

1

InstaSPIN Projects and Labs User’s Guide

InstaSPIN-FOC for F28004xC

Version 1.00.00.00 Motor Control Solutions

Product Overview

InstaSPIN-FOC is a sensorless FOC solution that identifies, tunes, and controls your motor in minutes.
The solution features:

 The FAST unified software observer, which exploits the similarities between all motors that use
magnetic flux for energy transduction. The FAST estimator measures rotor flux (magnitude and
angle) in a sensorless FOC system.

 Automatic torque (current) loop tuning with an option for user adjustments

 Automatic or manual field weakening and field boosting

 Superior robustness and high torque output for low speed PMSM/BLDC motor drive

Additional information about the features and functionality of InstaSPIN-FOC can be found in the
Technical Reference Manuals and User’s Guide.

2

Lab Projects Overview

The example projects (labs) described in this section are intended for you to not only experiment with
InstaSPIN but to also use as a reference for your design. InstaSPIN-FOC motor control solutions, as well
as the lab projects, are delivered within the MotorControl SDK.

In the lab projects, you will learn how to modify “user.h,” the header file that stores all of the user
parameters. Some of these parameters can be manipulated through the GUI or CCS during run-time, but
the parameters must be updated in “user.h” to be saved permanently in your project.

The following table summarizes all the projects available and which projects apply to each and target
device.

Solution Name
Hvkit

w/o PGA
Boost8320

w/ PGA
Brief Description

FOC is01 HAL, Inverter setup and LED Blinking

FOC is02 Offset/Gain calibration with CPU

FOC is03
Scalar control for hardware integrity verification with
CPU

FOC is04
Closed current loop without position angle for signal
chain verification

FOC is05 Motor ID with CPU

FOC is06 Torque mode and tuning Id/Iq PI

FOC is07 Speed mode and tuning speed PI

FOC is08 Space Vector Over-Modulation

FOC is09 Flying Start

FOC is10 Rs Online Recalibration

FOC is11 Dual Motor Control

FOC is12 Online Variable Switching Frequencies

FOC is13
Field-weakening and Maximum Torque Per Ampere
Control for IPM motor

3

Version: 1.00.00.00

Revision History:

1.00.00.00 March 2018 MotorControl SDK 1.00 release, support for CPU and PMSM

only

InstaSPIN-FOC Labs added in this release: 01-13

4

Contents

Product Overview .. 1

Lab Projects Overview ... 2

Lab Descriptions .. 5

is01_intro_hal – CPU and Inverter Setup .. 7

is02_offset_gain_cal – Current and Voltage Offsets Calibration .. 23

is03_hardware_test – Open Loop Control for Hardware Integrity Verification 30

is04_signal_chain_test – Current Closed Loop Control for Signal Chain Integrity Verification 45

is05_motor_id – Motor Parameters Identification ... 50

is06_torque_control – Torque Control Mode and Tuning Id/Iq PI Controller 61

is07_speed_control – Speed Control Mode and Tuning Speed PI Controller 68

is08_overmodulation – Space Vector Over-Modulation ... 79

is09_flying_start – Using Flying Start .. 86

is10_rs_recalc – Using Rs Online Recalibration ... 92

is11_dual_motor – Dual Motor Sensorless Velocity Control ... 98

is12_variable_pwm_frequency – Online Variable Switching Frequencies............................ 105

is13_fwc_mtpa – Field Weakening and Maximum Torque per Ampere Control 109

5

Lab Descriptions

is01_intro_hal – CPU and Inverter Setup

Lab 01 covers how to use the HAL object to setup the F28004xC and inverter hardware.
MotorControl SDK API function calls will be used to simplify the microprocessor setup.

is02_offset_gain_cal – Offset and Gain Calibration

Lab 02 demonstrates current and voltage offset calculation. Additionally, skipping auto-calibration
to reduce start-up time is demonstrated. Lab 02 also introduces the option to bypass the Rs Fine
Re-estimation.

is03_hardware_test – Open Loop Control for Hardware Integrity Verification

Lab 03 implements a scalar volts/frequency control to test the integrity of the hardware, namely
the PWM and ADC modules for hardware abstraction layer (HAL) setup. While compatible with
Texas Instruments’ hardware, this lab is intended for custom hardware verification.

