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ABSTRACT 

PID (Proportional-Integral-Derivative) control first appeared in 1922[1] and has become the 
most common type of control strategy[2].  In recent years, the availability of large amounts 
of computing power at low cost has led to the adoption of digital PID control in high 
sample rate systems such as motor drives and switched electrical power systems.  This 
document presents a brief guide to digital linear PID control, and suggests a step-by-step 
procedure for tuning such a controller.   
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1 Introduction 
PID (Proportional-Integral-Derivative) control first appeared in 1922[1] and has become the most 
common type of control strategy[2].  In recent years, the availability of large amounts of 
computing power at low cost has led to the adoption of digital PID control in high sample rate 
systems such as motor drives and switched electrical power systems.  This document presents 
a brief guide to digital linear PID control, and suggests a step-by-step procedure for tuning such 
a controller. 

In principle, the PID controller comprises three parallel paths, each of which influences the 
control action in a different way.  The effects are most clearly visualized in the features of the 
transient part of the closed loop response; for example, in the output response following a step 
change in the control reference or the output load; and for this reason the use of PID control for 
control loop tuning in the time domain is well established.   

In general, proportional action directly influences open loop gain: an increase in proportional 
gain reduces the response rise time, but does so at the expense of increased over-shoot and 
possibly oscillation.  The purpose of integral action is to eliminate steady-state error; large 
integral gain resulting in a more rapid settling of the response.  However integral control 
accentuates any oscillatory characteristics already present in the response.  Derivative action is 
a predictive type of control, its’ influence being to introduce a damping effect into the response 
which counter-acts oscillatory effects arising from proportional and integral action.  

A user would typically proceed to tune the controller by adjusting each term in sequence while 
monitoring the transient response.  Gains adjustments would be made iteratively, in a cyclic 
fashion, the process often being supported by the use of a performance index[3].  It is the 
simplicity of the PID structure, together with the correlation between properties of the transient 
response and controller parameters which accounts for its popularity. 

It is common to encounter PI and PID controllers in situations where the control loop is tuned in 
the frequency domain.  One such application is field oriented motor control, where two inner 
current loops each contain a PI controller, the parameters of which are selected to position the 
controller zero to cancel the motor pole formed by the stator inductance and resistance.  Other 
examples may be found in power electronics of the use of PID control to fix a pair of controller 
zeros.  Since these design requirements can be met using other controller structures they will 
not be described further in this document. 

Over the ninety-five years since its invention the PID controller has been the subject of much 
research, and enhancements are now routinely made to avoid well-known practical control 
issues [1].  Foremost among these are measures to avoid integrator “windup” during saturation of 
the control loop, and filtering to prevent high frequency noise amplification through the derivative 
path.   

Section 2 describes the structure of the basic linear PID controller.  Section 3 presents a brief 
overview of the PID implementation in the C2000 Digital Control Library.  Section 4 describes 
utilities to measure performance based on transient response.  Section 5 steps the reader 
through a suggested PID tuning procedure; this being illustrated by an example in the following 
chapter.  Finally, a list of literature references and suggestions for further reading can be found 
in section 7. 
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2 The Linear PID Controller 
In the simplest negative feedback control loop, the controller is situated between the error 
junction and the plant.  The input to the controller is the loop error e(t), and its’ output u(t) 
represents a corrective action to be applied to the plant such that e(t) is always driven towards 
zero as rapidly as possible. In what follows, the reference input to the control loop will be 
denoted r(t), and the output of the plant y(t).  This type of configuration is known as cascade 
control.  Other control loop configurations are possible, but to keep this document to a 
manageable size only cascade control is considered here. 

 

+
_r(t)

Sensor

PlantController
e(t) u(t)

y(t)

 

 

Figure 1. The cascade control loop 

The simplest type of control action is “proportional”: either gain or attenuation applied in series 
with the forward path.  Denoting the proportional gain as kp, we write 

𝑢𝑝(𝑡) =  𝑘𝑝𝑒(𝑡)      …(1) 

Adjustment of the proportional controller gain directly changes the open loop gain, but has no 
effect on open loop phase.  In general, increasing proportional gain reduces rise time and steady 
state error, however large proportional gain can induce over-shoot and oscillation in the transient 
response, so in practice there is an upper limit on the feasible value of kp. 

Depending on the plant, the steady state output may or may not converge on the desired value.  
In situations where it does not, integral control action can be applied.  The integral path control 
law is 

𝑢𝑖(𝑡) =  𝑘𝑖 ∫ 𝑒(𝜏)𝑡
−∞ 𝑑𝑑     …(2) 

Adjustment of the integral gain ki changes the rate at which the response converges on steady 
state: the larger the gain, the faster the rate of convergence.  However the integral gain tends to 
amplify any over-shoot and oscillation which may be present, so again there is an upper 
practical limit on the value of ki. 

