19. The DCL_NLPI_C1 architecture

55

Controllers

DCL_resetNLPI

DCL_updateNLPI

56

Header File:
Source File:
Declaration:

Description:

Parameters:

Return:

Header File:
Source File:
Declaration:

Description:

Parameters:

Return:

Header File:

Source File:

Declaration:

Description:

Parameters:

Return:

3.4.3 Functions

DCL_runNLPI_C1

Run the Ideal Form Non-linear Pl Controller

DCL_NLPID.h
N/A
float32_t DCL_runNLPI_C1(DCL_NLPI *p, float32_t rk, float32_t yk)

This function executes an ideal form Pl controller on the FPU32. The function is
coded in inline C.

p The DCL_NLPI structure
rk The controller set-point reference
yk The measured feedback

The control effort

Reset the Non-linear Pl Controller

DCL_NLPID.h
N/A
void DCL_resetNLPI(DCL_NLPI *p)

This function resets the internal dynamic variables in the DCL_NLPI structure to
their default values. The integrator accumulator is set to zero, and the err field in
the CSS sub-structure is set NONE. Note that this function is atomic.

p The DCL_NLPI structure
Void

Update the Non-linear Pl Controller Parameters

DCL_NLPID.h
N/A
void DCL_updateNLPI(DCL_NLPI *p)

This function tests the sts field in the CSS sub-structure to determine whether a
parameter update is required. If so, the control parameters stored in the SPS
sub-structure are copied into the DCL_NLPI structure and sts is cleared.
Dynamic variables are not affected. Note that this function is atomic. Refer to
section 2.4 for more information on updating controller parameters.

p The DCL_NLPI structure

Void

Controllers

3.5 Double Integrator Pl Controller

3.5.1 Description

The DCL contains one implementation of a linear Pl controller having two series
integrators. This type of controller is similar to the parallel Pl controller described above
except that the anti-windup reset logic is more complicated.

In this controller, allowance has been made for the Kp element to be zero. This scenario
presents a problem if the controller enters saturation because without the proportional
path there is no way to recover. The PI2 resolves this by releasing the anti-windup lock
when the integrator input reverses sign. The logic has to be implemented twice, since
there are two cascaded integrators. Similar anti-windup reset logic is present in the
P1_C5 controller (see section 3.2 for more information).

3.5.2 Implementation

The double integrator P12 controller uses a C structure to hold coefficients and data,
defined in the header file DCLF32 . h.

The PI2 implementation is shown below:

+ Vi Vi

- u(k)
Umin

vt

I

Figure 20. DCL_PI2 C1 architecture

3.5.3 Functions

Run the Ideal Form PI2 Controller

Header File: DCLF32.h

57

Controllers

Source File: N/A
Declaration: float32_t DCL_runPI12_C1(DCL_PI2 *p, float32_t rk, float32_t yk)

Description: This function executes an ideal form PI2 controller on the FPU32. The function is

coded in C.

Parameters: p The DCL_PI2 structure
rk The controller set-point reference
yk The measured feedback

Return: The control effort

Resets the PI2 Controller

Header File: DCLF32.h

Source File: N/A
Declaration: void DCL_resetPI2(DCL_PI2 *p)

Description: This function resets the internal variables in the DCL_PI2 structure to default
values. Both integrator accumulators are set to zero, and the err field in the CSS
sub-structure is set NONE. Note that the function is atomic.

Parameters: p The DCL_PI2 structure
Return: Void

Updates the PI2 Controller Parameters

Header File: DCLF32.h

Source File: N/A
Declaration: void DCL_updatePI2(DCL_PI2 *p)

Description: This function tests the sts field in the CSS sub-structure to determine whether a
parameter update is required. If so, the parameters stored in the SPS sub-
structure are copied into the PI2 structure and sts is cleared. Note that the
function is atomic. Refer to section 2.4 for more information on updating
controller parameters.

Parameters: p The DCL_PI2 structure
Return: Void

58

Controllers

Updates the PI2 Controller Parameters

Header File: DCLF32.h

Source File: DCL_futils.asm
Declaration: void DCL_fupdatePI2(DCL_PI2 *p)

Description: This function tests the sts field in the CSS sub-structure to determine whether a
parameter update is required. If so, the parameters stored in the SPS sub-
structure are copied into the PI2 structure and sts is cleared. Note that the
function is atomic. Refer to section 2.4 for more information on updating
controller parameters. The function is implemented as an assembly module.

Parameters: p The DCL_PI2 structure
Return: Void

3.6 Direct Form 1 (First Order) Compensators

3.6.1 Description

The DCL includes one first order compensator in Direct Form 1. The DF11 compensator
implements a first order, or “simple lag”, type frequency response. The general form of
discrete time first order transfer function is

b, +b,z”"
1

Equation 12. F(z) =
1+a,z~

Denominator coefficients must be normalized accordingly. The corresponding difference
equation is

Equation 13. u(k) =b,e(k)+be(k -1)—au(k -1)

A diagrammatic representation of the DF11 is shown below:

e(k-1)

e(k) z

59

Controllers

Figure 21. DCL DF11 C1, C2, & L1 architecture

3.6.2 Implementation

All DF11 functions use a common C structure to hold coefficients and data, defined in the
header files DCLF32.h and DCLCLA. h.

It is the responsibility of the user to initialize coefficients and data prior to use. A set of
default values is defined in the library header file and can be used with the variable
declaration. An example of an initialized DCL_DF11 structure declaration on FPU32 is
shown below:

DCL DF11 myCtrl = DF11 DEFAULTS;

3.6.3 Functions

Run the DF11 Compensator

Header File: DCLF32.h

Source File: DCL_DF11_C1.asm
Declaration: float32_t DCL_runDF11_C1(DCL_DF11 *p, float32_t ek)

Description: This function computes a first order control law using the Direct Form 1 structure.
The function is coded in FPU32 assembly.

Parameters: p The DCL_DF11 structure
ek The servo error

Return: The control effort

Run the DF11 Compensator

Header File: DCLF32.h

Source File: N/A
Declaration: float32_t DCL_runDF11_C1(DCL_DF11 *p, float32_t ek)

Description: This function computes a first order control law using the Direct Form 1 structure.
The function is coded in C.

Parameters: p The DCL_DF11 structure
ek The servo error
Return: The control effort

60

Controllers

DCL_runDF11_L1

Header File:
Source File:
Declaration:

Description:

Parameters:

Return:

DCL_resetDF11

Header File:
Source File:
Declaration:

Description:

Parameters:

Return:

DCL_updateDF11

Header File:
Source File:
Declaration:

Description:

Parameters:

Return:

Run the DF11 Compensator

DCLCLA.h
DCL_DF11_L1.asm
float32_t DCL_runDF11_L1(DCL_DF11_CLA *p, float32_t ek)

This function computes a first order control law using the Direct Form 1 structure.
The function is coded in CLA assembly.

p The DCL_DF11_CLA structure
ek The servo error

The control effort

Resets the DF11 Compensator

DCLF32.h
N/A
void DCL_resetDF11(DCL_DF11 *p)

This function resets the internal variables in the DCL_DF11 structure to default
values. The forward and return path coefficients are configured to implement a
unity gain response, and the err field in the CSS sub-structure is set NONE.
Note that the function is atomic.

p The DCL_DF11 structure
Void

Updates the DF11 Compensator Parameters

DCLF32.h
N/A
void DCL_updateDF11(DCL_DF11 *p)

This function tests the sts field in the CSS sub-structure to determine whether a
parameter update is required. |If so, the parameters stored in the SPS sub-
structure are copied into the DF11 structure and sts is cleared. Note that the
function is atomic. Refer to section 2.4 for more information on updating
controller parameters.

p The DCL_DF11 structure
Void

61

Controllers

DCL fupdateDF11

DCL _isStableDF11 Determines whether the DF11 Compensator is Stable

DCL_loadDF11asZPK

62

Header File:
Source File:
Declaration:

Description:

Parameters:

Return:

Header File:
Source File:
Declaration:

Description:

Parameters:

Return:

Header File:
Source File:

Declaration:

Description:

Parameters:

Updates the DF11 Controller Parameters

DCLF32.h
DCL_futils.asm
void DCL_fupdateDF11(DCL_DF11 *p)

This function tests the sts field in the CSS sub-structure to determine whether a
parameter update is required. If so, the parameters stored in the SPS sub-
structure are copied into the DF11 structure and sts is cleared. Note that the
function is atomic. Refer to section 2.4 for more information on updating
controller parameters. The function is implemented as an assembly module.

p The DCL_DF11 structure
Void

DCLF32.h
N/A
int16_t DCL_isStableDF11(DCL_DF11 *p)

This function determines whether the coefficient set in the SPS sub-structure
represent a stable compensator. If the pole magnitude is less than one, the
function returns ‘1’, indicating stability; otherwise the function returns ‘0’. Refer to
section 1.3.9 for more information on compensator stability tests.

p The DCL_DF11 structure

‘1’ if stable, otherwise ‘0’

Loads the DF11 Compensator from ZPK

DCLF32.h
N/A
void DCL_loadDF11asZPK (DCL_DF11 *p, DCL_ZPK3 *q)

This function loads the DF11 compensator coefficients in the SPS sub-structure
from a 1-pole, 1-zero description held in a ZPKS3 structure. Active coefficients are
unaffected until the DCL updateDF11 () function is called. Refer to section
1.3.8 for more information on the ZPK3 structure.

p The DCL_DF11 structure
q The DCL_ZPKS3 structure

Controllers

Return: Void

Loads the DF11 Compensator from a Pl Description

Header File: ~ DCLF32.h

Source File: N/A
Declaration: void DCL_loadDF11asPI (DCL_DF11 *p, float32_t Kp, float32_t Ki)

Description: This function loads the DF11 compensator coefficients in the SPS sub-structure to
emulate a series form Pl controller. Active coefficients are unaffected until the
DCL updateDF11 () function is called.

Parameters: p The DCL_DF11 structure
Kp The equivalent series form PI controller proportional gain
Ki The equivalent series form PI controller integral gain
Return: Void

3.7 Direct Form 1 (Third Order) Compensators

3.7.1 Description

The Direct Form 1 (DF1) structure is a common type of discrete time control structure
used to implement a control law or dynamical system model specified either as a pole-
zero set, or as a rational polynomial in z (i.e. a discrete time transfer function). The DCL
includes one third order DF1 compensator, denoted “DF13”.

In general, the Direct Form 1 structure is less numerically robust than the Direct Form 2
(see below), and for this reason users are encouraged to choose the latter type whenever
possible. However, the DCL_DF13 structure is very common in digital power supplies
and for that reason is included in the library. The same function supports a second order
control law after the superfluous coefficients (az & bs) have been set to zero.

The general form of third order transfer function is

b, +bz" +b,z7 +b,z”
l+az'+a,z 7 +a,2”

Equation 14. F(z) =

Notice that the coefficients have been adjusted to normalize the highest power of z in the
denominator. There is no notational standard for numbering of the controller coefficients;
the notation used here has the advantage that the coefficient suffixes are the same as the
delay line elements and this helps with clarity of the assembly code, however other
notations may be found in the literature. The corresponding difference equation is

u(k) =b,e(k)+bek —1)+b,e(k —2)+be(k -3)

Equation 15.
—auk -1 -auk -2)—au(k -3)

63

Controllers

Figure 22.

The DF13 controller uses two, three-element delay lines to store previous input and
output data required to compute u(k). A diagrammatic representation is shown below.

dl d2 d3

e(k) @ z! e(k71)= 2 e(k72)= 1| ek=3)

bo bl bZ b3

Vo V1 V2 V3

u(k=3) " u(k-2) uk-1)
d7 d6 dS

DCL DF13 C1, C4, & L1 architecture

The DF13 control law consists of seven multiplication operations which yield seven partial
products, and six addition or subtraction operations which combine the partial products to
obtain the compensator output, u(k). When implemented in this way, the control law is
referred to as the “full” DF13 form.

The DF13 control law can be re-structured to reduce control latency by pre-computing six
of the seven partial products which are already known in the previous sample interval.
The control law is then broken into two parts: the “immediate” part and the “partial” part.

The advantage of doing this is to reduce the “sample-to output” delay, or the time between
e(k) being sampled, and a corresponding u(k) becoming available. By partially pre-
computing the control law, the computation delay can be reduced to one multiplication
and one addition.

In the k™ interval, the immediate part is computed.

Equation 16. u(k) =bye(k) +v(k —1)

Next, the v(k) partial result is pre-computed for use in the (k+1)th interval.

Equation 17. v(k) =be(k) +be(k —1) + be(k —2) —au(k) —a,u(k —1) —a,u(k — 2)

64

Structurally, the pre-computed control law can be drawn as below:

Controllers

Figure 23.

e(k)

bo

u(k)

v(k)

d[dZ
E(k—l) o -1 e(k—2)

e(k)

v(k+1)

u(k)

ds ds

DCL DF13 C2, C3, C5, C6, L2, & L3 architecture

The pre-computed structure allows the controller output (u(k)) to be used as soon as it is
computed. The remaining terms in the third order control law do not involve the newest
input e(k) and therefore do not affect u(k). These terms can be computed after u(k) has
been applied to the control loop and the input-output latency of the controller is therefore

reduced.

A further benefit of the pre-computed structure is that it allows the control effort to be
clamped after the immediate part. Computation of the pre-computed part can be made
dependent on the outcome of the clamp such that if u(k) matches or exceeds the clamp
limits there is no point in pre-computing the next partial control variable and the
computation can be avoided. The DCL includes three clamp functions intended for this

purpose (see chapter 6).

3.7.2 Implementation

All DF13 functions use a common C structure to hold coefficients and data, defined in the
header files DCL..h and DCLCLA. h.

The assignment of coefficients and data in the DCL_DF13 structure to those in the

diagram is shown below:

65

Controllers

Figure 24.

66

Coefficients Data
c[0] bo d[o0] e(k)
c[1] by d[1] e(k-1)
c[2] b, d[2] e(k-2)
c[3] bs d3] e(k-3)
cl4] a d[4] u(k)
c[s] a d[5] u(k-1)
c[6] a d[e] u(k-2)
c[7] a d[7] u(k-3)

DCL_DF13 data & coefficient layout

It is the responsibility of the user to initialize both arrays prior to use. A set of default
values is defined in the library header file and can be used with the variable declaration.
An example of an initialized DF13 structure declaration is shown below:

DCL DF13 myCtrl = DF13 DEFAULTS;
To implement a full DF13 controller, the user might call:
uk = DCL runDF13 C1(&df13, ek);

...where ek and uk are the controller input and output respectively, and df13 is the
controller structure.

To implement a pre-computed DF13 controller, the user might call:
uk = DCL runDF13 C2(&dfl3, ek, vk);
vk = DCL runDF13 C3(&dfl3, ek, uk);

...where vk is an intermediate float variable. This arrangement allows the user to make
use of the output immediately by placing instructions between the two lines above to use
the newest value of uk.

For applications where it is necessary to restrict the output of the compensator, a clamp
function can be used as follows.

uk = DCL runDF13 C2(&dfl3, ek, vk);
s = DCL runClamp CI (&uk, upperLim, lowerLim);
if (0U == s)
{
vk = DCL runDF13 C3(&dfl3, ek, uk);
}

The clamp function limits the controller output to lie between “lowerLim” and “upperLim”

and sets the unsigned integer “s” to 1 is that range is exceeded. The pre-computed part

Controllers

of the controller will only be executed when the immediate result is in range. Refer to
section 4.1 for information on the clamp functions.

3.7.3 Functions

DCL_runDF13_C1

Header File:
Source File:
Declaration:

Description:

Parameters:

Return:

DCL_runDF13_C2

Header File:
Source File:
Declaration:

Description:

Parameters:

Return:

DCL_runDF13_C3

Header File:
Source File:
Declaration:

Description:

Parameters:

Run the DF13 Full Compensator

DCLF32.h
DCL_DF13_C1.asm
float32_t DCL_runDF13_C1(DCL_DF13 *p, float32_t ek)

This function computes a full third order control law using the Direct Form 1
structure. The function is coded in FPU32 assembly.

p The DCL_DF13 structure
ek The servo error

The control effort

Run the Immediate DF13 Compensator

DCLF32.h
DCL_DF13_C2C3.asm
float32_t DCL_runDF13_C2(DCL_DF13 *p, float32_t ek, float32_t vk)

This function computes the immediate part of the pre-computed DF13 controller.
The function is coded in FPU32 assembly.

p The DCL_DF13 structure
ek The servo error
vk The pre-computed partial control effort

The control effort

Run the Partial DF13 Compensator

DCLF32.h
DCL_DF13_C2C3.asm
float32_t DCL_runDF13_C3(DCL_DF13 *p, float32_t ek, float32_t uk)

This function computes the partial result of the pre-computed DF13 controller.
The function is coded in FPU32 assembly.

p The DCL_DF13 structure

67

Controllers

68

Return:

DCL_runDF13_C4

Header File:
Source File:
Declaration:

Description:

Parameters:

Return:

DCL_runDF13_C5

Header File:
Source File:
Declaration:

Description:

Parameters:

Return:

DCL_runDF13_C6

Header File:
Source File:
Declaration:

Description:

ek The servo error
uk The control effort in the previous sample interval

The control effort

Run the DF13 Full Compensator

DCLF32.h
N/A
float32_t DCL_runDF13_C4(DCL_DF13 *p, float32_t ek)

This function computes a full third order control law using the Direct Form 1
structure, and is identical in structure and operation to the C1 form. The function

is coded in inline C.
p The DCL_DF13 structure
ek The servo error

The control effort

Run the Immediate DF13 Compensator

DCLF32.h
N/A
float32_t DCL_runDF13_C5(DCL_DF13 *p, float32_t ek, float32_t vk)

This function computes the immediate part of the pre-computed DF13 controller.
The function is identical in structure and operation to the C2 form. The function is
coded in inline C.

p The DCL_DF13 structure
ek The servo error
vk The pre-computed partial control effort

The control effort

Run the Partial DF13 Compensator

DCLF32.h
N/A
float32_t DCL_runDF13_C6(DCL_DF13 *p, float32_t ek, float32_t uk)

This function computes the partial result of the pre-computed DF13 controller.
The function is identical in structure and operation to the C3 form. The function is

coded in inline C.