is04_signal_chain_test – Current Closed Loop Control for Signal Chain Integrity
Verification

Lab 04 implements a volts/frequency closed current loop control to test the signal chain integrity,
mainly the hardware current/voltage sensing circuitry and controller ADC module. While
compatible with Texas Instruments’ hardware, this lab is intended for custom hardware
verification.

is05_motor_id – Motor Parameters Identification

InstaSPIN does not have to be executed completely out of ROM. Actually, most of the InstaSPIN
code is provided as open source. The only closed source code is the FAST observer. This lab
will show how to run the sensorless field oriented controller as open source in user RAM. The
only function calls to ROM will be to update and to pull information from the FAST observer.

is06_torque_control – Torque Control Mode and Tuning Id/Iq PI Controller

For the current loop PI controllers, InstaSPIN calculates the starting Kp and Ki gains for both Id
and Iq controllers. During start-up, InstaSPIN identifies the time constant of the motor to
determine the Ki and Kp parameters. The Id and Iq controllers’ Kp and Ki gains may need to be
manually adjusted for an optimal setting. Lab 06 demonstrates manually adjusting the current PI
controller provided in the InstaSPIN software.

is07_speed_control – Speed Control Mode and Tuning Speed PI Controller

InstaSPIN-FOC provides a standard PI speed controller. The InstaSPIN library will give a “rule of
thumb” estimation of Kp and Ki for the speed controller based on the maximum current setting in
user.h. The estimated PI controller gains are a good starting point, but to obtain better dynamic
performance, the Kp and Ki terms need to be tuned based on the whole mechanical system that
the motor is running. This lab will show how to adjust the Kp and Ki terms in the PI speed
controller.

is08_overmodulation – Space Vector Over-Modulation

6

The SVM that is used by InstaSPIN is capable of saturating to a pre-specified duty cycle. When
using a duty cycle over 100.0%, the SVM is considered to be in the over-modulation region. When
in the over-modulation region, low-side inverter leg current shunt measurement windows become
small or even disappear. This lab will show how to re-create the currents that cannot be
measured due to high duty cycles during SVM over-modulation.

is09_flying_start – Using Flying Start (Motor rotor is already moving)

The lab uses the flying start function to track and control an already rotating motor and resume
normal operation with a minimal impact on load or speed.

is10_rs_recalc – Using Rs Online Recalibration

With the motor under heavy load, Rs Online Recalibration is required to maintain the performance
of FAST. This lab will explore using this feature.

is11_dual_motor – Dual Motor Sensorless Velocity Control

Sensorless InstaSPIN-FOC is implemented to control two inverters independently with one C2000
MCU. Currently only supports LaunchXL-F280049C + BoostXL-DRV8320RS.

is12_variable_pwm_frequency – Online Variable Switching Frequencies

The lab applies online variable switching frequency feature in InstaSPIN-FOC that allows the drive
to change FETs switching frequency to optimize the motor drive efficiency without changing any
more control parameters.

is13_fwc_mtpa – Field Weakening and Maximum Torque per Ampere Control

This lab implements the Field Weakening (FW) and Maximum Torque Per Ampere (MTPA)
controlled three-phase Interior Permanent Magnet Synchronous Motor (IPMSM) over a wide
speed range in an instaSPIN-FOC project. The operation mode will automatically change from
constant torque region with MTPA control to constant power region with FW control based on the
speed command and the input DC-link voltage.

7

is01_intro_hal – CPU and Inverter Setup

Abstract

This document covers how to use the HAL object to set up F28004xC hardware to control a motor drive
inverter, in which MotorControl SDK API function calls will be used to simplify the microprocessor setup.

Introduction

The “Hardware Abstraction Layer” (HAL) objects are adopted and defined in the MotorControl SDK
software package to configure the microcontroller peripherals to interface motor drive inverter. The first
lab is an introduction to using HAL to set up F28004xC processor clock, GPIOs, watchdog, ePWM, ADC,
and other peripherals. The definition of these HAL objects and the corresponding set of APIs can be
found in the file hal_obj.h. All the following lab projects are built upon this lab, so it is highly recommended
to perform this lab first before moving on.

Learning Objectives

 Use the HAL object to set up the F28004xC processor.

 Use the HAL object to setup and initialize the inverter.

 Use the enumerations to select settings for peripherals.