Notice that the input to the integral path is the loop error.  The integrator acts to drive e(t) to zero, 
however this does not imply that u(t) will also converge on zero.  Depending on the plant, it is 
quite possible that the integrator output will be non-zero even when the steady state error has 
been removed.   

The derivative path has the formula 



 PID Controller Tuning Guide 

4       

𝑢𝑑(𝑡) =  𝑘𝑑
𝑑𝑑(𝑡)
𝑑𝑑

     …(3) 

By differentiating the error, this type of control induces a predictive action in which the faster the 
rate of change of the error, the larger corrective effort is applied.  The derivative gain kd acts as a 
sort of time constant which fixes the time interval over which the error is predicted. 

Combining the three terms we have a formula, or “control law”, for the PID: 

𝑢(𝑡) =  𝑘𝑝𝑒(𝑡) +  𝑘𝑖 ∫ 𝑒(𝜏𝑡
−∞ )𝑑𝑑 +  𝑘𝑑

𝑑𝑑(𝑡)
𝑑𝑑

   …(4) 

The influence of each of these three terms is shown in terms of a typical transient response in 
the figure below. 
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Figure 2. PID control action 

This type of PID is referred to as the parallel form, since each of the three control actions 
appears in a separate parallel path, and the output of the controller is their parallel sum 
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𝑢(𝑡) =  𝑢𝑝(𝑡) + 𝑢𝑖(𝑡) + 𝑢𝑑(𝑡) 

In a slightly different PID configuration, the proportional term appears in series with the parallel 
connection of integral and derivative paths, so the control law becomes  

𝑢(𝑡) =  𝑘𝑝 �𝑒(𝑡) +  𝑘𝑖 ∫ 𝑒(𝜏𝑡
−∞ )𝑑𝑑 +  𝑘𝑑

𝑑𝑑(𝑡)
𝑑𝑑

�   …(5) 

This configuration is referred to as a “series” PID.  It is claimed that the series controller is easier 
to tune than the parallel form because adjustment of ki and kd do not affect the optimum choice 
of kp.   

 

3 DCL Implementation 
The C2000 Digital Control Library (DCL) contains a collection of closed loop controller 
algorithms optimized for the C2000 micro-controller, among which are several linear PID 
controllers.  The library is supplied in the form of C and assembly source code, and distributed in 
the “C2000Ware” software package[7].  New users of the library should begin by reading the 
chapters 1 & 2 in the DCL User’s Guide[4].  A detailed description of the linear PID controllers is 
given in section 3.1 of that document and will not be repeated here. 

The linear PID controllers in the DCL include the following features: 

• Parallel and ideal forms 

• Adjustable output saturation 

• Independent reference weighting on proportional path 

• Anti-windup integrator reset 

• Programmable low-pass derivative filter 

• External saturation input for integrator anti-windup 

Figure 3 shows an implementation of parallel PID controller known as “C4”.  The three parallel 
paths are clearly visible, as are the associated gain terms.  The “i14” variable is set by the output 
clamp block and determines whether integration is active.   

The lower path contains the filtered differentiator, with the low-pass filter bandwidth set by 
coefficients “c1” and “c2”.  The purpose of the filter is to avoid amplification of un-wanted high 
frequency noise.  The filter in the C4 controller is a simple first order lag with differentiator, 
converted into discrete form using the Tustin transform.  Refer to the DCL User’s Guide[4] for 
more information.  
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All PID type controllers in the library implement integrator anti-windup reset in a similar way.  A 
clamp is present at the controller output which allows the user to set upper and lower limits on 
the control effort.  If either limit is exceeded, an internal floating-point controller variable changes 
from 1 to 0.  This variable is multiplied by the integrator input, such that the integrator 
accumulates zero data.  In this way the integrator is frozen when the output is saturated, thus 
preventing the well-known “windup” phenomenon.  Integration resumes when the controller 
output returns to its allowable range. 
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Figure 3. The DCL_PID_C4 controller 

Some PID controllers in the library make provision for anti-windup reset to be triggered from an 
external part of the loop.  This is useful in situations where a component outside the controller 
may be saturated.  The floating-point variable “lk” is expected to be either 1.0 or 0.0 in the 
normal and saturated conditions respectively.  Note that all the controllers here require non-zero 
proportional gain to recover from loop saturation. 