Controllers

Parameters:

Return:

Run the DF13 Full Compensator on the CLA

Header File:
Source File:
Declaration:

Description:

Parameters:

Return:

Run the Immediate DF13 Compensator on the CLA

Header File:
Source File:
Declaration:

Description:

Parameters:

Return:

Run the Partial DF13 Compensator on the CLA

Header File:
Source File:

Declaration:

p The DCL_DF13 structure
ek The servo error
uk The control effort in the previous sample interval

The control effort

DCLCLA.h
DCL_DF13_L1.asm
float32_t DCL_runDF13_L1(DCL_DF13_CLA *p, float32_t k)

This function computes a full third order control law using the Direct Form 1
structure, and is identical in structure and operation to the C1 form. The function
is coded in CLA assembly language.

p The DCL_DF13_CLA structure
ek The servo error

The control effort

DCLCLA.h
DCL_DF13 L2L3.asm
float32_t DCL_runDF13_L2(DCL_DF13_CLA *p, float32_t ek, float32_t vk)

This function computes the immediate part of the pre-computed DF13 controller.
The function is identical in structure and operation to the C2 form. The function is
coded in CLA assembly language.

p The DCL_DF13_CLA structure
ek The servo error
vk The pre-computed partial control effort

The control effort

DCLCLA.h
DCL_DF13_L2L3.asm
float32_t DCL_runDF13_L3(DCL_DF13_CLA *p, float32_t ek, float32_t uk)

69

Controllers

70

Description:

Parameters:

Return:

Run the DF13 Full Compensator on the CLA

Header File:
Source File:
Declaration:

Description:

Parameters:

Return:

Run the Immediate DF13 Compensator on the CLA

Header File:
Source File:
Declaration:

Description:

Parameters:

Return:

Run the Partial DF13 Compensator on the CLA

Header File:

This function computes the partial result of the pre-computed DF13 controller.
The function is identical in structure and operation to the C3 form. The function is
coded in CLA assembly language.

p The DCL_DF13_CLA structure
ek The servo error
uk The control effort in the previous sample interval

The control effort

DCLCLA.h
N/A
float32_t DCL_runDF13_L4(DCL_DF13_CLA *p, float32_t ek)

This function computes a full third order control law using the Direct Form 1
structure, and is identical in structure and operation to the C4 form. The function
is coded in C.

p The DCL_DF13_CLA structure
ek The servo error

The control effort

DCLCLA.h
N/A
float32_t DCL_runDF13_L5(DCL_DF13_CLA *p, float32_t ek, float32_t vk)

This function computes the immediate part of the pre-computed DF13 controller.
The function is identical in structure and operation to the C2 form. The function is
coded in C.

p The DCL_DF13_CLA structure
ek The servo error
vk The pre-computed partial control effort

The control effort

DCLCLA.h

Controllers

Source File:
Declaration:

Description:

Parameters:

Return:

DCL_resetDF13

Header File:

Source File:
Declaration:

Description:

Parameters:

Return:

DCL_updateDF13

Header File:
Source File:
Declaration:

Description:

Parameters:

Return:

N/A
float32_t DCL_runDF13_L6(DCL_DF13_CLA *p, float32_t ek, float32_t uk)

This function computes the partial result of the pre-computed DF13 controller.
The function is identical in structure and operation to the C3 form. The function is
coded in C.

p The DCL_DF13_CLA structure
ek The servo error
uk The control effort in the previous sample interval

The control effort

Resets the DF13 Compensator

DCLF32.h
N/A
void DCL_resetDF13(DCL_DF13 *p)

This function resets the internal variables in the DCL_DF13 structure to default
values. The forward and return path coefficients are configured to implement a
unity gain response, and the err field in the CSS sub-structure is set NONE.
Note that the function is atomic.

p The DCL_DF13 structure
Void

Updates the DF13 Compensator Parameters

DCLF32.h
N/A
void DCL_updateDF13(DCL_DF13 *p)

This function tests the sts field in the CSS sub-structure to determine whether a
parameter update is required. |If so, the parameters stored in the SPS sub-
structure are copied into the DF13 structure and sts is cleared. Note that the
function is atomic. Refer to section 2.4 for more information on updating
controller parameters.

p The DCL_DF13 structure
Void

71

Controllers

DCL fupdateDF13

DCL_isStableDF13 Determines whether the DF13 Compensator is Stable

DCL_loadDF13asZPK

72

Header File:
Source File:
Declaration:

Description:

Parameters:

Return:

Header File:
Source File:
Declaration:

Description:

Parameters:

Return:

Header File:
Source File:
Declaration:

Description:

Parameters:

Return:

Updates the DF13 Controller Parameters

DCLF32.h
DCL_futils.asm
void DCL_fupdateDF13(DCL_DF13 *p)

This function tests the sts field in the CSS sub-structure to determine whether a
parameter update is required. If so, the parameters stored in the SPS sub-
structure are copied into the DF13 structure and sts is cleared. Note that the
function is atomic. Refer to section 2.4 for more information on updating
controller parameters. The function is implemented as an assembly module.

p The DCL_DF13 structure
Void

DCLF32.h
N/A
int16_t DCL_isStableDF13(DCL_DF13 *p)

This function determines whether the coefficient set in the SPS sub-structure
represent a stable compensator. If the pole magnitude is less than one, the
function returns ‘1’, indicating stability; otherwise the function returns ‘0’. Refer to
section 1.3.9 for more information on compensator stability tests.

p The DCL_DF13 structure

‘1’ if stable, otherwise ‘0’

Loads the DF13 Compensator from ZPK

DCLF32.h
N/A
void DCL_loadDF13asZPK (DCL_DF13 *p, DCL_ZPK3 *q)

This function loads the DF13 compensator coefficients in the SPS sub-structure
from a 3-pole, 3-zero description held in a ZPKS3 structure. Active coefficients are
unaffected until the DCL updateDF13() function is called. Refer to section
1.3.8 for more information on the ZPK3 structure.

p The DCL_DF13 structure
q The DCL_ZPKS3 structure
Void

Controllers

3.8 Direct Form 2 (Second Order) Compensators

3.8.1 Description

The C2000 Digital Controller Library contains a second order implementation of the Direct
Form 2 controller structure, denoted “DCL_DF22”. This structure is sometimes referred to
as a “bi-quad” filter and is commonly used in a cascaded chain to build up digital filters of

high order.

The transfer function of a second order discrete time compensator is

-1 -2
b, +bz" +b,z
l+az "' +a,z”

Equation 18. F(z) =

The corresponding difference equation is

Equation 19. u(k) =b,e(k) +be(k —1)+be(k —2)—au(k —1)—a,u(k —2)

A diagrammatic representation of the full Direct Form 2 realization is shown below:

by

Vo V7

e(k) —— + » u(k)

X1

b2 z -

1%} V4

Figure 25. DCL _DF22 C1, C4,L1, & L4 architecture

As with the DCL_DF13 compensator, sample-to-output delay can be reduced through the
use of pre-computation. The immediate and pre-computed control laws are as follows. In
the k™ interval, the immediate part is computed.

73

Controllers

Equation 20. u(k) =b,e(k) +v(k)
Next, the v(k) partial result is pre-computed for use in the (k+1)th interval.

Equation 21. v(k +1) =be(k) +b,e(k —1) —a,u(k) —a,u(k —1)

The pre-computed form of DCL_DF22 is shown in the following diagrams.

by
e(k) u(k)
X1
(k)
Figure 26. DCL DF22 C2, C5, & L2 architecture
e(k) v(k+1) u(k)

bo z —ay

Xod

Figure 27. DCL DF22 C3, C6, & L3 architecture

Notice that pre-computation is a little different from the Direct Form 1 case because the
intermediate value exists as one of the internal states and is therefore automatically
stored as “x1” in the DCL_DF22 structure. Therefore it is not necessary to create a

separate variable to store v(k).

3.8.2 Implementation

All DF22 functions use a common C structure to hold coefficients and data, defined in the

header file DCL.h and DCLCLA.h.

74

Controllers

It is the responsibility of the user to initialize both arrays prior to use. A set of default
values is defined in the library header file and can be used with the variable declaration.
An example of an initialized DCL_DF22 structure declaration is shown below:

DF22 myCtrl = DF22 DEFAULTS;

An example of a pre-computed DF22 controller can be found in section 5.1.

3.8.3 Functions

Run the DF22 Full Compensator

Header File:
Source File:
Declaration:

Description:

Parameters:

Return:

Run the Immediate DF22 Compensator

Header File:
Source File:
Declaration:

Description:

Parameters:

Return:

Run the Partial DF22 Compensator

Header File:
Source File:
Declaration:

Description:

DCLF32.h
DCL_DF22_C1.asm
float32_t DCL_runDF22_C1(DCL_DF22 *p, float32_t ek)

This function computes a full second order control law using the Direct Form 2
structure. The function is coded in FPU32 assembly.

p The DCL_DF22 structure
ek The servo error

The control effort

DCLF32.h
DCL_DF22_C2C3.asm
float32_t DCL_runDF22_C2(DCL_DF22 *p, float32_t ek)

This function computes the immediate part of the pre-computed DF22 controller.
The function is coded in FPU32 assembly.

p The DCL_DF22 structure
ek The servo error

The control effort

DCLF32.h
DCL_DF22_C2C3.asm
void DCL_runDF22_C3(DCL_DF22 *p, float32_t ek, float32_t uk)

This function computes the partial result of the pre-computed DF22 controller.
The function is coded in FPU32 assembly.

75

Controllers

76

Parameters:

Return:

Run the DF22 Full Compensator

Header File:
Source File:
Declaration:

Description:

Parameters:

Return:

Run the Immediate DF22 Compensator

Header File:

Source File:
Declaration:

Description:

Parameters:

Return:

Run the Partial DF22 Compensator

Header File:
Source File:
Declaration:

Description:

p The DCL_DF22 structure
ek The servo error
uk The control effort in the previous sample interval

The control effort

DCLF32.h
N/A
float32_t DCL_runDF22_C4(DCL_DF22 *p, float32_t ek)

This function computes a full second order control law using the Direct Form 2
structure, and is identical in structure and operation to the C1 form. The function
is coded in inline C.

p The DCL_DF22 structure
ek The servo error

The control effort

DCLF32.h
N/A
float32_t DCL_runDF22_C5(DCL_DF22 *p, float32_t ek)

This function computes the immediate part of the pre-computed DF22 controller.
The function is identical in structure and operation to the C2 form. The function is
coded in inline C.

p The DCL_DF22 structure
ek The servo error

The control effort

DCLF32.h
N/A
float32_t DCL_runDF22_C6(DCL_DF22 *p, float32_t ek, float32_t uk)

This function computes the partial result of the pre-computed DF22 controller.
The function is identical in structure and operation to the C3 form. The function is
coded in inline C.

Controllers

Parameters:

Return:

Run the DF22 Full Compensator on the CLA

Header File:
Source File:
Declaration:

Description:

Parameters:

Return:

Run the Immediate DF22 Compensator on the CLA

Header File:
Source File:
Declaration:

Description:

Parameters:

Return:

Run the Partial DF22 Compensator on the CLA

Header File:
Source File:

Declaration:

Description:

p The DCL_DF22 structure
ek The servo error
uk The control effort in the previous sample interval

The control effort

DCLCLA.h
DCL_DF22_L1.asm
float32_t DCL_runDF22_L1(DCL_DF22_CLA *p, float32_t k)

This function computes a full third order control law using the Direct Form 2
structure, and is identical in structure and operation to the C1 form. The function
is coded in CLA assembly language.

p The DCL_DF22_CLA structure
ek The servo error

The control effort

DCLCLA.h
DCL_DF22 L2L3.asm
float32_t DCL_runDF22_L2(DCL_DF22_CLA *p, float32_t ek)

This function computes the immediate part of the pre-computed DF22 controller.
The function is identical in structure and operation to the C2 form. The function is
coded in CLA assembly language.

p The DCL_DF22_CLA structure
ek The servo error

The control effort

DCLCLA.h
DCL_DF22 L2L3.asm
float32_t DCL_runDF22_L3(DCL_DF22_CLA *p, float32_t ek, float32_t uk)

This function computes the partial result of the pre-computed DF22 controller.
The function is identical in structure and operation to the C3 form. The function is
coded in CLA assembly language.

7

Controllers

78

Parameters:

Return:

Run the DF22 Full Compensator on the CLA

Header File:
Source File:
Declaration:

Description:

Parameters:

Return:

Resets the DF22 Compensator

Header File:
Source File:
Declaration:

Description:

Parameters:

Return:

Updates the DF22 Compensator Parameters

Header File:
Source File:

Declaration:

p The DCL_DF22_CLA structure
ek The servo error
uk The control effort in the previous sample interval

The control effort

DCLCLA.h
N/A
float32_t DCL_runDF22_L4(DCL_DF22_CLA *p, float32_t ek)

This function computes a full third order control law using the Direct Form 2
structure, and is identical in structure and operation to the C1 form. The function
is coded in C.

p The DCL_DF22_CLA structure
ek The servo error

The control effort

DCLF32.h
N/A
void DCL_resetDF22(DCL_DF22 *p)

This function resets the internal variables in the DCL_DF22 structure to default
values. The forward and return path coefficients are configured to implement a
unity gain response, and the err field in the CSS sub-structure is set NONE.
Note that the function is atomic.

p The DCL_DF22 structure
Void

DCLF32.h
N/A
void DCL_updateDF22(DCL_DF22 *p)

Controllers

Description:

Parameters:

Return:

Updates the DF22 Controller Parameters

Header File:
Source File:
Declaration:

Description:

Parameters:

Return:

Determines whether the DF22 Compensator is Stable

Header File:
Source File:
Declaration:

Description:

Parameters:

Return:

Loads the DF22 Compensator from ZPK

Header File:

Source File:

Declaration:

This function tests the sts field in the CSS sub-structure to determine whether a
parameter update is required. If so, the parameters stored in the SPS sub-
structure are copied into the DF22 structure and sts is cleared. Note that the
function is atomic. Refer to section 2.4 for more information on updating
controller parameters.

p The DCL_DF22 structure
Void

DCLF32.h
DCL_futils.asm
void DCL_fupdateDF22(DCL_DF22 *p)

This function tests the sts field in the CSS sub-structure to determine whether a
parameter update is required. If so, the parameters stored in the SPS sub-
structure are copied into the DF22 structure and sts is cleared. Note that the
function is atomic. Refer to section 2.4 for more information on updating
controller parameters. The function is implemented as an assembly module.

p The DCL_DF22 structure
Void

DCLF32.h
N/A
int16_t DCL_isStableDF22(DCL_DF22 *p)

This function determines whether the coefficient set in the SPS sub-structure
represent a stable compensator. If the pole magnitude is less than one, the
function returns ‘1’, indicating stability; otherwise the function returns ‘0’. Refer to
section 1.3.9 for more information on compensator stability tests.

p The DCL_DF22 structure

‘1’ if stable, otherwise ‘0’

DCLF32.h
N/A
void DCL_loadDF22asZPK (DCL_DF22 *p, DCL_ZPK3 *q)

79

Controllers

Loads the DF22 Compensator from { and w,

Equation 22.

D]/ R o1 DI V¥ EIREICI LD L oads the DF22 Compensator from a PID Description

80

Description: This function loads the DF22 compensator coefficients in the SPS sub-structure
from a 2-pole, 2-zero description held in a ZPK3 structure. Active coefficients are
unaffected until the DCL updateDF22 () function is called. Refer to section
1.3.8 for more information on the ZPK3 structure.

Parameters: p The DCL_DF22 structure
q The DCL_ZPKS3 structure
Return: Void

Header File: DCLF32.h
Source File: N/A
Declaration: void DCL_loadDF22asZwn (DCL_DF22 *p , float32_t z, float32_t wn)

Description: This function loads the DF22 compensator coefficients in the SPS sub-structure
from a classical second order transfer function expressed in terms of damping
ratio (¢) and un-damped natural frequency (w,). This function may be useful, for
example, when emulating a plant model for control loop testing. The prototype
transfer function is

Wi
52420 wps+tw3

Discrete emulation is carried out using a Tustin transformation and the
coefficients loaded into the shadow parameter set. Active coefficients are
unaffected until the DCL_updateDF22 () function is called.

Parameters: p The DCL_DF22 structure
z The damping ratio
wn The un-damped natural frequency in rad/s

Return: Void

Header File: DCLF32.h
Source File: N/A

Declaration: void DCL_loadDF22asParallelPID (DCL_22 *p, float32_t Kp, float32_t Ki,
float32_t Kd, float32_t fc)

Description: This function loads the DF22 compensator coefficients in the SPS sub-structure to
emulate a parallel form PID controller. Active coefficients are unaffected until the
DCL updateDF22 () function is called.