Background

The MotorControl SDK software package is used for this lab. The microcontroller peripheral setup is
performed to interface the inverter by using HAL_obj associated APIs. Important commands to initialize
the drive are listed in the flowchart of Figure , and a block diagram for “is01_intro_hal” lab is shown in
Figure 35.

8

Figure 1: Project is01_intro_hal Software Flowchart

9

Figure 2: Block diagram of the “is01_intro_hal” lab

The files and project are located in the MotorControl SDK directory as shown in Figure 3, depending on
which processor the user is working with.

For is01_intro_hal lab and all following InstaSPIN-FOC lab projects, the MotorControl SDK path refers to
a directory referring to 28004xC devices, any of which include the appropriate ROM capability to run
InstaSPIN-FOC projects. All projects are based on an inverter board (HVMTRINSPIN) paired with the
TMDSCNCD280049C controlCARD, or an inverter board (BOOSTXL-DRV8320RS) paired with the
LaunchPad-F280049C. The TMDSCNCD280049C controlCARD and LaunchPad-F280049C use the
TMS320F280049C device.

10

Figure 3: Project “is01_intro_hal” Location

The steps to open an InstaSPIN-FOC project from the MotorControl SDK directory are as follows:

1. From the CCS menu bar, select “Project Import CCS projects.” The “Import CCS Eclipse
Projects” window will open; click on “Browse” next to the “Select search-directory” box.

2. In the “Browse for Folder” window, navigate to the following folder for the project, is01_intro_hal:
“\ti\c2000\C2000Ware_MotorControl_SDK_<version>\solutions\boostxl_drv8320rs\f28004x\ccs\s
ensorless_foc”, select “Ok.”

3. The resulting window displays a list of discovered projects within the f28004x\ folder. From this
window, select the is01_intro_hal project as Figure 4, and then select “Finish”

4. The selected project(s) should now be viewable in the “CCS Project Explorer” window. You have
now successfully imported an F28004x example project into CCS.

11

Figure 4: Import Project “is01_intro_hal” to CCS.

Package Structure

The MotorControl SDK software package is organized into the following directory structure as shown in

Table 1:

Directory Name Description

c2000ware Contains the device-specific and core libraries.

docs
Contains the MotorControl SDK package user guides and a document HTML
page.

libraries Contains all application-specific support files.

solutions
Contains the MotorControl SDK application examples, board-specific hardware
design guides and files, board-specific GUI resource files, and board-specific
application support files.

Table 1: MotorControl SDK Package Structure

12

Project Files

CCS Project Explorer files for the is01_intro_hal lab are shown in Figure 5, and descriptions of these
source files are shown in Figure 6. Additional source files for driver or FOC modules may be added into
later projects.

Figure 5: Project “is01_intro_hal” Files Explorer

13

RAM_Lib
The folder is created by CCS when active the related build
configuration of the project.

src_board

 hal.c Contains the various functions related to the HAL object

 drv8320.c
Contains the various functions related to the DRV8320 object.
(It’s only applicable to the DRV8320RS BoosterPack)

src_device

 f28004x_globalvariabledefs.c Define Global Peripheral Variables

 f28004x_headers_nonbios.cmd Linker Command File For F280049 Peripherals

 f28004x_ram_cpu_is.cmd Linker Command File For instaSPIN lab projects run in RAM

 28004x_dcsm_lnk.cmd
Linker Command File For DCSM, only for Flash build
configuration

 f28004x_codestartbranch.asm
Branch for redirecting code execution after boot, only for
Flash

 f28004x_dcsm_z1otp.asm Dual Code Security Module Zone 1 OTP, only for Flash

 f28004x_dcsm_z2otp.asm Dual Code Security Module Zone 2 OTP, only for Flash

 f28004x_flash_cpu_is.cmd Linker Command File For instaSPIN lab projects for Flash

src_fast

 ctrl.c InstaSPIN control function

 user.c Function for setting initialization data for modules

src_foc

 clarke.c Clarke transform library

 datalog.c Data logging module routines

 filter_fo.c first-order filter library

 filter_so.c second-order filter library

 fwc.c Field-weakening control library

 ipark.c inverse park transform library

 mtpa.c Maximum torque per ampere library

 offset.c InstaSPIN offset library

 park.c park transform library

 pi.c Proportional-Integral (PI) controller library

 svgen.c Space Vector Generator (SVGEN) library

 traj.c trajectory library

 vsf.c Online variable switching frequency library

src_lib

 f28004x_fast_rom_symbols_fpu32.lib FAST estimator library

 driverlib.lib C2000Ware driver library for F28004x peripherals

is01_intro_hal.c main control source files

is01_intro_hal.js JavaScipt file for expressions in CCS

TMS320F280049C_LaunchPad.ccxml
Target configuration file for emulator on this hardware
board