 

4  Performance Measurement 
Before commencing the tuning operation, the user should understand the various performance 
specifications which can be applied to the transient response[3,6].  A summary of the most 
common specifications is shown below. 
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Figure 4. Summary of transient response specifications 

A degree of optimality is possible in by assigning a performance index or cost function.  Such 
functions are typically based on integrating the transient error over a fixed time interval.  Various 
indices are in commons use.  An example is the “ISE”, which integrates the square of the servo 
error over a fixed interval following application of the transient stimulus.  For a continuous time 
system with measurement interval T, the ISE index is  

∫ 𝑒2(𝑡𝑇
0 )𝑑𝑑      …(5) 

The lower the ISE value, the better the transient response.  The DCL contains functions to 
capture and compute this and other performance indices.  Refer to section 4.5 of the User’s 
Guide for more information on the performance index methods and options.  

 

5 Tuning the PID 
This section suggests a manual tuning procedure for the linear PID controller.  It applies to both 
continuous time and discrete time controllers when tuning against a transient response such as 
a step change of reference.  

Several established procedures for fixing the controller gains based on plant response 
measurements can be found in the literature (e.g.  Ziegler-Nichols[5], Cohen-Coon, etc.) but 
these are rarely used outside of process control.  In power electronics, tuning is most often 
performed by iteratively adjusting one parameter at a time to optimize one or two performance 
objectives before moving to a different parameter.  This process continues until the user judges 
that a satisfactory response has been achieved.  

The following list of steps constitutes a procedure for manually tuning the PID controller 
described in section 3.  It is assumed that the user understands the general features of the 
transient response (see section 4) and that realistic performance objectives have been set. 
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Step 1.  Initialize the controller gains 

Set the proportional gain (kp) to a known safe initial value.  Be sure to select a value significantly 
lower than the expected optimum value so that the gain can be safely increased without risk of 
the control loop becoming unstable. Ensure both the integral and derivative gains are set to 
zero. 

 

Step 2.  Initialize the control limits 

Determine the physical range of control output and set appropriate limits at the output of the 
controller.  This step is important to ensure anti-windup reset is effective.  In some DCL 
implementations, it is possible to bring in limits from remote parts of the control system.   

It can be instructive to monitor the saturation variable inside the controller.  In DCL v3, each 
controller has a supporting structure (CSS) which contains a “testpoint” variable intended to 
bring out internal controller variables for this purpose.   

 

Step 3.  Configure the derivative filter 

Oscillatory effects in the transient response can sometimes be reduced by applying derivative 
gain.  To do this, first decide on a bandwidth for the derivative low-pass filter.  The choice of filter 
bandwidth should be low enough to remove most of any sensor and process noise present, but 
not too low that the operation of the differentiator is compromised.   More general guidelines are 
difficult to give and some degree of trial-and-error may be necessary.  If filtering is not required, 
use infinite cut-off frequency (i.e. zero time constant).   

Apply the equations in the DCL User’s Guide[4] to find the derivative filter coefficients c1 & c2, 
and load these values into the PID controller structure. 

 

Step 4.  Apply a test stimulus 

Apply a stimulus to the control loop in such a way as to induce an observable transient at the 
system output.  In many cases the disturbance will be a sudden change in reference set-point, in 
others, a change in output load may be easier to apply.  Observe the transient part of the output 
response.  The DCL data logger utility will be useful for this task and code examples can be 
found in the library illustrating its use. 

 

Step 5.  Adjust the proportional gain 

If the response does not meet specifications, adjust kp and repeat the transient test.  Repeat this 
step until the optimum value of kp is found.   
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In general, if a steady state error is present increasing kp will reduce (but not eliminate) it.  
Increasing kp typically reduces the rise time (makes the response faster), but can introduce over-
shoot and oscillation into the response.  Keep in mind that changes to kp should be made in 
small steps, and that some systems will become unstable if the proportional loop gain exceeds 
some value.  There may also be a lower limiting value of kp which yields a stable response.   

If a value of kp can be found which meets all the performance objectives the tuning procedure 
can be terminated at this point.  

 

Step 6.  Adjust the integral gain 

Depending on the nature of the control loop, steady state error can sometimes be eliminated 
with the introduction of integral control action.  The effect of integral control depends on the open 
loop transfer function and the type of test stimulus applied[1,2,3].  In industrial applications the test 
stimulus is often a step change of reference input, and zero steady state error is achieved when 
at least one integrator is present inside the loop.  For illustrative purposes, this is the situation 
we will assume here. 

If necessary, gradually increase the integral gain term (ki) to reduce steady state output error. 
Increasing the ki increases the rate at which the response converges on steady state, but may 
introduce or amplify overshoot and oscillation.  If this happens, it may be useful to slightly 
decrease kp and then re-adjust ki.  Repeat this step until an optimum value of ki is found.  Again, 
if all performance specifications are met, terminate the procedure here. 