Parameters: p The DCL_DF22 structure

Controllers

Loads the DF22 Compensator from a PID Description

Equation 23.

Kp The equivalent parallel form PID controller proportional gain
Ki The equivalent parallel form PID controller integral gain
Kd The equivalent parallel form PID controller derivative gain
fc The equivalent derivative filter bandwidth in Hz

Return: Void

Header File: DCLF32.h
Source File: N/A

Declaration: void DCL_loadDF22asSeriesPID (DCL_22 *p, float32_t Kp, float32_t Ki, float32_t
Kd, float32_t fc)

Description: This function loads the DF22 compensator coefficients in the SPS sub-structure to
emulate a series form PID controller. Active coefficients are unaffected until the
DCL_updateDF22 () function is called.

Parameters: p The DCL_DF22 structure
Kp The equivalent series form PID controller proportional gain
Ki The equivalent series form PID controller integral gain
Kd The equivalent series form PID controller derivative gain
fc The equivalent derivative filter bandwidth in Hz

Return: Void

3.9 Direct Form 2 (Third Order) Compensators

3.9.1 Description

The third order Direct Form 2 compensator (DF23) is similar in all respects to the DF22
compensator. Separate full and pre-computed forms are supplied in C and assembly for
computation on the FPU32, and in assembly for computation on the CLA.

The control law is the same as the DF13 compensator.

u(k)=b,e(k)+bek —1)+b,e(k —2)+be(k -3)

—au(k - —auk-2)—au(k-3)

A diagrammatic representation of the full third order Direct Form 2 compensator is shown
below:

81

Controllers

e(k) l
b3 bg bl bo
Ve V4 %) %1
X3d -1 X2 X1d 1|
z z —»@——» u(k)

V7 V3

—-a3 —a

Figure 28. DCL_DF23 C1, C4, & L1 architecture

Sample-to-output delay can be reduced through the use of pre-computation, in a similar
way to the DF22 compensator. In the k™ interval, the immediate part is computed.

Equation 24. u(k) =b,e(k) +v(k)

)th

Next, the v(k) partial result is pre-computed for use in the (k+1)" interval.

Equation 25. v(k +1) =be(k) +b,e(k —1) +be(k —2)—au(k) —au(k —1)—a,u(k —2)
The pre-computed form of DF23 is shown in the following diagrams:

e(k)

bo

(k) ——(+ > ut)

Figure 29. DCL _DF23 C2, C5, & L2 architecture

82

Controllers

e(k)
b3 b2 b 1
Ve V4 V)
T Z! o T z! e il wk+ 1)
] Vs V3
—ds 7 —d;
u(k)
Figure 30. DCL _DF23 C3, C6, & L3 architecture

3.9.2 Implementation

All DF23 functions use a common C structure to hold coefficients and data, defined in the header

file DCL.h. and DCLCLA.h.

It is the responsibility of the user to initialize both arrays prior to use. A set of default values is
defined in the library header file and can be used with the variable declaration. An example of an

initialized DCL_DF23 structure declaration is shown below:
DCL DF23 myCtrl = DF23 DEFAULTS;

An example of a pre-computed DF23 controller can be found in section 5.2.

3.9.3 Functions

Run the DF23 Full Compensator

Header File: DCLF32.h
Source File: DCL_DF23 C1.asm
Declaration: float32_t DCL_runDF23_C1(DCL_DF23 *p, float32_t ek)

Description: This function computes a full third order control law using the Direct Form 2

structure. The function is coded in FPU32 assembly.

Parameters: p The DCL_DF23 structure
ek The servo error
Return: The control effort

83

Controllers

DCL_runDF23_C2

DCL_runDF23_C3

DCL_runDF23_C4

84

Header File:
Source File:
Declaration:

Description:

Parameters:

Return:

Header File:
Source File:
Declaration:

Description:

Parameters:

Return:

Header File:
Source File:
Declaration:

Description:

Parameters:

Return:

Run the Immediate DF23 Compensator

DCLF32.h
DCL_DF23_C2C3.asm
float32_t DCL_runDF23_C2(DCL_DF23 *p, float32_t ek)

This function computes the immediate part of the pre-computed DF23 controller.
The function is coded in FPU32 assembly.

p The DCL_DF23 structure
ek The servo error

The control effort

Run the Partial DF23 Compensator

DCLF32.h
DCL_DF23_C2C3.asm
void DCL_runDF23_C3(DCL_DF23 *p, float32_t ek, float32_t uk)

This function computes the partial result of the pre-computed DF23 controller.
The function is coded in FPU32 assembly.

p The DCL_DF23 structure
ek The servo error
uk The control effort in the previous sample interval

The control effort

Run the DF23 Full Compensator

DCLF32.h
N/A
float32_t DCL_runDF23_C4(DCL_DF23 *p, float32_t ek)

This function computes a full third order control law using the Direct Form 1
structure, and is identical in structure and operation to the C1 form. The function
is coded in inline C.

p The DCL_DF23 structure
ek The servo error

The control effort

Controllers

Run the Immediate DF23 Compensator

Header File:
Source File:
Declaration:

Description:

Parameters:

Return:

Run the Partial DF23 Compensator

Header File:
Source File:
Declaration:

Description:

Parameters:

Return:

Run the DF23 Full Compensator on the CLA

Header File:
Source File:
Declaration:

Description:

Parameters:

Return:

DCLF32.h
N/A
float32_t DCL_runDF23_C5(DCL_DF23 *p, float32_t ek)

This function computes the immediate part of the pre-computed DF23 controller.
The function is identical in structure and operation to the C2 form. The function is
coded in inline C.

p The DCL_DF23 structure
ek The servo error

The control effort

DCLF32.h
N/A
float32_t DCL_runDF23_C6(DCL_DF23 *p, float32_t ek, float32_t uk)

This function computes the partial result of the pre-computed DF23 controller.
The function is identical in structure and operation to the C3 form. The function is
coded in inline C.

p The DCL_DF23 structure
ek The servo error
uk The control effort in the previous sample interval

The control effort

DCLCLA.h
DCL_DF23 L1.asm
float32_t DCL_runDF23 L1(DCL_DF23 CLA *p, float32_t ek)

This function computes a full third order control law using the Direct Form 2
structure, and is identical in structure and operation to the C1 form. The function
is coded in CLA assembly language.

p The DCL_DF23_CLA structure
ek The servo error

The control effort

85

Controllers

Run the Immediate DF23 Compensator on the CLA

Header File:
Source File:
Declaration:

Description:

Parameters:

Return:

Run the Partial DF23 Compensator on the CLA

Header File:
Source File:
Declaration:

Description:

Parameters:

Return:

DCL _resetDF23 Resets the DF23 Compensator

Header File:
Source File:

Declaration:

Description:

Parameters:

86

DCLCLA.h
DCL_DF23 L2L3.asm
float32_t DCL_runDF23_L2(DCL_DF23_CLA *p, float32_t ek)

This function computes the immediate part of the pre-computed DF23 controller.
The function is identical in structure and operation to the C2 form. The function is
coded in CLA assembly language.

p The DCL_DF23_CLA structure
ek The servo error

The control effort

DCLCLA.h
DCL_DF23 L2L3.asm
float32_t DCL_runDF23_L3(DCL_DF23_CLA *p, float32_t ek, float32_t uk)

This function computes the partial result of the pre-computed DF23 controller.
The function is identical in structure and operation to the C3 form. The function is
coded in CLA assembly language.

p The DCL_DF23_CLA structure
ek The servo error
uk The control effort in the previous sample interval

The control effort

DCLF32.h
N/A
void DCL_resetDF23(DCL_DF23 *p)

This function resets the internal variables in the DCL_DF23 structure to default
values. The forward and return path coefficients are configured to implement a
unity gain response, and the err field in the CSS sub-structure is set NONE.
Note that the function is atomic.

p The DCL_DF23 structure

Controllers

Return:

DCL_updateDF23

Header File:
Source File:
Declaration:

Description:

Parameters:

Return:

DCL fupdateDF23

Header File:
Source File:
Declaration:

Description:

Parameters:

Return:

DCL _isStableDF23 Determines whether the DF23 Compensator is Stable

Header File:
Source File:
Declaration:

Description:

Parameters:

Void

Updates the DF23 Compensator Parameters

DCLF32.h
N/A
void DCL_updateDF23(DCL_DF23 *p)

This function tests the sts field in the CSS sub-structure to determine whether a
parameter update is required. If so, the parameters stored in the SPS sub-
structure are copied into the DF23 structure and sts is cleared. Note that the
function is atomic. Refer to section 2.4 for more information on updating
controller parameters.

p The DCL_DF23 structure
Void

Updates the DF23 Controller Parameters

DCLF32.h
DCL_futils.asm
void DCL_fupdateDF23(DCL_DF23 *p)

This function tests the sts field in the CSS sub-structure to determine whether a
parameter update is required. If so, the parameters stored in the SPS sub-
structure are copied into the DF23 structure and sts is cleared. Note that the
function is atomic. Refer to section 2.4 for more information on updating
controller parameters. The function is implemented as an assembly module.

p The DCL_DF23 structure
Void

DCLF32.h
N/A
int16_t DCL_isStableDF23(DCL_DF23 *p)

This function determines whether the coefficient set in the SPS sub-structure
represent a stable compensator. If the pole magnitude is less than one, the
function returns ‘1’, indicating stability; otherwise the function returns ‘0’. Refer to
section 1.3.9 for more information on compensator stability tests.

p The DCL_DF23 structure

87

Controllers

Return: ‘1’ if stable, otherwise ‘0’

Loads the DF23 Compensator from ZPK

Header File: ~ DCLF32.h

Source File: N/A
Declaration: void DCL_loadDF23asZPK(DCL_DF23 *p, DCL_ZPK3 *q)

Description: This function loads the DF23 compensator coefficients in the SPS sub-structure
from a 3-pole, 3-zero description held in a ZPK3 structure. Active coefficients are
unaffected until the DCL_updateDF23 () function is called. Refer to section
1.3.8 for more information on the ZPK3 structure.

Parameters: p The DCL_DF23 structure
q The DCL_ZPKS3 structure
Return: Void

3.10 Fixed-Point PID Controllers

3.10.1 Description

The DCL contains one implementation of a parallel form fixed-point PID controller. The
structure is similar to the floating-point C1 controller. Refer to section 3.1 for more
information.

3.10.2 Implementation
The linear PID controller in the DCL32 includes the following features.
e Parallel form
e Programmable output saturation
e Anti-windup integrator reset
e Programmable low-pass derivative filter
e Feedback input to derivative path

Both PID and PI type controllers in the DCI32 library implement integrator anti-windup
reset in a similar way. A clamp is present at the controller output which allows the user to
set upper and lower limits on the control effort. If either limit is exceeded, an internal
floating-point controller variable changes from logical 1 to logical 0. This variable is
converted into Q24 format and multiplied by the integrator input, such that the integrator
accumulates successive zero data when the output is saturated, avoiding the “wind-up”
phenomenon.

The following equations describe the implementation of the PID32 controller. Note that
the storage of static variables {i4 i;, d, ds} is not shown.

88

Controllers

Equation 26.

The servo error equation is

vs(k) =r(k) - y(k)

The proportional path equation is

Equation 27. vy(k) = K vs(k)

Equation 28.
Equation 29.

Equation 30.

Equation 31.
Equation 32.
Equation 33.

Equation 34.

Equation 35.

Equation 36.

Equation 37.

Equation 38.

Equation 39.

The integral path equations are
Vv, (K) = K,v, (k)
vV, (K) =v,(k =1V, (k)
Ve (K) =V, (K)+ Vv (k1)

The derivative path equations are
v, (k) = K v, (k)
v, (k) =cv,(k)

Vo (K) =V, (k) =vy (k=1) —vy(k =1)

V3(k) = C2V4(k)

Note that the derivative coefficient c; must be divided by two on initialization.

This

element is typically much larger than ¢, so we enter half its value in the code and multiply

twice. This allows greater numerical range for a given Q-format.

The output path equations are
Vo (K) =V, (k) + Vg (k) + Vv, (k)

V9(k) :umin < V9(k) < umax

U(k) = umax :V9(k) 2 umax
umin :V()(k) < umin
Vi (k) =u(k) _V9(k)

1 v, (K)=0
Vl2(k) ={
0 v, (K) %0

i14(k) = V12(k)
The DCL_PID32 implementation is shown below:

89

Controllers

wk)

Figure 31.

90

K,
é -

— u(k)

DCL PID32 A1 architecture

The linear PID_A1 controller uses a C structure to hold coefficients and data, defined in
the header file DCLC28.h. The order of these structure elements must not be changed
by the user.

3.10.3 Functions

Run the Parallel Form PID32 Controller

Header File:
Source File:
Declaration:

Description:

Parameters:

Return:

DCLC28.h
DCL_PID_At.asm
int32_t DCL_runPID_A1(DCL_PID32 *p, int32_t rk, int32_t yk)

This function executes a parallel form PID controller on the C28x. The function is
coded in C28x assembly. All input and output variables are in Q24 format.

p The PID32 structure
rk The controller set-point reference
yk The measured feedback

The control effort

Controllers

DCL resetPID32

Header File:
Source File:
Declaration:

Description:

Parameters:

Return:

DCL updatePID32

Header File:
Source File:
Declaration:

Description:

Parameters:

Return:

DCL_fupdatePID32

Header File:
Source File:
Declaration:

Description:

Parameters:

Return:

Resets the PID Controller

DCLC28.h
N/A
void DCL_resetPID32(DCL_PID32 *p)

This function resets the internal variables in the DCL_PID32 structure to default
values. The integrator accumulator and store derivative path values are set to
zero, and the integrator clamp variable set to one. The function also sets the err
field in the CSS sub-structure is set NONE. Note that the function is atomic.

p The DCL_PID32 structure
Void

Updates the PID32 Controller Parameters

DCLC28.h
N/A
void DCL_updatePID32(DCL_PID32 *p)

This function tests the sts field in the CSS sub-structure to determine whether a
parameter update is required. If so, the parameters stored in the SPS sub-
structure are copied into the PID structure and sts is cleared. Note that the
function is atomic. Refer to section 2.4 for more information on updating
controller parameters.

p The DCL_PID32 structure
Void

Updates the PID32 Controller Parameters

DCLC28.h
DCL_futils32.asm
void DCL_fupdatePID32(DCL_PID32 *p)

This function tests the sts field in the CSS sub-structure to determine whether a
parameter update is required. If so, the parameters stored in the SPS sub-
structure are copied into the PID32 structure and sts is cleared. This function is
implemented as an assembly module and does not perform any error checking.
Note that the function is atomic. Refer to section 2.4 for more information on
updating controller parameters.

p The DCL_PID32 structure
Void

91

Controllers

3.11 Fixed-Point Pl Controllers

3.11.1 Description

The DCL contains one implementation of a fixed-point series form PI controller. The Pl is
similar in operation to the PID controller, with the removal of the derivative path. Refer to
section 3.2 for more information.

3.11.2 Implementation

The following equations describe the implementation of the P132 controller.
Equation 40. v,(k) =r(k) - y(k)
Equation 41. v, (k) = K vs(k)
Equation 42. v,(k) = K,v, (k)
Equation 43. vy (K) = vy (kK —1)v, (k)
Equation 44. v,(K) = vy (k) +Vv,(k—1)
Equation 45. v (k) = v, (k) + v, (k)
vi(k) . <vi(k)<u_.

*“'min

Equation 46. u(k) = u Vs (k) 2 U,

max

Ui :VS(k) < umin

Equation 47. v,(K) =u(k) —v,(k)
1 v, (k)=0
Equation 48. v, (k) =
0 v, (k) %0

The ideal form Pl implementation is shown below:

92

Controllers

[<p
+ Vi
rhk —— () ——»f % —
vk

Figure 32. DCL_PI A1 architecture

The linear Pl controller uses a C structure to hold coefficients and data, defined in the
header file bc1.c28.h. The order of these structure elements must not be changed by

the user.

3.11.3 Functions

Run the Ideal Form PI32 Controller

Header File:
Source File:
Declaration:

Description:

Parameters:

Return:

Resets the PI Controller

Header File:
Source File:
Declaration:

Description:

DCLC28.h
DCL_PI_A1.asm
int32_t DCL_runPIl_A1(DCL_PI32 *p, int32_t rk, int32_t yk)

This function executes an ideal form PI32 controller on the C28x. The function is
coded in C28x assembly. All input and output variables are in Q24 format.

p The PI32 structure
rk The controller set-point reference
vk The measured feedback

The control effort

DCLC28.h
N/A
void DCL_resetPI132(DCL_PI32 *p)

This function resets the internal variables in the DCL_PI32 structure to default
values. The integrator accumulator and store derivative path values are set to

93

Controllers

zero, and the integrator clamp variable set to one. The function also sets the err
field in the CSS sub-structure is set NONE. Note that the function is atomic.

Parameters: p The DCL_PI32 structure
Return: Void

Updates the PI32 Controller Parameters

Header File: DCLC28.h

Source File: N/A
Declaration: void DCL_updatePI132(DCL_PI32 *p)

Description: This function tests the sts field in the CSS sub-structure to determine whether a
parameter update is required. If so, the parameters stored in the SPS sub-
structure are copied into the PID structure and sts is cleared. Note that the
function is atomic. Refer to section 2.4 for more information on updating
controller parameters.