Figure 6: A description of source files in is01_intro_hal lab

14

Includes

A description of included header files for is01_intro_hal is shown in the table below. Note that “labs.h” is
common across all labs; as a result, there are more header files #include directives that are needed for
this lab as shown in Table 2.

labs.h

modules

math.h Common math conversions, defines, and shifts

est.h Function definitions for the FAST ROM library

platforms

hal.h Device setup and peripheral drivers. Contains the HAL object.

user.h User file for configuration of the motor, drive, and system parameters

Header file containing all included files used in is01_intro_hal.c and following project main file

Table 2: Important header files needed for a lab setup

To view the contents of “labs.h,” follow these steps:

1. Select the expand arrow for the file “is01_intro_hal.c” in the Project Explorer, allowing the
header files included within this source file to be viewed

2. Right-mouse clicks on “labs.h;” selecting “Open” shows “is01_intro_hal.c” with the reference to
“labs.h” highlighted, as shown in Figure 7.

Figure 7: Opening a header file declaration from the Project Explorer tab

3. Right-mouse clicks on “labs.h” and select “Open Declaration” as shown in Figure 8.

15

Figure 8: Opening a header file from its declaration

Notes: If the “labs.h” can be opened by this operation, right-mouse click “RAM_Lib” folder in the project,
selecting “delete”, right-mouse click project “is01_intro_hal”, selecting “Clean Project”, and then right-
mouse click project “is01_intro_hal” again, selecting “Rebuild Project”.

4. “labs.h” is now open for review. This header file includes additional header files that will be

used in the project and global variable object definition for both this and future lab projects as
shown in Figure 9.

16

Figure 9: Additional header files required for project “is01_intro_hal” and later projects, found in labs.h

Global Object and Variable Declarations

The global objects and declarations listed in Table 3 below are only the objects that are absolutely
needed for the drive setup. Other objects and variable declarations are used for display or information for
the purpose of this lab.

globals

HAL_Handle

The handle to the hardware abstraction layer object (HAL). The driver object

contains handles to all microprocessor peripherals and is used when setting up and

controlling the peripherals.

USER_Params

Holds the scale factor information, motor information, and hardware information

that is in user.h. Allows for scale factor updates in real-time, as well as informing

the system about motor and hardware parameters.

Table 3: Global object and variable declarations necessary for project “is01_intro_hal”

To view the details of the objects HAL_Handle and USER_Params follow these steps:

17

1. In the file “is01_intro_hal.c” right-mouse click on HAL_Handle and select “Open Declaration”
as shown in Figure 10.

Figure 10: Opening the declaration for the HAL_Handle

Notes: If the “HAL_Handle” can be opened by this operation, right-mouse click “RAM_Lib” folder in the
project, selecting “delete”, right-mouse click project “is01_intro_hal”, selecting “Clean Project”, and then
right-mouse click project “is01_intro_hal” again, selecting “Rebuild Project”.

2. With the file “hal_obj.h” now open, right- mouse click on HAL_Handle and select “Show In
Outline” as shown in Figure 11.

Figure 11: To show HAL_Handle and _HAL_Obj_ in Outline

18

3. With the Outline View open, expand “_HAL_Obj_” to see each member of the HAL object as
shown in Figure 12.

Figure 12: HAL Object expand in Outline

4. In the file “is01_intro_hal.c” right-mouse clicks on USER_Params and select “Open
Declaration”. From the Outline view, expand _User_Params_ to display each member of the
object as shown in Figure 13.

Figure 13: To show USER_Params object in Outline

19

Initialization and Setup

This section covers functions needed to set up the microcontroller and FOC software. Only functions
mandatory for motor control are listed in Table 4; some functions present but not listed are for the
enhanced capability of the lab and not fundamentally needed to set up the drive. For a more in-depth
explanation of the function parameters and return values, please refer to the motor control section of the
InstaSPIN-FOC User’s Guide.

functions

HAL

HAL_init
Initializes all handles to the microcontroller peripherals. Returns a handle to the

HAL object.