Depending on the plant dynamics, the response may be very sensitive to the integral term and 
may become unstable, so be sure to start with a very small gain.  In general, the faster the 
response of the plant, the greater will be the sensitivity of the control loop to integral gain. 

 

Step 7.  Adjust the derivative gain 

Apply a small amount of derivative gain (kd) and repeat the transient test.  As with the other 
gains, changes should be made in small steps.  Depending on the nature of the plant, the control 
may be strongly or weakly dependent on this parameter.  In general, a system which is sensitive 
to ki is insensitive to kd and vice-versa. 

If small amount of derivative action makes no significant difference it may be necessary to use 
progressively larger increments until a difference is seen.  In general, the faster the plant the 
less sensitive is the closed loop response to derivative action.   

It may be necessary to re-adjust kp and ki gains at this point.  Typically, tuning involves repeated 
adjustments to the gain terms to find the best achievable response.   
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Step 8. Adjust the set-point weight 

Some PID implementations in the DCL include a set-point “weight”, kr.  Depending on the plant, 
it may be advantageous to weight the control error input to the proportional path differently from 
that of the integral path, and this is achieved by changing kr.  Examples include systems with 
time delay or right half plane zeros.  The majority of control systems will not benefit materially 
from set-point weighting; however where improvement can be made the optimum value of kr 
gain is typically a little less than unity.   

 

Step 9. Repeat the procedure 

At this point, the user will typically return to step 5 and re-adjust the proportional gain, again 
proceeding in small incremental steps.  The introduction of integral or derivative action will 
change the optimum value of kp and it is likely some improvement can be made.  He or she will 
then move on to re-adjust ki and kd.  This cyclic procedure continues until either the performance 
specifications have been met, or the user judges that no further improvement can be made. 

 

In summary, the process above is nothing more than a series of adjustments of the three 
controller gains.  The key points are that adjustments must be made in small steps, and that the 
use of a performance index provides a valuable, non-subjective indication of performance. 

 

6 Tuning Example 
To illustrate the above process, this section presents an example of transient tuning applied to a 
simple linear system.  The plant is a model of a dynamical system having a third order transfer 
function.  Sensor noise has been included in the simulation, and the control variable is limited by 
the ±15 V voltage swing of a power amplifier stage.  The DCL_PID_C4 controller is used in a 
feedback control loop with 16-bit ADC and DAC resolution.  A similar model (using Simulink) can 
be found in the DCL download. 

 

We begin by setting the proportional controller gain to 1, and the integral and derivative gains to 
0 (step 1).  The output limits are loaded into the controller Umax & Umin parameters (step 2), 
and a bandwidth of 150 Hz used to compute the derivative filter parameters (step 3).  A step 
input stimulus of amplitude 0.1 is applied and the following data plotted (step 4). 
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Figure 5. Response plots: kp = 1, ki = 0, kd = 0, IES = 5.2537 

Clearly the response is quite slow and there is a steady state error of approximately 50%.  The 
proportional gain is now increased steadily to the point where over-shoot reaches an 
unacceptable level.  
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Figure 6. Response plots: kp = 4.5, ki = 0, kd = 0, IES = 1.3743 

Observe that the rise time is now much shorter; the speed of the control system has increased.  
The IES index has fallen considerably; indicating much better transient performance, however 
there is now an undesirable over-shoot of approximately 20%.  Although the steady state error is 
much reduced, kp cannot be increased further without exacerbating the over-shoot.   

We now direct attention to removing the steady state error through integral control action.  The 
plots below show the result of changing ki to 0.01. 
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Figure 7. Response plots: kp = 4.5, ki = 0.01, kd = 0, IES = 0.9971 
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With this amount of integral control, steady state error is removed quite quickly; however the 
over-shoot has increased to about 30%.  Derivative action is now added in an attempt to reduce 
this.  The plots below show the effect of increasing kd to 1.5. 
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Figure 8. Response plots: kp = 4.5, ki = 0.01, kd = 1.5, IES = 0.8876 

As expected, over-shoot has greatly diminished as a result of derivative action.  However there 
is a large ‘spike’ in the control effort as the edge of stimulus step function propagates through 
the derivative path and this has caused the controller output to briefly saturate.  This effect is 
known as derivative ‘kick’, and is visible in the control plot and in the brief excursion in the 
saturation plot.  Although not serious here, derivative kick can be avoided by differentiating the 
feedback rather than the error, and this is done in the C1 & C2 PID controllers. 

At this point the user might decide to re-adjust the proportional and integral gains in an attempt 
to further improve performance, although the return on the time invested is unlikely to be large. 
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