Parameters: p The DCL_PI32 structure
Return: Void

Updates the PI32 Controller Parameters

Header File: DCLC28.h

Source File: DCL_futils32.asm
Declaration: void DCL_fupdatePI32(DCL_PI32 *p)

Description: This function tests the sts field in the CSS sub-structure to determine whether a
parameter update is required. If so, the parameters stored in the SPS sub-
structure are copied into the PI32 structure and sts is cleared. This function is
implemented as an assembly module and does not perform any error checking.
Note that the function is atomic. Refer to section 2.4 for more information on
updating controller parameters.

Parameters: p The DCL_PI32 structure
Return: Void

3.12 Gain Scheduler Module
3.12.1 Description

The DCL contains an implementation of a basic Gain Scheduler Module (GSM) which
runs on the FPU32. The GSM works by dividing the positive normalized input range, from

94

Controllers

Figure 33.

0 to +1, into eight equal sectors, each of which is associated with a separate gain. The
negative input range, from 0 to -1, has the same gains but with a sign change.

As the input sweeps through the full range from -1 to +1, the output changes in a way
determined by the entries in two look-up tables loaded by the user. One table fixes the
gain in each sector, while the other fixes the offsets at the sector boundaries. In this way,
the user may realize a piecewise continuous non-linear input-output function without
introducing step discontinuities into the control.

3.12.2 Implementation

The sector gain look-up table consists of eight entries covering the normalized positive
input range. The sector offset table consists of nine entries, with the first entry set to zero,
and the final entry defining the output when the input is equal to 1. Figure 33 shows the
sector numbering used in the GSM for a typical target curve. Sectors, gains, and offsets
are denoted S, m, and c respectively. Note the symmetry for positive and negative inputs,
and the clamp characteristic on the upper right when the input magnitude exceeds 1.

VA
cs —
mg
c7 —

my

c6 —

S

C5 —

ms

Ss

-X1 -Xo St = - s,

\

I
[
o

—]
.
-
5%
.
.
s
}g%
:
.
B
oY

— -Co
o

DCL_GSM sector numbering

A typical scenario is that the user will identify a target function from which the GSM curve
will be loaded. The user will load each of the nine offsets in the SPS sub-structure from
the target function, then call the function DCL loadGSMgains () to initialize the gain
table. Once this is done, the SPS tables can be copied into the active parameter set
using the DCL updateGSM () function. Refer to code example 7 in chapter 5 to see how
this might be done.

The Matlab script file GSM example.m can be found in the \models sub-directory and
demonstrates how the gain and offset tables are initialized. Note that due to array

95

Controllers

indexing differences between Matlab and C, sector initialization is slightly different to the
DCL code.

3.12.3 Functions

DCL_runGSM_C1

Run the Gain Scheduler Module

96

Header File: DCLF32.h

Source File: N/A

Declaration: float32_t DCL_runGSM_C1(DCL_GSM *p, float32_t x)

Description: This function runs the gain scheduler to determine an output from the gain and
offset arrays in the DCL_GSM structure. The function is coded in in-line C.

Parameters: p The DCL_GSM structure
X The normalized input

Return: The gain adjusted output

DCL _resetGSM

Resets the GSM Module

Header File: DCLF32.h

Source File: N/A

Declaration: void DCL_resetGSM(DCL_GSM *p)

Description: This function resets the internal variables in the DCL_GSM structure to default
values. All gain segments are set to unity gain and the offset array configured to
generate a linear input/output relationship. The function also sets the err field in
the CSS sub-structure set NONE. Note that the function is atomic.

Parameters: p The DCL_GSM structure

Return: Void

DCL_updateGSM

Updates the GSM Parameters

Header File: DCLF32.h

Source File: N/A

Declaration: void DCL_updateGSM(DCL_GSM *p)

Description: This function tests the sts field in the CSS sub-structure to determine whether a

parameter update is required. If so, the parameters stored in the SPS sub-
structure are copied into the active DCL_GSM structure and sts is cleared. Note

Controllers

Parameters:

Return:

Updates the GSM Controller Parameters

Header File:
Source File:
Declaration:

Description:

Parameters:

Return:

DCL _loadGSMoffsets Loads the GSM Offset Parameters

Header File:
Source File:
Declaration:

Description:

Parameters:

Return:

DCL_loadGSMgains Loads the GSM Gain Parameters

Header File:
Source File:
Declaration:

Description:

that the function is atomic. Refer to section 2.4 for more information on updating
controller parameters.

p The DCL_GSM structure
Void

DCLF32.h
DCL_futils.asm
void DCL_fupdateGSM(DCL_GSM *p)

This function tests the sts field in the CSS sub-structure to determine whether a
parameter update is required. If so, the parameters stored in the SPS sub-
structure are copied into the GSM structure and sts is cleared. Note that the
function is atomic. Refer to section 2.4 for more information on updating
controller parameters. The function is implemented as an assembly module.

p The DCL_GSM structure
Void

DCLF32.h
N/A
void DCL_loadGSMoffsets(DCL_GSM *p)

This function configures the offset array in the SPS sub-structure to produce a
piecewise continuous input-output curve from the gains. The active parameters
are not affected until the DCL._updateGsM () function is called.

p The DCL_GSM structure
Void

DCLF32.h
N/A
void DCL_loadGSMgains(DCL_GSM *p)

This function configures the gain array in the SPS sub-structure to produce a
piecewise continuous input-output curve from the offsets. The active parameters
are not affected until the DCL._updateGsM () function is called.

97

Controllers

Parameters: p The DCL_GSM structure
Return: Void

3.13 Non-linear Control Law

3.13.1 Description

The DCL contains an implementation of the non-linear control law used in the NLPID &
NLPI controller described earlier in this section. The user could apply this function to
implement a gain scheduling type of control.

3.13.2 Implementation

Refer to section 3.3.1 for information on the non-linear law.

3.13.3 Functions

Run the NLF Control Law

Header File: DCL_NLPID.h

Source File: N/A
Declaration: float32_t DCL_runNLF_C1(float32_t x, float32_t alpha, float32_t delta)

Description: This function executes a non-linear control law defined by the parameters in the
DCL_NLF structure. No error checks are performed on the parameters. The
function is coded in inline C.

Parameters: X The input variable
alpha The non-linear exponent
delta The linear region semi-width

Return: The non-linear result

3.14 Double Precision PID Controllers

3.14.1 Description

The DCL contains one implementation of a linear PID controller in double precision
floating point form. This controller may be used with the FPU32 CPU, however support
for the double precision data type currently relies on the run time support libraries which
are not cycle efficient. The structure of the controller is identical to the PID_C1 & PID_C2
controllers described earlier in this chapter. Support functions for PIDF64 do not currently
include the ability to load the controller from transfer function coefficient or ZPK3
descriptions.

98

Controllers

3.14.2 Implementation

The controller is supplied in inline C source. Refer to section 3.1.2 for further information.

3.14.3 Functions

Run the PIDF64 Controller

Header File:
Source File:

Declaration:

Description:

Parameters:

Return:

Resets the PIDF64 Controller

Header File:
Source File:
Declaration:

Description:

Parameters:

Return:

Updates the PIDF64 Controller Parameters

Header File:

Source File:

Declaration:

DCLF64.h
N/A

float64_t DCL_runPIDF64_S1(DCL_PIDF64 *p, float64_t rk, float64_t yk,
float32_t Ik)

This function executes an ideal form PIDF64 controller on the FPU32, and is
identical in structure and operation to the C1 & C2 forms. The function is coded in
inline C.

p The DCL_PIDF64 structure

rk The controller set-point reference
yk The measured feedback

Ik External output clamp flag

The control effort

DCLF64.h
N/A
void DCL_resetPIDF64(DCL_PIDF64 *p)

This function resets the internal variables in the DCL_PIDF64 structure to default
values. The integrator accumulator and store derivative path values are set to 0.0,
and the integrator clamp variable set to 1.0. The function also sets the err field
in the CSS sub-structure to NONE. Note that the function is atomic.

p The DCL_PIDF64 structure
Void

DCLF64.h
N/A
void DCL_updatePIDF64(DCL_PIDF64 *p)

99

Controllers

Description:

Parameters:

Return:

Set the PIDF64 Derivative Filter Bandwidth

Header File:
Source File:
Declaration:

Description:

Parameters:

Return:

Set the Active PIDF64 Derivative Filter Bandwidth

Header File:
Source File:

Declaration:

Description:

Parameters:

Return:

Get the PIDF64 Derivative Filter Bandwidth

Header File:

100

This function tests the sts field in the CSS sub-structure to determine whether a
parameter update is required. If so, the parameters stored in the SPS sub-
structure are copied into the PIDF64 structure and sts is cleared. Note that the
function is atomic. Refer to section 2.4 for more information on updating
controller parameters.

p The DCL_PIDF64 structure
Void

DCLF64.h
N/A
void DCL_setPIDF64filterBW(DCL_PIDF64 *p, float64 t fc)

Loads the derivative filter coefficients c1 & <2 in the SPS based on the desired
filter bandwidth specified in Hz. Coefficients in the active parameter set are
unaffected until the controller is updated using DCL_updatePIDF64().

p The DCL_PIDF64 structure
fc The desired filter bandwidth in Hz
Void

DCLF64.h
N/A
void DCL_setActivePIDF64filterBW(DCL_PIDF64 *p, float64_t fc, float64_t T)

Loads the derivative filter coefficients c1 & <2 in the active PIDF64 structure
based on the desired filter bandwidth specified in Hz and the controller update
date in seconds. This function does not use or modify the SPS.

p The DCL_PIDF64 structure

fc The desired filter bandwidth in Hz

T The controller update rate in seconds
Void

DCLF64.h

Controllers

Source File:
Declaration:

Description:

Parameters:

Return:

N/A
float64_t DCL_getPIDF64filterBW(DCL_PIDF64 *p)

Finds the bandwidth of the current derivative filter in Hz by examining the
coefficients in the active parameter set (i.e. not the SPS).

p The DCL_PIDF64 structure

The active derivative filter bandwidth in Hz

3.15 Double Precision DF22 Compensators

3.15.1 Description

From version 3.4, the DCL contains support for the DF22 compensator in double precision
floating point. The controller architecture is identical to that described in section 3.8 so
the details need not be repeated here. One full controller and a pair of functions to
support a pre-computed controller are implemented. There are also ‘reset’ and ‘update’
functions, and a double precision clamp function (see section 4.1). Other single precision
functions to support coefficient calculation are not implemented at this time.

3.15.2 Implementation

The controller is supplied in inline C source. Refer to section 3.1.2 for further information.

3.15.3 Functions

Run the DF22F64 Controller

Header File:
Source File:
Declaration:
Description:

Parameters:

Return:

Run the Immediate DF22F64 Compensator

Header File:

Source File:

DCLF64.h

N/A

float64_t DCL_runDF22F64_S1(DCL_DF22F64 *p, float64_t ek)
This function executes a full DF22 compensator on the FPU64
p The DCL_DF22F64 structure

ek The input error

The control effort

DCLF64.h
N/A

101

Controllers

102

Declaration:
Description:

Parameters:

Return:

Run the Partial DF22F64 Compensator

Header File:
Source File:
Declaration:

Description:

Parameters:

Return:

Resets the DF22F64 Controller

Header File:
Source File:

Declaration:

Description:

Parameters:

Return:

Updates the DF22F64 Controller Parameters

Header File:
Source File:
Declaration:

Description:

float64_t DCL_runDF22F64 S2(DCL_DF22F64 *p, float64 t ek)

This function computes the immediate part of the pre-computed DF22 controller.
p The DCL_DF22F64 structure

ek The servo error

The control effort

DCLF64.h
N/A
void DCL_runDF22F64_S3(DCL_DF22F64 *p, float64 _t ek, float64_t uk)

This function computes the partial result of the pre-computed DF22F64 controller.

p The DCL_DF22F64 structure
ek The servo error
uk The control effort in the previous sample interval

The control effort

DCLF64.h
N/A
void DCL_resetDF22F64(DCL_DF22F64 *p)

This function resets the internal variables in the DCL_DF22F64 structure to
default values. Note that the function is atomic.

p The DCL_DF22F64 structure
Void

DCLF64.h
N/A
void DCL_updateDF22F64(DCL_DF22F64 *p)

This function tests the sts field in the CSS sub-structure to determine whether a
parameter update is required. If so, the parameters stored in the SPS sub-

Controllers

structure are copied into the DF22F64 structure and sts is cleared. Note that the
function is atomic. Refer to section 2.4 for more information on updating
controller parameters.

Parameters: p The DCL_DF22F64 structure
Return: Void

103

Utilities

Chapter 4

Utilities

This chapter describes the supporting functions included in the Digital Control Library.

Section

4.1 Control Clamps

4.2 Floating Point Data Logging Functions
4.3 4-channel Floating Point Data Logger
4.4 Transient Capture Module

4.5 Performance Measurement

4.6 Fixed Point Data Logging Functions

The Digital Controller Library includes a small number of utilities intended to support use
of the library. These include:

e Clamp functions for the CPU and CLA

e Floating point data logging functions

o A 4-channel floating point data logger

e A Transient Capture Module

e Functions for measurement of control performance
e Fixed point data logging functions

o A 4-channel fixed point data logger

o A reference generator

The reference generator module is documented in a separate user’s guide which can
be found in the \docs sub-directory of the DCL installation path.

4.1 Control Clamps
4.1.1 Description

The library contains three functions for clamping a control variable to specified upper and
lower limits. These would typically be used to impose a pre-defined bound the output of a

104

Utilities

controller function to prevent actuator saturation or overload. Saturation in a control loop
must be handled with care since control of the system is effectively lost. Furthermore,
controllers which implement integration of historical servo data can exhibit a phenomenon
known as “wind-up”, in which the controller output increases in magnitude while the loop
is saturated. This condition leads to delay in recovering from the saturation because the
accumulated controller output must be removed before it comes within range of the
actuator and the controller resumes proper operation. For more information on integrator
wind-up, refer to section 3.1.1 and ref. [3].

The clamp functions bound the input data variable to pre-determined limits and return a
logical value 1 if either bound is matched or exceeded. If the input data lies definitely
within limits (i.e. neither bound is matched or exceeded) the functions return logical 0.
The return value can be used by Pl & PID regulators to implement anti-windup reset, and
may be used to clamp the output of the pre-computed forms of all direct form
compensators. An example may be found in the DF22 example project supplied with the
library (see chapter 5).

A difference exists between the C28x clamp function and that of the CLA. On the CPU
the returned value is an unsigned integer of either 0 or 1, while the corresponding CLA
function returns a floating point value of 0.0f or 1.0f. This is because the handling of fixed-
point data on the CLA is less efficiently supported than on the main CPU.

4.1.2 Functions

Floating-Point Data Clamp

Header File: ~ DCLF32.h

Source

File: DCL_clamp_C1.asm

Declaration: int16_t DCL_runClamp_C1(float *data, float Umax, float Umin)

Description: This function clamps a floating-point data value to defined limits and returns a

non-zero integer if either limit is matched or exceeded. The input data is modified
by the function. The function is coded in assembly.

Parameters: data Pointer to the input data
Umax The upper data limit
Umin The lower data limit

Return:

DCL_runClamp_C2 Floating-Point Data Clamp

0 if the data lies definitely within limits, 1 if the data matches or exceeds the limits.

Header File: DCLF32.h

Source

File: N/A

Declaration: int16_t DCL_runClamp_C2(float *data, float Umax, float Umin)

105

Utilities

106

Description:

Parameters:

Return:

Floating-Point Data Clamp

Header File:
Source File:
Declaration:

Description:

Parameters:

Return:

Floating-Point Data Clamp

Header File:
Source File:
Declaration:

Description:

Parameters:

Return:

This function clamps a floating-point data value to defined limits and returns a
non-zero integer if either limit is matched or exceeded. The input data is modified
by the function. The function is coded in inline C.

data Pointer to the input data
Umax The upper data limit
Umin The lower data limit

0 if the data lies definitely within the specified limits; 1 if the data matches or
exceeds the specified limits.

DCLCLA.h
DCL_clamp_L1.asm
float DCL_runClamp_L1(float *data, float Umax, float Umin)

This function clamps a floating-point data value to defined limits and returns a
non-zero floating-point result if either limit is matched or exceeded. The function
is coded in CLA assembly.

data The input data
Umax The upper data limit
Umin The lower data limit

0.0f if the data lies definitely within the specified limits; 1.0f if the data matches or
exceeds the specified limits.

DCLF64.h
N/A
int16_t DCL_runClamp_S1(float64_t *data, float64 t Umax, float64_t Umin)

This function clamps a double precision floating-point data value to defined limits
and returns a non-zero integer if either limit is matched or exceeded.

data The input data
Umax The upper data limit
Umin The lower data limit

0 if the data lies definitely within the specified limits; 1 if the data matches or
exceeds the specified limits.

Utilities

Figure 34.

4.2 Floating Point Data Logging Functions

4.2.1 Description

The Digital Control Library includes a general purpose floating-point data logger utility
which is useful when testing and debugging control applications. The intended use of the
data logger utility is to capture a stream of data values in a block of memory for
subsequent analysis. The data logger is supplied in the form of a C header file and one
assembly file, and it may be used on any C2000 device irrespective of whether the DCL is
used. The utility may not be used on the CLA.