USER_setParams
Copies all scale factors from the file user.h to the structure defined by

USER_Params.

HAL_setParams

Sets up the microcontroller peripherals. Creates all of the scale factors for the ADC

voltage and current conversions. Sets the initial offset values for voltage and

current measurements.

HAL_initIntVectorTable Points the ISR to the function mainISR.

HAL_enableADCInts
Enables the ADC interrupt in the PIE, and CPU. Enables the interrupt to be sent

from the ADC peripheral.

HAL_enableGlobalInts Enables the global interrupt.

HAL_disablePWM Set the inverter power switches to high impedance.

Table 4: Important setup functions needed for the motor control routines

mainISR

The methods called inside of mainISR() are time critical. When integrating this ISR into your code, it is
important to verify that this ISR runs in real-time. The code in this lab will blink an LED and read ADC
values which will eventually be three motor currents, three motor voltages, and one DC bus value. PWM
values are also written to the inverter by calling HAL_writePWMData(); initializing pwmData{} values to
zero results in a 50% duty cycle when written to the PWM registers. Table 5 explains the functions used
in the mainISR.

mainISR

HAL_toggleLED Toggles the LED on the motor inverter.

HAL_ackADCInt
Acknowledges the ADC interrupt so that another ADC interrupt can happen

again.

HAL_readADCDataWithOffsets

Reads in the Adc result registers, adjusts for offsets, and scales the values

according to the settings in user.h. The structure "adcData" holds three phase

voltages, three line currents, and one DC bus voltage.

`
Converts the pwm values in "pwmData" to uint16 format and writes these

values to the EPWM compare registers.

Table 5: The mainISR API functions that are used for Lab 1

20

Lab Procedure

Project “is01_intro_hal” is an introductory lab, similar to other “Hello World” programs. The corresponding
program blinks an LED on the controlCARD or LaunchPad. The goal is to review the MCU and inverter
setup functions, specifically the HAL object, and make sure the LED blinks.

1. Insert the C2000 controlCARD or LaunchPad onto one of the supported hardware kits, connect

the USB cable to the controlCARD or LaunchPad, and apply power to the kit.

2. Project “is01_intro_hal” can be configured to run from FLASH or RAM. To change the build
configuration, right-mouse click on is01_intro_hal” in the Project Explorer pane and select
“Project->Build Configuration->Set Active”. From this window, select the configuration needed for
the current build: “2 RAM_Lib” to run code from RAM, or “1 Flash_Lib” to run from FLASH.
Alternatively, select “Project->Build Configuration->Manage…” to create a new build
configuration. Figure 14Error! Reference source not found. illustrates selecting a RAM build
configuration.

Figure 14: Selecting a RAM Build Configuration for is01_intro_hal

Once the build settings are configured, select the project(s) to be built by selecting them in the
Project Explorer pane. The project is recognized as selected if the name is bolded with the word
‘Active’ next to it.

Notice the different files included for the two configurations: “Flash_Lib” uses the
“f28004x_flash_cpu_is.cmd” linker command file, while the “RAM_Lib” configuration uses
“f28004x_ram_cpu_is.cmd.”CCS will handle excluding the un-used configuration depending on
whether RAM or FLASH build has been chosen. The “28004x_dcsm_lnk.cmd”,
“f28004x_codestartbranch.asm”, “f28004x_dcsm_z1otp.asm” and “f28004x_dcsm_z2otp.asm”
files are included to support the “Flash_Lib” configuration. Select the FLASH configuration to
enable the program to boot from FLASH without the JTAG emulator.

3. In the “CCS Edit” view, select the “Build” hammer to build the project as shown in Figure 15;

alternatively, right-mouse click the project in the Project Explorer pane and select “Project ->Build
Project.” To build all the projects in the workspace, select “Project -> Build All.”

Figure 15: The CCS "Build" hammer icon

After the build is complete, a message will appear in the “Console” window indicating the build
status for the selected project. If the build failed, check the “Problems” window for errors. Resolve

21

the errors and repeat the build process. Verify that the project has built successfully. If no errors
exist in the “Problems” window, the project is built and ready to be loaded and run.