The data logger operates with arrays of 32-bit floating-point data. The location, size, and
indexing of each array are defined by three pointers capturing the start address, end
address, and data index address. All three pointers are held in a common C structure
with the data type “FDLOG?”, defined as follows:

typedef volatile struct {
float *fptr;
float *lptr;
float *dptr;

} FDLOG;

Conceptually, the relationship between the array pointers and the elements of a data
array of length “N” is shown below:

log.fptr ——» data(0)

data(1)

data(2)

data(3)

data(k-1)

log.dptr ——» data(k)

data(k+1)

data(N-2)

log.lptr ——» data(N-1)

Data log pointer allocation

The data index pointer (dptr) always points to the next address to be written or read, and
advances through the memory block as each new data value is written into the log. On
reaching the end of the log, the pointer is reset to the first address in the log. The data
logger header file contains a set of in-line C functions to access and manipulate data logs.

107

Utilities

To use the data logger, you must include the header file DCL fdlog.h in your project.
Typically, a user would create an instance of an FDLOG structure as follows:

FDLOG myBuf = FDLOG DEFAULTS;

The log pointers can then be initialized in the user’s code such that they reference a
memory block in a specific address range. Thereafter, the code can clear or load the
buffer a specific data value, and then begin writing data into it using the
DCL_writeLog () function. The DF22 example project shows how this is done.

The DCL also contains two functions which perform fast read and write to a data log.
These are assembly coded functions in the source file DCL frwlog.asm. The execution
cycles for these and the corresponding C coded DCL functions are shown below:

Table 13. Data log read/write benchmarks
DCL_writeLog 48
DCL_readlLog 39
DCL_fwriteLog 22
DCL_freadlog 22

4.2.2 Functions

DCL_deleteLog Delete a Data Log

Header File: DCL _fdlog.h

Source File: N/A
Declaration: void DCL_deleteLog(FDLOG *p)

Description: This function resets all structure pointers to null value.
Parameters: p The FDLOG structure
Return: Void

Header File: DCL_fdlog.h

Source File: N/A

Declaration: void DCL_resetLog(FDLOG *p)

Description: This function resets the data index pointer to start of the data log.
Parameters: p The FDLOG structure

Return: Void

108

Utilities

DCL _initLog Initialize a Data Log Structure

Header File:
Source File:
Declaration:

Description:

Parameters:

Return:

DCL_writeLog Write Data into a Log

Header File:
Source File:
Declaration:

Description:

Parameters:

Return:

Fill a Data Log with Specified Data

Header File:
Source File:
Declaration:

Description:

Parameters:

DCL _fdlog.h
N/A
void DCL_initLog(FDLOG *p, float32_t *addr, uint16_t size)

This function assigns the buffer pointers to a memory block or array and sets the
data index pointer to the first address.

p The FDLOG structure

addr The start address of the memory block

size The length of the memory block in 32-bit words
Void

DCL_fdlog.h
N/A
float DCL_writeLog(FDLOG *p, float32_t data)

This function writes a data point into the buffer and advances the indexing pointer,
wrapping if necessary. The function returns the data value being over-written,
which allows simple implementation of a fixed-length delay line.

p The FDLOG structure
data The input data value addr

The over-written data value

DCL _fdlog.h
N/A
void DCL_fillLog(FDLOG *p, float32_t data)

This function fills the data log with a given data value and resets the data index
pointer to the start of the log.

p The FDLOG structure

data The fill data value

109

Utilities

DCL _clearLog

110

Return:

Header File:
Source File:
Declaration:

Description:

Parameters:

Return:

DCL readlLog

Header File:
Source File:
Declaration:

Description:

Parameters:

Return:

DCL_copylLog

Header File:
Source File:
Declaration:

Description:

Parameters:

Return:

Void

Fill a Data Log Contents with Zero

DCL_fdlog.h
N/A
void DCL_clearLog(FDLOG *p)

This function clears the buffer contents by writing 0 to all elements and resets the
data index pointer to the start of the log.

p The FDLOG structure
Void

Fill a Data Log Contents with Zero

DCL_fdlog.h
N/A
float32_t DCL_readLog(FDLOG *p)

This function reads a data point from the buffer and then advanced the index
pointer, wrapping if necessary.

p The FDLOG structure

The indexed data value

Copies one Data Log into Another

DCL_fdlog.h
N/A
void DCL_copyLog(FDLOG *p, FDLOG *q)

This function copies the contents of one log into another and resets both buffer
index pointers. The function assumes both logs have the same length.

p The destination FDLOG structure
q The source FDLOG structure
Void

Utilities

Performs Fast Read from a Data Log

Header File:
Source File:

Declaration:

Description:

Parameters:

Return:

DCL_fwriteLog Performs Fast Write into a Data Log

Header File:
Source File:
Declaration:

Description:

Parameters:

Return:

DCL _fdlog.h
DCL_frwlog.asm
float32_t DCL_freadLog(FDLOG *p)

This function reads a data point from the log and then advances the indexing
pointer, wrapping if necessary. This function is coded in assembly.

p The FDLOG structure

The indexed data value

DCL_fdlog.h
DCL_frwlog.asm
float32_t DCL_fwriteLog(FDLOG *p, float32_t data)

This function writes a data point into the buffer and advances the indexing pointer,
wrapping if necessary. Returns the over-written data value for delay line or FIFO
implementation. This function is coded in assembly.

p The FDLOG structure
data The input data value

The over-written data value

4.3 4-channel Floating Point Data Logger

4.3.1 Description

The Digital Control Library contains a 4 channel floating point data logger module denoted
“MLOG”. This module uses the data logger functions described above to capture up to
four channels of incoming data in separate buffers for later inspection. The MLOG
module is trigged by a sample at its first input exceeding either of a pair of user defined
thresholds, after which incoming samples are successively logged into each buffer until
they are full. A useful feature of the MLOG module is that the sampling rate can be
adjusted by the user to change the time scale of the capture frame.

Conceptually, the MLOG architecture consists of four floating point data capture frames,
each of which is a buffer defined by an FDLOG structure. The input to each buffer passes
through a sample scaler, which divides the sample rate by a user programmable integer.
Sampling is initiated when data at the first input exceeds a pre-defined upper or lower
limit, after which the four data samples are logged into the capture frames at the desired
rate until the buffers are full.

Note that the MLOG modules will be removed in version 4.0 of the DCL.

111

Utilities

Figure 35.

112

&data[3] } captFrame[3] ‘
(o)

&data[2] % } captFrame[2] ‘
)
Q
o

&data[1] g [captFrame[1]
(%]

&data[0] } captFrame[0] ‘

Trigger
Detection
MLOG architecture

The MLOG module always operates in one of five modes:
e MLOG idle
e MLOG armed
e MLOG capture
e MLOG complete

The operating mode is stored in an element in the MLOG structure. All floating point
MLOG functions are coded in inline C functions in the header file MLOG.h. Note that the
DCL includes a separate fixed point 4-channel data logger which is described later in this
chapter.

The MLOG module is defined by a C structure as follows:

typedef volatile struct {
FDLOG captFrame [MLOG CHANS]; //!< Capture data frames
float32_t *data[MLOG_CHANS]; //!< Data channel pointers

float32 t trigMax; // 1< Upper trigger threshold
float32 t trigMin; // 1< Lower trigger threshold
uintlé t tScale; //!'< Number of samples/write
uintl6 t sCount; //!< Sample counter
uintl6 t mode; //!< Operating mode

} MLOG;

4.3.2 Functions

Initialize the MLOG Module

Header File: DCL_MLOG.h

Source File: N/A
Declaration: void DCL_initMLOG(MLOG *q, float32_t *addr, uint16_t size, float32_t tmax,

float32_t tmin, uint16_t div)

Utilities

Description:

Parameters:

Return:

Reset the MLOG Module

Header File:
Source File:
Declaration:

Description:

Parameters:

Return:

Arm the MLOG Module

Header File:
Source File:
Declaration:

Description:

Parameters:

Return:

This function loads all buffer contents with zero, and resets all buffer data pointers
to their respective start addresses. The upper and lower trigger thresholds, and
sample time scale are loaded into the MLOG structure. On completion, the
MLOG module is in MLOG idle mode. The MLOG module will be removed in
v4.0 of the library.

q The MLOG structure

addr Pointer to the start address of the MLOG buffers
size The size in 32-bit words of each buffer

tmax The upper trigger threshold

tmin The lower trigger threshold

div The sample scaler

Void

DCL_MLOG.h
N/A
void DCL_resetMLOG(MLOG *q)

This function loads all buffer contents with zero, and resets all buffer data pointers
to their respective start addresses. On completion, the MLOG module is in
MLOG _idle mode. The MLOG module will be removed in v4.0 of the library.

q The MLOG structure
Void

DCL_MLOG.h
N/A
void DCL_armMLOG(MLOG *q)

This function changes the MLOG operating mode from MLOG idle to
MLOG armed. If the operating mode is not already MLOG idle when the
function is called, it sets the mode to MLOG idle. The MLOG module will be
removed in v4.0 of the library.

q The MLOG structure
Void

113

Utilities

Run the MLOG Module

Header File: DCL_MLOG.h

114

Source File: N/A
Declaration: void DCL_runMLOG(MLOG *p)
Description: This function runs the MLOG module. If in the MLOG_armed mode, the MLOG

monitors its first input to determine whether either threshold has been exceeded.
If so, the module enter MLOG capture mode and sample collection begins.
When the buffers are full, the operating mode is set to MLOG _complete. The
MLOG module will be removed in v4.0 of the library.

Parameters: q The MLOG structure

Void

4.4 Transient Capture Module

The Transient Capture Module (TCM) is a triggered data logger which captures a burst of
incoming data. A typical use is the capture of a transient response following a step input
to a control system. The trigger conditions are a pair of user defined limits on the
incoming data. The capture process is triggered by the first data point which exceeds
either limit.

A feature of the TCM is that it captures a programmable length lead frame, allowing the
user to inspect conditions immediately prior to the trigger condition. This is accomplished
with three FDLOG structures which are elements in the TCM data structure, together with
the limit pair. Once initialized, the status of the TCM is captured in one of four
enumerated operating modes:

e TCM_idle
e TCM armed
e TCM capture
e TCM _complete
The TCM data is contained in a C structure as shown below:

typedef volatile struct {
FDLOG moniFrame; //!< Monitor data frame
FDLOG leadFrame; //!< Lead data frame
FDLOG captFrame; //!< Capture data frame

float trigMax; //'< Upper trigger threshold

float trigMin; //'< Lower trigger threshold

uintl6 t mode; // 1< Operating mode

uintlé t lead; //!< Lead frame size in 32-bit words
} TCM;

The current mode is available in the mode element in the TCM structure. To use the
TCM, the user must do the following:

Utilities

1. Include the header file TCM.h in the project.

o o M 0D

complete.

Arm the TCM using DCL_armTCM ()

Log data into the TCM using DCL_runTCM ()

Allocate a RAM memory block to hold the full capture buffer.

Create an instance of the TCM structure and initialize it using DCL_initTCM ()

Monitor the mode element in the TCM structure to determine when the capture is

A code example illustrating the use of the TCM is supplied with the library and is

described in chapter 5.

In the following diagrams, lead, capture, and monitor frames are indexed using the
FDLOG structures x, y, & z respectively (note that these are not the names used in the
TCM structure). FDLOG pointers are color coded blue, green, and red, respectively. To
help visualize the sequence of events, the diagram shows in light gray the data which will
eventually be logged into the TCM, and in blue the current frame contents in each mode.

4.4.1 TCM_idle Mode

In TCM_idle mode the TCM buffers are as shown below. All buffer contents are zero, all
frame data pointers are at the start of their respective frames and no data is being logged.
This is the condition after the DCL_initTCM () function has been called.

WO K o

[

-
-

Capture Frame

Monitor
Frame

Umax —

Umin —|

v

! 1

x.fptr X.Iptr

x.dptr

y.fptr
y.dptr

Figure 36. TCM operation in TCM_idle mode

4.4.2 TCM_armed Mode

The TCM is armed by a call to DCL armTCM().

!

z.fptr
z.dptr

v

T

z.Iptr

x.Iptr

In this mode, incoming data is

continually logged in the monitor frame. The monitor frame acts as a circular buffer, the
index pointer wrapping to the start of the monitor frame when it reaches the end.

115

Utilities

Each data point is compared with the upper and lower trigger thresholds to determine
whether to initiate a capture sequence. As long as the incoming data remains within the
specified limits, the TCM remains in TCM_armed mode.

Lead Monit
t onitor
v A Frame Frame
P

Capture Frame

-
-

Y

Umax -

Unin - l— _
! 1 P11

x.fptr X.Iptr zfptr z.dptr zlptr
x.dptr
y.fptr X.Iptr
y.dptr
Figure 37. TCM operation in TCM_armed mode

4.4.3 TCM_capture Mode

The first data point which exceeds either trigger threshold initiates a capture sequence.
The TCM automatically enters TCM_capture mode and incoming data is logged into the
capture frame. Meanwhile, the monitor frame stops collecting data and starts to un-wind
its contents into the lead frame. Notice that the monitor frame contains the lead data
sequence, but the starting point is not aligned with the frame.

116

Utilities

Figure 38.

Figure 39.

Lead
MU A Frame
(P

Monitor
Frame

Capture Frame

\

A

Umax —

Umin —

——

=

x.fptr x.dptr X.Iptr

1

y.fptr y.dptr

Il

z.fptr z.dptr zlptr

1

X.Iptr

TCM operation in capture mode (monitor frame un-winding)

Once the lead frame is full, the monitor frame stops copying out its data. Incoming data
continues being logged into the capture frame until it is full. The monitor frame contents
have now been completely loaded into the lead frame and will be over-written.

O W
[P

Monitor
Frame

Capture Frame

\J

umax -
Umin —
-
x.fptr x.Iptr zfptr z.dptr Z.lptr
x.dptr
T T - T
y.fptr y.dptr X.Iptr

TCM operation in TCM_capture mode (lead frame complete)

117

Utilities

4.4.4 TCM_complete Mode

Once the capture frame is full, data logging stops and the TCM enters TCM_complete
mode. The capture frame pointers are adjusted to span the entire TCM buffer.

Lead Monitor
t
nn A Frame Frame
[

/\ Capture Frame

- »
) \/\/\V

Umax —

Umin —

x.fptr X.Iptr z fptr z.dptr Z.Iptr
x.dptr
y.fptr x.Iptr
y.dptr
Figure 40. TCM capture complete

The buffer contents may now be read out using DCL readLog () or DCL freadLog ().

4.4.5 Functions

Initialize the TCM

Header File: DCL_TCM.h

Source File: N/A
Declaration: void DCL_initTCM(TCM *q, float *addr, uint16_t size, uint16_t lead,
float tmin, float tmax)

Description: This function resets the TCM module. All buffer contents are loaded with zero,
and the operating mode is set to “TCM_idle”.

Parameters: q The TCM structure
addr The start address of the memory block
size The size of the memory block in 32-bit words
lead The length of the lead frame in samples

tmin The upper trigger threshold

118

Utilities

Return:

DCL resetTCM

Header File:
Source File:
Declaration:

Description:

Parameters:

Return:

DCL_armTCM

Header File:
Source File:
Declaration:

Description:

Parameters:

Return:

DCL_runTCM

Header File:
Source File:
Declaration:

Description:

Parameters:

Return:

tmax The lower trigger threshold

Void

Reset the TCM

DCL_TCM.h
N/A
void DCL_resetTCM(TCM *q)

This function resets the TCM. The contents of the capture frame are loaded with
zero. All data log pointers are re-initialized, and the operating mode is set to
TCM_idle.

q The TCM structure
Void

Arm the TCM

DCL_TCM.h
N/A
uint16_t DCL_armTCM(TCM *q)

If the current TCM mode is TCM_idle, this function changes it to TCM_armed,
otherwise it is unchanged.

q The TCM structure

The current operating mode

Run the TCM

DCL_TCM.h

N/A

uint16_t DCL_runTCM(TCM *q, float data)
Runs the TCM module.

data The input data

q The TCM structure

The current operating mode

119

Utilities

4.5 Performance Measurement

4.5.1 Description

The Digital Control Library includes functions for the computation of control performance.
All functions are based on discrete integration over a fixed interval of a variable
representing servo error. The result is a non-negative scalar representing the quality of
control: the smaller the result, the better the control. The figure below shows conceptually
the transient servo error during a typical transient response.

W) Transient error
A e(ty) = r(to) = ¥(to)

=

Figure 41. Transient servo error
There are three performance measures available in the library:
e The IES performance index is based on the square of the servo error. For an

interval of N samples, with loop reference r and feedback y, the IES index (Ps) is
computed as follows.

N
Equation 49. Pes = (r(k)—y(k))’
P

e The IAE performance index is based on the absolute value of the servo error. For
an interval of N samples, with loop reference r and feedback y, the IAE index
(Piag) is computed as follows.

N
Equation 50. Pe = Z| r(k)—y(K)|
pan

e The ITAE performance index is based on the time weighted absolute value of the
servo error. For an interval of N samples, with loop reference r and feedback v,
the ITAE index (Pirag) is computed as follows.

N
Equation 51. P = > K| r(K)—=y(K)|
=

120

Utilities

Each index is available in two forms: one coded in assembly, the other in inline C. The
computation time will depend on the length of the error log, but the assembly functions will
always be significantly faster.

The following table shows cycle count benchmarks for each function, for a buffer of N data
points. Cycle counts include function calling overhead from C.