4. Select the green bug icon that symbolizes “Debug” as shown in Figure 16. This button should
automatically change the CCS perspective to “CCS Debug” as well as load the .out file to the
target.

Figure 16: The CCS "Debug" bug icon

Notice the “CCS Debug” icon in the upper right-hand corner indicates that the perspective has
changed to the “CCS Debug” view. After the program is loaded, the console window will indicate
that the Memory Map Initialization is complete. At this point, the program ran through the C-
environment initialization routine and stopped at main(). The source file containing main() will
open with a blue arrow pointing to the first line of code to be executed. The program has now
been successfully loaded on to the target board and it is ready to run.

5. Select “Real-Time Silicon Mode,” as shown in Figure 17 which looks like a clock on the icon bar,

and choose “Yes” if a small window pops up as shown in Figure 18.

Figure 17: The CCS "Real-Time Mode" clock icon

Figure 18: The pop-up window querying the option to enable real-time mode

6. Select “Resume,” as shown in Figure 19 which looks like a yellow vertical line with a green

triangle beside it, to begin executing program code.

22

Figure 19: The "Resume" play icon

7. Open the command file “\solutions\common\sensorless_foc\debug\is01_intro_hal.js” via “View-
>Scripting Console”, this will add the variables that will be using for this project into the watch
window.

8. At this point, one of the LEDs on the controlCARD or LaunchPad board will blink. The blinking
LED verifies that code in the mainISR() is being executed.

9. Lab project “is01_intro_hal” is complete.

Conclusion

The HAL object was created to set up the MCU and inverter hardware. Project “is01_intro_hal”
demonstrated how to use the HAL object to setup and initialize the MCU and inverter. Future labs will
build on this functionality to demonstrate and enable motor control using InstaSPIN.

23

is02_offset_gain_cal – Current and Voltage Offsets
Calibration

Abstract

Lab project “is02_offset_gain_cal” introduces the concept of current and voltage offsets for motor control,
which are important to ensure the sampling quality of current and voltage feedback signals. Also
introduced in this lab is the option to bypass offset calibration to reduce the startup time.

Introduction

For typical usage, an offset calibration takes place after InstaSPIN is first enabled. During
calibration, offsets for the current and voltage feedback circuits are measured and recorded.
After initial board calibration, these offset values should be updated for your specific hardware in
the according to the user header file, as to make them available to the controller after project
compilation. During motor operation, these offsets are subtracted from the ADC measurements
to provide accurate voltage and current feedback to the InstaSPIN estimator and vector
controller.

Prerequisites

Lab project “is02_offset_gain_cal” assumes knowledge of the project “is01_intro_hal”.

Objectives Learned

 Implement offset recalibration as needed depending on the quality of the hardware components
used in a particular board, and use offset recalibration to verify your specific hardware.

 Write current and voltage offsets to the HAL object to reduce calibration time before motor
startup.

 Bypass offset calibration, reducing calibration time before motor startup.

Detailed Description

In this lab, when the InstaSPIN controller is enabled and identification or running begins, the first task
performed by the controller state machine is offset calculation. The estimator (EST) state stays in the idle
state (EST_State_Idle) during the offset calculation state, and the motor is at standstill.

The offsets calculation is done in order to set the zeros for current measurements and voltage
measurements. In order to calculate the offsets, a 50% duty cycle is applied to the ePWM pins for a
preconfigured period of time. The time in which these offsets are calculated can be changed by the user,
and it is configured in the “is02_offset_gain_cal.c” source file as shown below.

uint32_t gOffsetCalcWaitTime = 50000;

24

After initial board calibration, the voltage and current offset values should be updated in user.h for your
specific hardware. These initial offset parameters can then be used to bypass offset calibration in future
projects. The user.h current and voltage offset definitions for are shown below:

//! \brief ADC current offsets for A, B, and C phases
#define IA_OFFSET_A (-21.428) // ~=0.5*USER_ADC_FULL_SCALE_CURRENT_A
#define IB_OFFSET_A (-21.428) // ~=0.5*USER_ADC_FULL_SCALE_CURRENT_A
#define IC_OFFSET_A (-21.428) // ~=0.5*USER_ADC_FULL_SCALE_CURRENT_A

//! \brief ADC voltage offsets for A, B, and C phases
#define VA_OFFSET_V (0.990514159) // ~=1.0
#define VB_OFFSET_V (0.986255884) // ~=1.0
#define VC_OFFSET_V (0.983381569) // ~=1.0

Refer to “Section 5.2: Hardware Prerequisites” of the InstaSPIN User’s Guide, the section in question
outlines the need to set the correct sign, positive or negative, of the current offset. The sign is to be based
on the current feedback polarity of hardware board being used. The correct polarity of the current
feedback is necessary to ensure the microcontroller has an accurate current measurement. The sign is
negative for a positive feedback signal input; conversely, the sign is positive for a negative feedback
signal input. Once the offset calibration is complete, the result will be stored in the motorVars.offsets_I_A
and motorVars.offsets_V_V struct members.

Project Files

Compared to project “is01_intro_hal”, project “is02_offset_gain_cal” needs additional source
files for offset calibration. These are shown in Table 6:

Table 6: New files included for offset calibration

Includes

A description of the included files for project “is02_offset_gain_cal” is shown in the below tables.
Note that labs.h is common across all InstaSPIN projects, meaning there will be more included
header files than needed for the project “is02_offset_gain_cal” as shown in Table 7.

labs.h

 modules

 math.h Common math conversions, defines, and shifts

 platforms

user.h

Contains the motor control initialization data for the CTRL, HAL,
and EST modules

Table 7: Required header files for offset calibration routines

is02_offset_gain_cal

offset.c

Contains the offset code used to determine the voltage and
current feedback offsets.

filter_fo.c

Contains code for a first-order filter used for offset
calibration.

25

Global Object and Variable Declarations

Global objects and declarations listed in the table below are necessary to drive initialization.
Some additional object and variable declarations are used for display or information purposes in
this lab.

globals

 MOTOR_Vars_t motorVars
Contains flags and variables necessary
to turn on and implement InstaSPIN.

 FILTER_FO_Handle filterHandle[6]
The handles for the 3 current and 3
voltage filters used for offset calculation

 FILTER_FO_Obj filter[6]
The 3 current and 3 voltage filter objects
needed for offset calculation

 uint32_t offsetCalcCount
Counter used to count the wait time for
offset calibration, unit: ISR cycles

 uint32_t offsetCalcWaitTime
Wait time setting for current/voltage
offset calibration, unit: ISR cycles

 bool flagEnableOffsetCalibration
The enable flag for offset calibration
always set for debug purposes.

Table 8: Global object and variable declarations necessary for lab “is02_offset_gain_cal”

The offset calibration feature allows recalculating voltage and current offsets as desired while the motor is
at standstill. The approach taken to calculate the offsets uses 6 first order filters, which are declared at
the top of is02_offset_gain_cal.c program code.

FILTER_FO_Handle filterHandle[6]; //!< the handles for the 3-current and 3-voltage filters
for offset calculation

FILTER_FO_Obj filter[6]; //!< the 3-current and 3-voltage filters for offset
calculation

Next, the filters are initialized using the cutoff frequency specified in user.h via USER_OFFSET_POLE_rps.

//! \brief Defines the pole location for the voltage and current offset estimation, rad/s

#define USER_OFFSET_POLE_rps ((float_t)(20.0))

The offsets are calculated only when the enable flag, motorVars.flagEnableOffsetCalc is set;
this logic is checked in the ISR as shown in runOffsetsCalculation() in “is02_offset_gain_cal.c”.
Offset calculation will be bypassed, and the initial offsets instead read from “user.h” when
“motorVars.flagEnableOffsetCalc” is equal to “false.”

26

The runOffsetsCalculation() function is described in “is02_offset_gain_cal.c”. The PWM duty
cycles are set to 50% by writing 0 to the period (Tabc) values, and the filters are run. Once the
preset time has elapsed, the calculated offsets are stored in global variables
motorVars.offsets_I_A.value and motorVars.offsets_V_V.value. A block diagram of the lab
“is02_offset_gain_cal” is shown in Figure 20.