Table 14. Performance index function benchmarks

Function Cycles

IES_C1 24 + 6N

IES_C2 73 + 30N

IAE_C1 24 + 6N

IAE_C2 72 + 24N

ITAE_C1 26 +7N

ITAE_C2 77 + 31N

4.5.2 Functions

Compute the IES Performance Index

Header File:
Source File:
Declaration:

Description:

Parameters:

Return:

Compute the IES Performance Index

Header File:
Source File:
Declaration:
Description:
Parameters:

Return:

DCL_TCM.h
DCL_index.asm
float DCL_runlES_C1(FDLOG *elLog)

This function computes an IES performance index using the servo error data in a
given memory block. The function is coded in assembly.

elLog The servo error data log

The IES index

DCL_TCM.h

N/A

float DCL_runlES_C2(FDLOG *elLog)

This function is equivalent to DCL_runlES_C1, but is coded in inline C.
elLog The servo error data log

The IES index

121

Utilities

DCL_runlAE_C1

122

Header File:
Source File:
Declaration:

Description:

Parameters:

Return:

DCL _runlAE_C2

Header File:

Source File:
Declaration:

Description:

Parameters:

Return:

DCL_runITAE_C1

Header File:
Source File:
Declaration:

Description:

Parameters:

Return:

DCL_runiTAE_C2

Header File:
Source File:

Declaration:

Compute the IAE Performance Index

DCL_TCM.h
DCL_index.asm
float DCL_runlAE_C1(FDLOG *elLog)

This function computes an IES performance index using the servo error data in a
given memory block. The function is coded in assembly.

elLog The servo error data log

The IAE index

Compute the IAE Performance Index

DCL_TCM.h

N/A

float DCL_runlAE_C2(FDLOG *elLog)

This function is equivalent to DCL_runlAE_C1, but is coded in inline C.
elog The servo error data log

The IAE index

Compute the ITAE Performance Index

DCL_TCM.h
DCL_index.asm
float DCL_runITAE_C1(FDLOG *eLog, float prd)

This function computes an ITAE performance index using the servo error data in a
given memory block. The function is coded in assembly.

elLog The servo error data log
prd The sample period in seconds

The ITAE index

Compute the ITAE Performance Index

DCL_TCM.h
N/A
float DCL_runITAE_C2(FDLOG *eLog, float prd)

Utilities

Description:

Parameters:

Return:

This function is equivalent to DCL_runlTAE_C1, but is coded in inline C.
elLog The servo error data log
prd The sample period in seconds

The ITAE index

4.6 Fixed Point Data Logger Support

4.6.1 Description

The Digital Control Library contains support for fixed point data logging comprising a set
of data buffer functions and a 4 channel data logger module. Both are similar to their
floating point counterparts described earlier in this chapter. For this reason, neither will be
described in detail here. The reader is referred to sections 4.2 and 4.3 for details.

4.6.2 Functions

DCL_deleteLog32 Delete a Data Log

Header File:
Source File:
Declaration:
Description:
Parameters:

Return:

Header File:
Source File:
Declaration:
Description:
Parameters:

Return:

DCL_log32.h

N/A

void DCL_deleteLog32(LOG32 *p)

This function resets all structure pointers to null value.
p The LOG32 structure

Void

DCL_log32.h

N/A

void DCL_resetLog32(LOG32 *p)

This function resets the data index pointer to start of the data log.
p The LOG32 structure

Void

123

Utilities

DCL_initLog32

124

Header File:
Source File:
Declaration:

Description:

Parameters:

Return:

DCL_writeLog32

Header File:
Source File:
Declaration:

Description:

Parameters:

Return:

DCL_fillLog32

Header File:
Source File:
Declaration:

Description:

Parameters:

Return:

Initialize a Data Log Structure

DCL_log32.h
N/A
void DCL_initLog32(LOG32 *p, int32_t *addr, uint16_t size)

This function assigns the buffer pointers to a memory block or array and sets the
data index pointer to the first address.

p The LOG32 structure
addr The start address of the memory block
size The length of the memory block in 32-bit words
Void
Write Data into a Log
DCL_log32.h
N/A

int32_t DCL_writeLog32(LOG32 *p, int32_t data)

This function writes a data point into the buffer and advances the indexing pointer,
wrapping if necessary. The function returns the data value being over-written,
which allows simple implementation of a fixed-length delay line.

p The LOG32 structure
data The input data value address

The over-written data value

Fill a Data Log with Specified Data

DCL_log32.h
N/A
void DCL_fillLog32(LOG32 *p, int32_t data)

This function fills the data log with a given data value and resets the data index
pointer to the start of the log.

p The LOG32 structure
data The fill data value
Void

Utilities

DCL clearLog32

Fill a Data Log Contents with Zero

Header File: DCL_log32.h

Source File: N/A

Declaration: void DCL_clearLog32(LOG32 *p)

Description: This function clears the buffer contents by writing 0 to all elements and resets the
data index pointer to the start of the log.

Parameters: p The LOG32 structure

Return: Void

DCL _readlLog32

Fill a Data Log Contents with Zero

Header File: DCL_log32.h

Source File: N/A

Declaration: int32_t DCL_readLog32(LOG32 *p)

Description: This function reads a data point from the buffer and then advanced the index
pointer, wrapping if necessary.

Parameters: p The LOG32 structure

Return: The indexed data value

DCL_copyLog32

Copies one Data Log into Another

Header File: DCL_log32.h

Source File: N/A

Declaration: void DCL_copyLog32(LOG32 *p, LOG32 *q)

Description: This function copies the contents of one log into another and resets both buffer
index pointers. The function assumes both logs have the same length.

Parameters: p The destination LOG32 structure
q The source LOG32 structure

Return: Void

Initialize the MLOG32 Module

DCL_initMLOG32

DCL_MLOG32.h

Header File:

Source File: N/A

125

Utilities

126

Declaration:

Description:

Parameters:

Return:

Reset the MLOG32 Module

Header File:

Source File:
Declaration:

Description:

Parameters:

Return:

Arm the MLOG32 Module

Header File:
Source File:
Declaration:

Description:

Parameters:

Return:

void DCL_initMLOG32(MLOG32 *q, int32_t *addr, uint16_t size, int32_t tmax,
int32_t tmin, uint16_t div)

This function loads all buffer contents with zero, and resets all buffer data pointers
to their respective start addresses. The upper and lower trigger thresholds, and
sample time scale are loaded into the MLOG32 structure. On completion, the
MLOG32 module is in MLOG32 idle mode. This function is similar to
DCL_initMLOG (). The MLOG32 module will be removed in DCL version 4.0.

q The MLOG32 structure

addr Pointer to the start address of the MLOG32 buffers
size The size in 32-bit words of each buffer

tmax The upper trigger threshold

tmin The lower trigger threshold

div The sample scaler

Void

DCL_MLOG32.h
N/A
void DCL_resetMLOG32(MLOG32 *q)

This function loads all buffer contents with zero, and resets all buffer data pointers
to their respective start addresses. On completion, the MLOG32 module is in
MLOG32 idle mode. This function is similar to DCL resetMLOG(). The
MLOG32 module will be removed in DCL version 4.0.

q The MLOG32 structure
Void

DCL_MLOG32.h
N/A
void DCL_armMLOG32(MLOG32 *q)

This function changes the MLOG32 operating mode from MLOG32_idle to
MLOG32_armed. If the operating mode is not already MLOG32_idle when the
function is called, it sets the mode to MLOG32 jdle. This function is similar to
DCL_armMLOG (). The MLOG32 module will be removed in DCL version 4.0.

q The MLOG32 structure
Void

Utilities

Run the MLOG32 Module

Header File:
Source File:
Declaration:

Description:

Parameters:

Return:

DCL_MLOG32.h
N/A
void DCL_runMLOG32(MLOG32 *p)

This function runs the MLOG32 module. If in the MLOG32 armed mode, the
MLOG32 monitors its first input to determine whether either threshold has been
exceeded. If so, the module enter MLOG32_capture mode and sample collection
begins. When the buffers are full, the operating mode is set to
MLOG32_complete. This function is similar to DCL. runMLOG (). The MLOG32
module will be removed in DCL version 4.0.

q The MLOG32 structure
Void

4.7 Simulation Models

4.7.1 The DCL Block-set

The Digital Controller Library is supplied with a small block-set of Simulink models
prepared using Matlab release r2018b. The block-set may be found in the Simulink file
DCL.slx in the \models sub-directory of the DCL installation path. The following DCL
controllers are represented in the block-set.

e PID_C1

e PID_C3

e PLC1

e PIC3

e PILC5

e PLC7

e NLPID_C1
e DF11_C1
e DF13_C1
e DF22_C1
e DF23_C1

It is important to understand that the blocks capture the functional structure of the
controller and are intended to be used for the purposes of control loop simulation only.
None of the models have been configured for automated C code generation from Simulink
or Matlab. Should the user wish to do this, it is their responsibility to re-configure and
build the model accordingly. Code generation currently lies outside the scope of the DCL.

127

Utilities

128

4.7.2 Simulation Example

An example Simulink model is included with the DCL. The example files are located in
the \models sub-directory of the DCL installation path. To see the example, open and
run the script file DCL._example.m in Matlab.

The script will open a configuration script file PID config.m, which contains the control
loop settings, including the PID controller gains. These will be manually adjusted by the
user each time the example is run. After the configuration is loaded into the Matlab
workspace, the script then loads the input stimulus from the file PID inputs.m. The
user can select the type of stimulus by changing the input config variable near the top
of the example script file.

The example opens the Simulink model PID sim.slx. The example model consists of a
simple feedback control loop using a PID_C1 controller from the DCL block-set. The plant
is a third order transfer function with one LHP zero (see lines 22-30 in the configuration
script file).

The simulation uses configuration parameters and input data in the Matlab workspace,
and saves simulation data back to the workspace. The user may select which data to plot
by setting plot variables in lines 20-25 of the example script. Plotting is performed in the
script file PID plots.m.

The example computes a performance index from the loop error and displays it in the
Matlab command window. This is helpful should the user with to experiment with different
controller parameters to improve performance.

Any data the user wishes to save is stored in data files in the \models sub-directory.
Each data file contains a Tl header line which facilitates loading the data onto a C2000
target device.

4.8 Double Precision Data Logging Functions

4.8.1 Description

The Digital Control Library contains a double precision floating-point data logger. Apart
from data type, the data logger is similar to that described in section 4.2. The data logger
is supplied in the form of a C header file and may be used on any C2000 device
irrespective of whether the DCL is used. The data logger is not compatible with the CLA.

The data logger operates with arrays of 64-bit floating-point data. The location, size, and
indexing of each array are defined by three pointers capturing the start address, end
address, and data index address. All three pointers are held in a common C structure
with the data type “FDLOG64”, defined as follows:

typedef volatile struct {
float64d t *fptr;
float64 t *1lptr;
float64 t *dptr;

} FDLOG64;

Conceptually, the relationship between the array pointers and the elements of a data
array of length “N” is shown below:

Utilities

Figure 42.

Table 15.

log.fptr ——» data(0)

data(1)

data(2)

data(3)

data(k-1)

log.dptr ——» data(k)

data(k+1)

data(N-2)

log.Iptr ——» data(N-1)

FDLOG64 pointer allocation

The data index pointer (dptr) always points to the next address to be written or read, and
advances through the memory block as each new data value is written into the log. On
reaching the end of the log, the pointer is reset to the first address in the log. The data
logger header file contains a set of in-line C functions to access and manipulate data logs.

To use the data logger, you must include the header file DCL_fdlog64.h in your project.
Typically, a user would create an instance of an FDLOG64 structure as follows:

FDLOG64 myBuf = FDLOG64 DEFAULTS;

The log pointers can then be initialized in the user's code such that they reference a
memory block in a specific address range. Thereafter, the code can clear or load the
buffer a specific data value, and then begin writing data into it using the
DCL_writeLog64 () function.

The execution cycles for the read & write functions are shown below:

FDLOG64 read/write benchmarks

DCL_writeLog64

75

DCL_readlLog64

58

4.8.2 Functions

129

Utilities

DCL_deleteLog64

130

Header File:
Source File:
Declaration:
Description:
Parameters:

Return:

DCL _resetlLog64

Header File:
Source File:
Declaration:
Description:
Parameters:

Return:

DCL_initLog64

Header File:
Source File:
Declaration:

Description:

Parameters:

Return:

DCL_writeLog64

Header File:

Delete a Data Log

DCL_fdlog64.h

N/A

void DCL_deleteLog64(FDLOG64 *p)

This function resets all structure pointers to null value.
p The FDLOGG64 structure

Void

Reset a Data Log

DCL_fdlog64.h

N/A

void DCL_resetLog64(FDLOG64 *p)

This function resets the data index pointer to start of the data log.
p The FDLOG64 structure

Void

Initialize a Data Log Structure

DCL_fdlog64.h
N/A
void DCL_initLog64(FDLOGG64 *p, float64_t *addr, uint16_t size)

This function assigns the buffer pointers to a memory block or array and sets the
data index pointer to the first address.

p The FDLOGG64 structure

addr The start address of the memory block

size The length of the memory block in 64-bit words
Void

Write Data into a Log

DCL_fdlog64.h

Utilities

Source File:
Declaration:

Description:

Parameters:

Return:

DCL_fillLog64

Header File:
Source File:
Declaration:

Description:

Parameters:

Return:

DCL clearLog64

Header File:
Source File:
Declaration:

Description:

Parameters:

Return:

DCL readlLog64

Header File:
Source File:

Declaration:

N/A
float64_t DCL_writeLog64(FDLOG64 *p, float64_t data)

This function writes a data point into the buffer and advances the indexing pointer,
wrapping if necessary. The function returns the data value being over-written,
which allows simple implementation of a fixed-length delay line.

p The FDLOG64 structure
data The input data value address

The over-written data value

Fill a Data Log with Specified Data

DCL_fdlog64.h
N/A
void DCL_fillLog64(FDLOG64 *p, float64_t data)

This function fills the data log with a given data value and resets the data index
pointer to the start of the log.

p The FDLOG64 structure
data The fill data value

Void

Fill a Data Log Contents with Zero

DCL_fdlog64.h
N/A
void DCL_clearLog64(FDLOG64 *p)

This function clears the buffer contents by writing 0 to all elements, and resets the
data index pointer to the start of the log.

p The FDLOG64 structure
Void

Read Data from the Data Log

DCL_fdlog64.h
N/A
float64_t DCL_readLog64(FDLOG64 *p)

131

Utilities

132

Description:

Parameters:

Return:

DCL_copylLog64 Copies one Data Log into Another

Header File:
Source File:
Declaration:

Description:

Parameters:

Return:

This function reads one data point from the buffer and then advances the index
pointer, wrapping to the first element if necessary.

p The FDLOG64 structure

The indexed data value

DCL_fdlog64.h
N/A
void DCL_copyLog64(FDLOG64 *p, FDLOG64 *q)

This function copies the contents of one log into another and resets both buffer
index pointers. The function assumes both logs have the same length.

p The destination FDLOG64 structure address
q The source FDLOG®64 structure address
Void

Examples

Chapter 5

Examples

This chapter describes the example projects supplied with the Digital Control Library.

Section

5.1 Example 1: DF22 compensator running on FPU32

5.2 Example 2: DF23 compensator running on CLA

5.3 Example 3: NLPID controller running on FPU32

5.4 Example 4: Pl controller running on CLA

5.5 Example 5: PID controller running on FPU32

5.6 Example 6: TCM running on FPU32

5.7 Example 7: Smith predictor running on FPU32

5.8 Example 8: GSM running on FPU32

5.9 Example 9: Multiple Controller System with ERAD running on FPU32
5.10 Example 10: PID running on FPU64

5.11 Example 11: NLPID Running on FPU32 (TMU1)

The Digital Control Library package includes a set of code examples intended to illustrate
the use of library functions in a typical software project. Examples are supplied as CCS
projects configured for use with a specified target. Code migration to a different C2000
device is straightforward and does not affect the DCL.

There are ten example projects, located in the C2000Ware installation directory, in the
sub-directory \libraries\control\DCL\c28\examples. Each example has a
“CCS” sub-directory containing a “.projectspec” file which should be imported as a project
into the users CCS workspace.

The following sections describe the example code and outline the steps to run them. The
examples were prepared using CCS version 8.3.0. It is assumed the reader is familiar
with CCS and how to build and run code. For further information on these topics, the
reader is referred to the C2000 training workshop (section 6.2).

133

Examples

134

5.1

Example 1: DF22 Compensator Running on FPU32

5.1.1 Example Overview

This example demonstrates the DF22 compensator running on the FPU32 core. The
code creates two separate instances of the DF22 compensator: one implemented using
the full DCL_DF22_C1 function, the other using the pre-computed DCL_DF22_C2 and
DCL_DF22_C3 functions. The pre-computed compensator makes use of a clamp
function to limit the compensator output.

The program contains one ISR which is triggered by a CPU timer at 1kHz. The ISR reads
a single input from a data buffer and runs both DF22 compensators. The compensator
outputs are compared, and then both outputs and their difference logged into three
separate data buffers. When the last point of the input buffer has been read and
processed, the ISR passes through the line containing a NOP instruction near the bottom
of the program. The user can place a break-point here to examine the results of the
compensator test.

The program makes use of four data buffers at the following addresses:
e (0xCO000 - contains input data representing servo loop error
e 0xEOO0 — contains output data from the full DF22 compensator
e 0x10000 — contains output data from the pre-computed DF22 compensator
e 0x12000 - contains the difference between the two compensator outputs

Each data buffer contains 1601 single precision floating-point data points.

5.1.2 Code Description

The following lines in the program files Example F28069 DF22.c are important:

Lines 17-34: create four data buffers and assign them to memory blocks defined in the
linker file F28069 DCL.cmd

Lines 48-49: create instances of the two DF22 compensators

Lines 71-77: initialize the data log structures and data buffers

Lines 80-91: initialize the coefficients of the two compensators

Lines 94-95: set the clamp limits for the pre-computed compensator

Line 120: tests whether the last element in the input data buffer has been reached
Line 123: reads the input data point

Line 126: runs the full DF22 compensator

Line 129: runs the immediate part of the pre-computed compensator

Line 130 clamps the output of the pre-computed compensator

Lines 131-134: run the partial part of the pre-computed compensator

Examples

5.1.3 Running the Example

To run this example, first build and load the program onto the C28x device, then load the
data file DF22 edata.dat into data memory at address 0xC000. This file contains a

pre-recorded data sequence representing simulated servo loop error at the controller
input.

Place a break-point at the line indicated in the control ISR and run the program. When
the program reaches the break-point, inspect the memory buffers by opening a CCS
graph window. The graph setup window below shows how to configure the graph to view
the pre-computed compensator output (u2k).

Graph Properties [&J

Property Value
a Data Properties
Acquisition Buffer Size 1601

Dsp Data Type 32 bit floating point

Index Increment 1

Q _Value 0

Sampling Rate Hz 1

Start Address 0:10000
a Display Properties

Auto Scale] true

Auis Display] true

Data Plot Style Line

Display Data Size 1601

Grid Style Mo Grid

Magnitude Display Scale Linear

Time Display Unit sample

Use Dc Value For Graph] false

| Import ‘ | Export | ‘ K || Cancel ‘

The ek buffer should look like this.

[* Problems [Single Time -1 5% ENR AT R 'l mmq& ® :i*_" - EH v=¢
2000:40-01]
1.600:10-¢

1.200:10-01 o

8.000:40-02 4
4.000:40-02 4
0.000

-4.000x10-02
-8.000:10-02
-1.200:10-01
-1.600x10-01 ~

-2.000x10-01

T T T T T T T T T T T T T T T T
4810 +100 +200 +300 +400 +500 +600 +700 +800 +900 +1000 +1100 +1200 +1300 +1400 +1500
sample

The plot of the ulk and u2k buffers should look like this.

135

Examples

136

|2 Problems fu Single Time -1 2 ELER AN R '| t§°q§‘ ® v'&l a2~ EH =8
1.200 q
1.000

8.000:10-01
6.000,10-01
4.000:10-01
2.000,10-01

0.000 B
-2.000:10-01 ~
-4.000:10-01 ~
-6.000:10-91 4
-8.000:10-01

T T T T T T T T T T T T T T T 1
0 +100 +200 +300 +400 +500 +600 +700 +800 +800 +1000 +1100 +1200 +1300 +1400 +1500 +1600
sample

Similar graphs can be opened for the other buffers by changing the start address. The
buffer at start address 0x12000 captures the difference in output between the full and pre-
computed compensators, and should contain data which is zero or very small.

5.2 Example 2: DF23 Compensator Running on CLA

5.2.1 Example Overview

This example demonstrates one method of running a DF23 compensator on the CLA. In
this example, incoming data is read in an ISR on the C28x CPU and passed to the CLA
using a variable (ek) which is located in CPU-to-CLA message RAM. The ISR then
triggers task 3 on the CLA and waits for it to complete.

The CLA task calls two different DF23 compensators and stores their results in two
variables (u1k and u2k) which are located in CLA-to-CPU message RAM. These results
are read by the CPU ISR which computes the difference between them. The ISR then
stores both results and their difference to three data buffers. When the final input value
has been processed in this way the ISR passes through a NOP instruction, allowing the
user to place a break-point and inspect the results.

5.2.2 Code Description

The following lines in the file Example F28069 DF23.c are important:

Lines 19-36: create four buffers which will be used to hold control data

Lines 42-47: create variables which will pass control data between C28x and CLA
Lines 73-79: assign data logs to the buffers and initialize them

Line 146: reads the next data point from the input data file

Line 150: triggers the CLA task which will call the DF23 compensator

Line 154: computes the difference between the two compensator results

Lines 157-159: write the compensator results into the data buffers

The following lines in the file F28069 DF23 CLA.cla are important:

Examples

Line 36: calls the full DF23 compensator and stores the result in u1k
Line 39: calls the immediate DF23 compensator and stores the result in u2k
Line 40: clamps the immediate result and sets the clamp flag vk

Lines 41-44: pre-compute the next partial DF23 result, providing the immediate part is in
range

Lines 76-97: initialize the two DF23 compensator structures

Lines 100-101: initialize the clamp limits for the pre-computed DF23 compensator

5.2.3 Running the Example

To run this example, first build the project, then load the project onto the C28x and load
symbols onto the CLA. Load the pre-recorded data file DF23 edata.dat into C28x
memory at address 0xC000. Place a break-point at the NOP instruction in line 164 of the
file Example F28069 DF23.c, and run the program.

After the break-point is reached, open a graph window to inspect the contents of the u1k
memory buffer at address 0xEQ00.

Graph Properties [&J

Property Value
4 Data Properties
Acquisition Buffer Size 1601

Dsp Data Type 32 bit floating point

Index Increment 1

Q Value 0

Sampling Rate Hz 1

Start Address (0xE000
a Display Properties

Auto Scale] true

Axis Display] true

Data Plot Style Line

Display Data Size 1601

Grid Style Mo Grid

Magnitude Display Scale Linear
Time Display Unit sample
Use Dc Value For Graph [false

| Import || Export | | QK | [Cancel]

The graph contents should look like this.

137

Examples

138

[*] Problems | Single Time -0 53 & R[S RE & 2-EEE =8

2,000

1.000

0.000
-1.000 h
-2.000

r T T T T T T T T T T T T T T T 1
0 +100 +200 +300 +400 +500 +600 +700 +800 +800 +1000 +1100 +1200 +1300 +1400 +1500 +1600
sample

These results were produced by the full DF23 compensator. To view the pre-computed
compensator, change the “Start Address” field in Graph Properties to 0x10000. The
buffer at address 0x12000 contains the difference in compensator results, all of which
should be zero or very small.

5.3 Example 3: NLPID Controller Running on FPU32

5.3.1 Example Overview

This example demonstrates the use of the non-linear PID controller on the FPU32 core.
The code is similar to the linear PID example below except that use is made of the SPS
and CSS sub-structures to update controller parameters in the background loop. Note
that the program includes DCL_NLPID.h which contains the controller functions.

The ADC is triggered by a PWM zero match event, and samples two channels. An ISR is
triggered by an ADC end-of-conversion event and reads the ADC results. Channel AO
represents the control loop feedback, and channel BO represents an external saturation
input which is used for integrator anti-windup. The DCL runClamp C2 function is used
to convert the ADC result into an integer with the logical value 1 or 0.

The ISR calls the DCL_NLPID_C1 controller, and stores the control effort in the uk
variable. This is converted into an unsigned 16-bit integer and used to modulate the
PWM duty cycle. In this way, the program implements a non-linear closed loop controller
which regulates the floating-point reference, rk.

5.3.2 Code Description

The following lines in the file Example F28069 NLPID.c are important:

Lines 25-27: create an instance of the NLPID controller and its’ sub-structures
Lines 106-107: assign the substructure addresses to the active controller structure
Lines 109-125: initialize the controller parameters in SPS shadow structure

Lines 128-120: copy the SPS parameters into the active controller structure

Line 149: updates active controller parameters if an update request is pending
Line 165: reads the control feedback and converts to signed floating-point format

Line 168: calls the non-linear PID controller function

Examples

Lines 171 — 172: set the external clamp variable to 1.0f or 0.0f.

Line 175: converts the controller output to unsigned 16-bit integer

Line 176: updates the PWM duty cycle

5.3.3 Running the Example

To run this example, simply build, load, and run the program on the C28x core. Place a
break-point at the last instruction in the ISR (line 178) and run the program. The following

variables can be monitored in a watch window:

e rk —input reference

e vk —feedback

e |k — external saturation flag

e uk — controller output

e nlpid1 —the NLPID controller structure

(%)= Variables 1!} Registers &% Expressions 52

Expression

(9= rk

()= yk

=k

(9= uk

4 (= nlpidl

)= Kp
6= Ki
9= Kd
)= alpha_p
)= alpha_i
)= alpha_d
- delta_p
= delta_i
=)= delta_d
)= gamma_p
()= gamma_i
9= gamma_d
6= 1
6= 2
)= d2
)= d3
)= i7
- il6
()= Umax
= Umin

gF Add new expression

Type
float
float
float
float
struct <unnamed>
float
float
float
float
float
float
float
float
float
float
float
float
float
float
float
float
float
float
float
float

Value

0.25
-0.422569603
1.0
-0.270000011
o]

35
0.00400000019
0.349939934
0.800000012
0.949999988
1.0
0150000006
0150000006
0150000006
146144247
1.09950054
1.0
151,709396
0.517033956
35.7122955
-21.9822521
0.0

0.0
0.310000002
-0.270000011

Address

000008904 @Data
(0:00008902@Data
00000890 C@Data
0x0000B90E@ Data
0:0000B910@ Data
0x00008910@ Data
00000891 2@ Data
000008914 @ Data
0:0000B916@ Data
000008918 @ Data
0x0000891 A@Data
00000891 C@Data
00000891 E@Data
000008920 @ Data
000008922 @ Data
000008924 @ Data
000008926 @ Data
000008928 @ Data
0:0000B92A@Data
00000892 C@Data
0x0000892E@ Data
000008930 @ Data
000008932 @ Data
000008934 @ Data
000008936 @ Data

The user can run repeatedly to the break-point, modifying controller parameters and
examining the change of controller variables. If any of the “alpha” or “delta” parameters
are changed, the variable calFlag should be set to 1 to enable the “gamma” gains to be
computed and updated in the background loop.

139

Examples

5.4 Example 4: Pl Controller Running on CLA

5.4.1 Example Overview

This example demonstrates one method of running a Pl controller on the CLA. The CPU
program contains an ISR which is triggered by an ADC end-of-conversion in the same
way as example 3. Feedback data is read from the ADC in an ISR on the C28x CPU and
passed to the CLA using a variable (yk) which is located in CPU-to-CLA message RAM,
together with the servo reference (rk). The ISR converts the ADC result into signed
floating-point format, then triggers task 3 on the CLA and waits for it to complete.

CLA task 3 calls the function DCL runPI L1 () which computes the PI controller in an
assembly function. The result is stored in the variable uk, which is located in CLA-to-CPU
message RAM.

The PI controller result is read by the ISR, converted into a scaled un-signed 16-bit
integer, and written to the PWM duty cycle register.

5.4.2 Code Description
The following lines in the file Example F28069 PI.c are important:

Lines 24-29: create instances of the control variables and assign them to the appropriate
message RAM blocks

Lines 31-32: create an instance of the PI controller structure and place it in CPU-to-CLA
message RAM. This allows controller parameters to be modified from code running on
the C28x CPU.

Lines 49-54: initialize the PI controller parameters
Line 170: reads the feedback data from the ADC and converts it into floating-point format
Line 177: starts CLA task 3 and waits for it to complete

Lines 180-181: convert the controller result to 16-bit unsigned integer and write it to the
PWM duty cycle register

The following line in the file F2806x PI CLA.cla is important:
Line 29: calls the PI controller function DCL_runPI L1 ()
Note that in this example, initialization of the PI controller is performed on the C28x CPU,
so there is no need to allocate a separate CLA task for that purpose.
5.4.3 Running the Example

Build and load the project onto the C28x, then load the symbols onto the CLA. Place a
break-point at the last instruction in the ISR (line 183), and run the program. Open an
Expressions Window in CCS, and inspect the control variables and PI controller structure.

140

Examples

()= Variables 11} Registers €< Expressions 532

Expression Type Value Address
()= 1k float 0.25 (00001500 @ Data
)= yk float -0.421104044 000001502 @ Data
()= uk float 3.82667089 000001480 @ Data
4 = pil struct <unnamed>= {..} 0:00008 C00@ Data
)= Kp float 55 (00008 CO0@Data
)= Ki float 0.0149999997 (00008 C02@Data
()= 110 float 0.135599017 (00008 C04@Data
()= Umax float 101999998 (00008 C06@Data
()= Umin float -10.1999998 (00008 C0B@Data
()= i6 float 1.0 000008 COA@Data

oo Add new expression

At this point, controller gains can be manually changed and the code run repeatedly to
observe the effect on the control variables.

5.5 Example 5: PID Controller Running on FPU32

5.5.1 Example Overview

This simple example demonstrates a common digital control scenario: a single linear PID
controller running on the FPU32 core which reads an ADC channel and manipulates
PWM duty cycle.

The example project contains an ISR which is triggered by an ADC end-of-conversion
event. The ADC is triggered by a PWM zero match event, and samples two channels
which are read by the ISR. Channel AO represents the control loop feedback, and
channel BO represents an external saturation input which is used for integrator anti-
windup. The DCL_ runClamp C1 function is used to convert the ADC result into an
integer with the logical value 1 or zero.

The ISR calls the DCL_PID_C4 parallel form PID controller to compute control effort held
in the “uk” variable. This is converted into an unsigned 16-bit integer and used to
modulate the PWM duty cycle. In this way, the program implements a simple closed loop
PWM controller which regulates the floating-point reference, “rk”.
5.5.2 Code Description
The following lines in the example file Example F28069 PID.c are important:
Lines 102-113: initialize the elements of the PID structure
Line 115: sets the reference input to the control loop
Line 116: initializes the external saturation flag
Line 145: reads the feedback and converts to the range +1.0f
Line 148: runs the PID controller

Lines 151-152: set the external clamp variable 1.0f or 0.0f

Line 155: convert the controller output to unsigned integer in the range 0 to PRD

141

Examples

142

Line 156: writes the result to PWM duty cycle register

5.5.3 Running the Example

To run this example, simply build, load, and run the program on the C28x core. Place a
break-point at the last instruction in the ISR (line 158) and run the program. The following
variables can be monitored in a watch window:

e rk —input reference

e vk —feedback

e |k — external saturation flag
e uk — controller output

e pid1 —the PID controller structure

(%)= Variables i Registers %" Expressions &1

Expression Type Value Address
()= ke float -0.41475001 0:0000B900 @ Data
9= yk float -0.415241808 000008902 @Data
)= 1k float 1.0 0:0000B90A@ Data
(9= uk float 0.157283574 0:0000BA0C@Data
4 [= pidl struct <unnamed> {.} 0:0000B90E@Data
)= Kp float 1.0 0:0000BI0E@ Data
)= Ki float 0.000149999993 0:0000B910@Data
()= Kd float 0.349999994 0:0000B912@Data
()= Kr float 1.0 000008914 @Data
)= cl float 188.029663 0:0000B916 @ Data
)= 2 float 0.880296588 0:0000B918 @ Data
)= d2 float 0.0323654078 0:0000B91A@Data
()= d3 float 0.116397053 0:0000B91C@Data
)= i10 float 0.0245669596 0x0000B91E@Data
()= i14 float 1.0 0:0000B920@ Data
9= Umax float 1.0 0:0000B922 @ Data
)= Umin float -1.0 0:0000B924 @ Data

o0 Add new expression

The user can run repeatedly to the break-point modifying controller parameters and
examining the change of controller variables.

5.6 Example 6: TCM Running on FPU32

5.6.1 Example Overview

This example illustrates the use of the TCM to capture a portion of a pre-recorded sample
transient response. The code demonstrates how to configure and use the TCM, together
with computation and storage of servo error, use of the fast read & write data log
functions, and use of the performance index functions.

The code contains a single ISR triggered at 1kHz by a CPU timer. The ISR uses the fast
read function DCL_fread () to read values from two buffers representing servo reference
(rBuf), and feedback (yBuf), and then runs the TCM on the feedback sample to detect and

Examples

capture the transient response in a third buffer (dBuf). The code subtracts yk from rk to
find the instantaneous servo error, and logs the result into a fourth buffer (eBuf). When
the final point in the input data sequence has been read and acted upon, the dBuf buffer
should contain a portion of the feedback sequence around the transient edge, while the
eBuf buffer contains the servo error. The variables P1, P2, and P3 contain the ITAE, IAE,
and IES performance indices respectively. These are computed over the entire input
sequence.

5.6.2 Code Description
The following lines in the file Example F28069 TCM.c are important:

Lines 20-37: create instances of four data buffers and assign them to specific regions
defined in the linker command file F28069 DCL. cmd.

Lines 44-46: create instances of the control variables

Line 47: creates an instance of the TCM module and initializes it to default values

Lines 48-50: create variables to hold the performance indices

Lines 72-76: assign the data buffers to FDLOG structures and clear the servo error buffer
Lines 106-107: read the servo reference and feedback data

Line 110: runs the TCM

Lines 113-114: compute the servo error and log it to the eBuf data buffer

Line 117: detects if the final point in the input buffer has been processed

Lines 123-125: compute the three performance indices

5.6.3 Running the Example

To run this program, build and load the project onto the target device. Then, load the two
supplied data files TCM input.dat and “TCM_response.dat’ into data memory
addresses 0xc000 and 0xe000 respectively. Place a break-point on the NOP instruction at
the bottom of the ISR, and run the program.

When the break-point is reached, open a graph window to view the contents of the 1601-
point yBuf memory at address 0xe000.

[#] Problems | [Single Time 1 53 a-GrE e R eFEe sz ax-BE =3
1100:a0-22

1.000:40-01
9.000:d0-02
8.000:40-02
7.000:40-02 4
6.000:10-02
5.000:40-02
4.000:d0-02
3.000x10-02
2.000:40-02
1.000:d0-02

0.000 B

T T T T T T T T T T T T T T T T 1
700 +100 +200 +300 +400 +500 +600 +700 +800 +900 <1000 +1100 <1200 +1300 <1400 +1500 +1600
sample

143

Examples

Figure 43.

144

Open a second graph to display the 350-point contents of the dBuf buffer at address
0x12000.

2 Problems [Single Time -1 52 h-d-w o Q- Sk El 8 28 =1
60001002 |
5.000:0-22
4000002 |
3000022 -

2.000:10-02 +

1.000:10-02 4

0.000 B

T T T T T T T T T T T T T T
0 +25 +50 +75 +100 +125 +150 +175 +200 +225 +250 +275 +300 +325
sample

The TCM buffer contains part of the feedback data near the transient. Notice that the first
part of the TCM buffer (approximately 25 samples) contains data which has not exceeded
either trigger threshold. This is the lead frame.

5.7 Example 7: Smith Predictor Running on FPU32

5.7.1 Example Overview

This example illustrates the simultaneous use of two direct form compensators, together
with a time delay implemented using a data logger to construct a Smith predictor. The
Smith predictor facilitates control of systems which incorporate a fixed time delay. To
construct the controller, the plant and the time delay must be known since the controller
includes models of both. The architecture of the basic Smith predictor is shown below.

F(z) > U

GH(z)

A

Smith Predictor control loop

In this example, the plant has a third order characteristic and the delay line is 13 sample
periods in duration. The plant transfer function GH(z) is shown in the source code. The
controller F(z) is also third order, implemented using a DF23 structure.

Examples

5.7.2 Code Description
The following lines in the file Example F28069 Smith.c are important:

Lines 25-28: create an instance of the DF23 controller and sub-structures (note that the
sub-structures are not used in this example).

Lines 34-37: create the delay line which we will use to model time delay in the plant
Lines 102-103: initialize the delay line and buffer pointers

Lines 110-117: initialize the plant model

Lines 120-126: initialize the controller

Lines 158-161: execute the controller

5.7.3 Running the Example

To run this program, build and load the project onto the target device. Then, set a break-
point on line 155 and run the code. At this point the user may step through the example
code and verify the controller and delay line are working as expected. For example, the
variable v3 could be added to the CCS Expressions window and monitored as the
program is run between break-points.

To verify the working of the delay model, add the variable v6 and the delay line array
“p_array” to the expressions window, then set a break-point at the end of the ISR and
observe the data updates in the array.

5.8 Example 8: GSM Running on FPU32

5.8.1 Example Overview

This example illustrates the setup and use of the Gain Scheduler Module running on an
F28069. The code makes no use of the device peripherals.

The example is configured to construct a y = x° target profile. Offsets and gains are

loaded into the SPS, and the update performed using the DCL updateGSM () function.
5.8.2 Code Description

The following lines in the file Example F28069 GSM.c are important:

Lines 23-25: create instances of the GSM module and supporting sub-structures,
initialized with their default values.

Lines 41-42: Initialize the results buffer which will hold the input-output curve.
Lines 45-46: load the GSM sub-structure addresses.

Lines 49-54: load the GSM shadow offset table from a target function.

Line 57: loads the shadow gain table from the shadow offsets.

Lines 60-61: copy the shadow parameter sets into the active controller tables.

145

Examples

146

Lines 64-69: run the GSM to construct the input-output table and store it in the results

buffer.

Lines 80-84: contain the target profile function.

5.8.3 Running the Example

To run this program, build and load the project onto the target device. Then, set a break-

point at the NOP instruction in the while loop at line 74.

Open a graph window to view the contents of the result buffer.
window should be configured as follows.

The graph properties

Graph Properties

Property Value
v Data Properties
Acquisition Buffer Size [[EE]

Dsp Data Type 32 bit floating point
Index Increment 1
Q_Value 0
Sampling Rate Hz 1
Start Address 0x12000
w Display Properties
Auto Scale b true
Auis Display] true
Data Plot Style Line
Display Data Size 1024
Grid Style Mo Grid

Magnitude Display Scale Linear
Time Display Unit sample
Use Dc Value For Graph [false

Import Export

OK

Cancel

The graph shows the GSM input-output curve and for the default target function (y = x°)

should look like this:

Examples

[2] Problems fas Single Time -0 52 R - A

1.200

1.050

9.00010-01

7.500x10-01

6.000x10-0

4.500x10-01

3.000x10-01

1.500x10-01

0.000

-1.30010-01

-3.000x10-01

-4.500x10-01

-6.000x10-01

-7.500x10-07

-9.00010-01

-1.050

5.9

5.9.1

@l | =

T T T T T T T T T T T T T T T T T T T T
6230 +50 +100 +130 +200 +250 +300 +330 +400 +450 +500 +5350 +600 +630 +700 +750 +800 +850 +900 +850 +1

The user is invited to experiment with different target functions.

Example 9: Multiple Controller System with ERAD Running on FPU32

Example Overview

This example illustrates the simultaneous use of multiple DCL controllers running at
different update rates on an F280049. This device contains debug hardware known as
Embedded Real-time Analysis and Diagnostics (ERAD) which is capable of profiling the
system without having to connect an emulator. Among other things, the ERAD can
measure the execution time of a specified code function. The example demonstrates use
of ERAD to determine CPU bandwidth in a complex control application consisting of three
separate control interrupts, as follows.

ISR Rate (kHz) CPU Timer
a 10 1
b 253 2
c 60 3

ISR (a) reflects a situation common in field oriented motor control in which a relatively low
rate PID controller, possibly regulating shaft speed, is cascaded with two parallel PI

147

Examples

148

current control loops running approximately ten times faster. The interrupt runs at 10 kHz,
and the PID controller is “time sliced” to run ten times slower, at 1 kHz.

ISR (b) represents a higher rate loop, perhaps regulating other power electronics sub-
systems such as PFC control. The ISR contains a gain scheduler and DF11 compensator
in cascade, running at the full 253 kHz rate. Also in this ISR is a DF22 compensator
which is “time sliced” to run at one third of the interrupt rate.

The last loop, ISR (c), contains a DF23 compensator and is configured with a varying
payload, so that the execution time changes as the program runs. Also, the DF23
compensator coefficients are updated periodically in the background loop.

The overall program is fairly demanding from the point of view of computational load and
the programmer might reasonably wish to know the CPU bandwidth to ensure hard real-
time deadlines are being met. This information can be found using the hardware ERAD
module. Refer to the ERAD chapter in the TMS320F28004x Technical Reference Manual
for information on the ERAD module and registers.

This example uses the ERAD module to measure the CPU “bandwidth”: the amount of
cycles available after all the application real-time requirements have been met. To
determine this, we measure the number of CPU cycles between consecutive calls to the
slowest interrupt in the system, and subtract from is the total number of cycles spent
servicing interrupts over the same interval. This is equivalent to the number of cycles
spent in the background loop over the longest interrupt interval and is usually expressed
as a percentage.

In this example, we could have 3 or 4 ISR (b) calls and 5 or 6 ISR (c) calls between two
consecutive ISR (a) calls.

- | - | [W - | =
- Aa1 &

(- N | - < N - |
- Aa2 n

At3 = a+d*beb"c

(- | - | (< | < | - N - |
e == e == =
_- Aa3 -

With reference to the above figure, the example code measures the worst case CPU
availability as follows:

MaxWindowCycles = Max (Aal, Aa2, Aa3);
MaxISRCycles Max (Atl, At2, At3);

Then we compute available CPU bandwidth in % using

CPU bandwidth = 100 x (MaxWindowCycles —MaxISRCycles)/MaxWindowCycles

Examples

5.9.2 Code Description
The example code makes use of an API function set to configure the ERAD module.

The example links all the ISR code to a single named section (“interruptSection”) for ease
of profiling. Refer to the files F280049 ERAD.cmd and F280049 stdmem.cmd to see
how this is done. Note that the method of configuring the ERAD module involves the use
of API functions contained in the source file £28004x dcl erad.c.

The following lines in the file Example F280049 ERAD.c are important.

Lines 8 — 39: create instances of the controllers and control variables used in the
program, and define the constants used for decimation.

Lines 79 — 148: initialize the controller parameters.
Lines 168 — 169: update the DF23 controller parameters used in ISR (c).

Lines 174 — 187: tests the number of passes through the background loop and halts
execution when the number exceeds (arbitrarily) 1000, after which CPU timers are
stopped and the PC is trapped in an infinite “while” loop.

Lines 192 — 244: contain the three interrupt service routines, each of which is associated
with the named section “interruptSection” using a CODE_SECTION pragma.

Lines 247 — 315: configure the ERAD registers using the API set to capture the
information described in the previous section.
5.9.3 Running the Example

To run this program, build and load the project onto the target device. Then, place a
break-point on line 186 of the file Example F280049 ERAD.c.

Open an Expressions window in CCS and add the variables shown below, then run the
program. The values should be similar to those shown below.

(%)= \lariables €% Expressions i3 11 Registers g Breakpoints

Expression Type Value
()= IsraCount unsigned int 121
()= IsrbCount unsigned int 1772
()= IsrcCount unsigned int 469
()= ldleLoopCount unsigned long 1000
()= MaxlSRCycles unsigned long 12136
(= MaxWindowCycles unsigned long 19240

The best case CPU bandwidth measured over 1000 cycles is:
100 x (19240 — 12136) / 19240 = 36.92%

The user may like to experiment with the configuration of the ERAD module to make other
measurements.

149

Examples

150

5.10 Example 10: PID Running on FPU64

5.10.1 Example Overview

This example demonstrates a double precision PID controller running on an F28388D
device. The code makes use of the FPU64 accelerator on this device and is built for
EABI.

The example comprises a single C source file, Example F28388D PIDF64.c. This file
has a main() function which initializes the device and controller, an ISR triggered by CPU
timer 0 which executes the controller, and a timer initialization routine.

To simulate a control loop, the user will load example set-point data (rk) and feedback
data (yk) into two pre-defined buffers in internal RAM. These, together with integrator
clamp data (Ik) are processed sequentially by the controller and the results (uk) stored in
a separate buffer. The buffer names and addresses are as follows:

Data Struct RAM block Start address
rk pBuf GS12 0x19000
yk gBuf GS13 0x1A000
Ik rBuf GS14 0x1B000
uk sBuf GS15 0x1C000

5.10.2 Code Description
The following lines in the file Example F28388D PIDF64.c are important:

Lines 15-18: use the DATA_SECTION pragma to associate array names with sections in
the linker command file F28388D DCL.cmd.

Lines 21-24: associate names with the start addresses of these sections.
Lines 27-30: create instances of the four data buffers used in the test.
Lines 33-36: create instances of the data log structures which will manage the buffers.

Line 45: creates an instance of the PIDF64 controller and initializes it with default data.
Open and inspect the header file DCLF64 .h to see these definitions.

Lines 69-74: initialize the data buffers. Notice that the “rBuf’ buffer, which contains the Ik
data, is initialized to hold all 1’s. This is because in this test the loop does not saturate.
The variable “Ik” is used by the controller to implement integrator anti-windup from an
external point in the loop, so we need this input to always be 1.

Lines 109-111: read the input data from the three input buffers. Typically this data would
come from an ADC, but in this test we are reading pre-recorded data.

Line 114: calls the controller function.

Line 117: stores the output of the controller.

Examples

5.10.3 Running the Example

To run this example, first build and load the project onto the target F28388D device in the
normal way.

Then, set break-points at the two DCL_BREAK_POINT instructions in lines 86 and 97.

Run the program so that the PC stops at the first break-point.

Load the r(k) and y(k) data into the device as follows:

Open a memory browser to view address 0x19000.

Set the data type to 64-bit Floating Point.

Load the data file “rdata.dat” at this address. Set the data length to 1024.
Load the data file “ydata.dat” to address 0x1A000 with similar length.

In the memory browser, view the controller output buffer at address 0x1C000.

Run the program so that it reaches the second break-point. The controller has now
processed all the points in the input buffers and the results are stored in RAMGS15.

Open a graph window to view the contents of the result buffer at address 0x1C000. The
graph properties should look like this:

Graph Properties hed

Property Value
w Data Properties
Acquisition Buffer Size 1024

Dsp Data Type 64 bit floating point

Index Increment 1

0 _Value 0

Sampling Rate Hz 1

Start Address 0x1C000
w Display Properties

Auto Scale v true

Axis Display ¥ true

Data Plot Style Line

Display Data Size 1024

Grid Style Mo Grid

Magnitude Display Scale Linear

Time Display Unit sample

Use Dc Value For Graph [false

Import Export oK

The display should look like this:

151

Examples

152

b Single Time -0 52 W~ -8 6 R | HSERE -8 =0
7.000:10-01
6.000x10-07
5.000x10-01 o
4.000¢10-01
3.000x10-01 o
2.000x10-01
1.00010-01 4
0.000
-1.000¢10-01 o
-2.000x10-01
-3.000x10-07
~4.000%10-01
0 +100 +200 +300 +400 ::?Epk +600 +700 +800 +900 +1000
5.11 Example 11: NLPID Running on FPU32 (TMU1)

5.11.1

Example Overview

This example demonstrates a nonlinear PID controller running on an F280025 device.
The controller is coded in assembly and requires the type 1 TMU to implement the power
function which is used in the nonlinear control law. Refer to section 3.3 for more
information on this controller.

The example is supplied with the following data files:

NLPID_input.dat an input reference waveform representing a step function

NLPID feedback.dat a waveform representing control loop feedback in response to the
above test function

NLPID_control.dat the expected controller output

NLPID_testdata.dat the actual controller output generated in the test

5.11.2 Code Description

A detailed code example is omitted for this example. Refer to the comments in the source
files for further information.

5.11.3 Running the Example

Open the example using the .projectspec file in the \CCS sub-directory of the example
folder. Then build and load the project onto the target F280025 device in the normal way.

Open a memory browser window and configure it to view 32-bit floating point data
beginning at address 0xB800 in data space. Right-click in the memory window and load
the data file NLPID _input.dat at this address. Set the data length to 501.

Load the data file NLPID_feedback.dat to memory address OxBCOO in a similar way.

Examples

View the memory at address 0xCO000 in the memory browser. Then, in the source file
Example_F280025 NLPID.c, set a break-point on the DCL_BREAK_POINT instruction in
the while loop at the end of the main program.

Run the program. After a short delay, the PC should stop at the break-point and the
memory browser window be updated with the test data (you may have to scroll down in
the memory browser to see the new data).

Save the test data by right-clicking in the memory browser window and selecting “Save
Memory...”. Enter the filename “NLPID_testdata.dat” in the example directory, and save

501 words of 32-bit floating point data starting at address 0xC000.

The test results data file can be imported into Matlab for comparison with the expected
data. The waveform should look similar to that below.

0.8

06

04

02

0.2

04

-06

-0.8

153

Support

Chapter 6

Support

154

This chapter contains a list of useful technical resources relevant to the DCL.

Section

6.1 References
6.2 Training
6.3 Support

6.1 References

6.1.1 C2000 Documentation

Documentation for C2000 MCU devices can be found on their respective product pages at
www.ti.com/c2000. The following references are relevant to the DCL.

TMS320C28x Assembly Language Tools User’s Guide
http://www.ti.com/lit/ug/spru513m/spru513m.pdf

TMS320C28x Optimizing C/C++ Compiler User’s Guide
http://www.ti.com/lit/'ug/spru514m/spru514m.pdf

TMS320C28x CPU & Instruction Set User's Guide
http://www.ti.com/lit/'ug/spru430f/spru4 30f.pdf

TMS320C28x Floating Point Unit & Instruction Set Reference Guide
http://www.ti.com/lit/ug/sprueo2b/sprueo2b.pdf

TMS320x2803x Piccolo Control Law Accelerator (CLA) Reference Guide
http://www.ti.com/lit/ug/spruge6b/spruge6b.pdf

6.1.2 Literature

The following is a selection of publications on control theory.

Feedback & Control Systems
J.J.DiStefano, A.R.Stubberud & I.J.Williams, Schaum, McGraw-Hill, 2011

Digital Control of Dynamic Systems
G.F.Franklin, J.D.Powell & M.L.Workman, Addison-Wesley, 1998

Support

e Control Theory Fundamentals
R.Poley, CreateSpace, 2015

6.2 Training

e Training materials for the C2000 devices from Texas Instruments can be found at
training.ti.com/c2000-workshops

o Information about a series of technical seminars in control theory, including video
recordings, can be found at https://sites.google.com/site/controltheoryseminars/

6.3 Support

Technical support on the DCL is available via the C2000 e2e forum, at
e2e.ti.com/support/microcontrollers/c2000

Reports of errors or omissions, or suggestions for additions and improvements to the
library, are always welcome via the e2e forum.

155

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Tl grants you
permission to use these resources only for development of an application that uses the Tl products described in the resource. Other
reproduction and display of these resources is prohibited. No license is granted to any other Tl intellectual property right or to any third
party intellectual property right. Tl disclaims responsibility for, and you will fully indemnify Tl and its representatives against, any claims,
damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on
ti.com or provided in conjunction with such Tl products. TI's provision of these resources does not expand or otherwise alter TI's applicable
warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated

http://www.ti.com/legal/termsofsale.html
http://www.ti.com

	cover
	DCL v3.4 User's Guide content
	notice 2019