Figure 20: Block diagram of the “is02_offset_gain_cal” lab

Lab Procedure

1. Connect an InstaSPIN-enabled C2000 microcontroller controlCARD or LaunchPad to a

supported EVM or Booster Pack, connect a supported motor type, and supply power to the kit.
For this write-up, the BOOSTXL-DRV8320RS RevA kit and LAUNCHXL_F280049C
LaunchPad were used.

 else if(motorVars.flagEnableOffsetCalc == true)

 {

 runOffsetsCalculation();

 // Below two lines code only used in this lab for hardware verification

 // these two lines code will be removed for later lab projects

 if(flagEnableOffsetCalibration == true)

 motorVars.flagEnableOffsetCalc = true;

 }

27

2. Import project “is02_offset_gain_cal” by choosing “Project->Import CCS Projects…,” as was
done for previous lab projects. Select “is02_offset_gain_cal” at the top of the “Project Explorer”
tab, and use “Project->Build Configuration->Set Active->2 Ram_Lib” to run this code from
RAM.

3. In the “CCS Edit” view, click the “Build” hammer, or select “Project ->Build Project” to build

project “is02_offset_gain_cal”. To build all the projects in the workspace, select “Project ->
Build All.” Connect to the target and load the .out file.

 Open the Javascript file
“\solutions\common\sensorless_foc\debug\is02_offset_gain_cal.js” via the “View-
>Scripting Console.” This will add the variables used for this project into the
“Expressions” watch window

 Click “Real-Time Silicon Mode” to enable the real-time debugger

 Click the run button.

 Enable “Continuous Refresh” on the “Expressions” watch window.

4. Check the initial offset settings as shown in Figure 21; these values were loaded from the

voltage and current definitions found in user.h. The current offset value is equal to half of the
USER_ADC_FULL_SCALE_CURRENT_A value, as defined in the user header file.

Figure 21: Initial values for current and voltage offsets

View the current and voltage sampling ADC results in the Code Composer “Registers”
tab of the “CCS Debug” pane, as shown in Figure 22. For this write-up,
AdcaResultRegs.ADCRESULT0, AdcbResultRegs.ADCRESULT0, and
AdccResultRegs.ADCRESULT0 are the motor phase current sampling results; these
three values are equal to half of the maximum ADC converter value since the
reference voltage of amplification circuits is 1.65V in 3.3V systems.
AdcaResultRegs.ADCRESULT1, AdcbResultRegs.ADCRESULT1,
AdccResultRegs.ADCRESULT1 are the motor phase voltage sampling results, and
these values are near 0 since there is no voltage output on the motor phases.
AdcbResultRegs.ADCRESULT2 is for the DC bus voltage sampling result, which is
converted to real voltage and stored in adcData.dcBus_V. adcData.dcBus_V
represents the actual DC bus input voltage.

Please note that the ADC modules and result registers may be different than this
guide depending on which hardware board is being used.

28

Figure 22: ADC Result registers tab in CCS "Registers" window

5. To start the project, set the variable “motorVars.flagEnableSys” equal to 1 in the
“Expressions” watch window. The PWM duty cycles are set to 50% and the PWM compare
register (CMPA) value is equal to half of the full-scale period (TBPRD) as shown in Figure 23.

Figure 23: PWM and period values as shown in the "Expressions" watch window

Observe the ADC Result registers and the converted feedback values for current and
voltage in the adcData data structure. As seen in each adcData.I_A.value[] value is
approximately half of the USER_ADC_FULL_SCALE_CURRENT_A value; similarly, the
adcData.V_V.value[] values are approximately half of the adcData.dcBus_V value as
shown in Figure 24.

Figure 24: Current and Voltage without Offset as shown in the "Expressions" watch window

Note: There may be hardware issues if the observed values are not similar to the above.
If the observed values differ greatly, it may be necessary to check the current and/or
voltage sampling circuits, or PWM drive circuit of the inverter, to determine if any layout
issues are present.

6. Once finished, change the “flagEnableOffsetCalibration” value from 1 to 0 to complete offset

calibration. The final offset value will be updated in motorVars.offsets_I_A and
motorVars.offsets_V_V, shown in Figure 25. For reference, the “flagEnableOffsetCalibration”
variable is only used in this lab project for offset calibration debug. In later projects, offset
calibration will be completed automatically.

29

Figure 25: Final offset values

7. Copy and paste the motorVars.offsets_I_A. and motorVars.offsets_V_V from the Watch
Window into the corresponding #define statements in the file user.h as mentioned above.
Storing the voltage and current offsets for future bypassing the offset calibration process if the
variable “motorVars.flagEnableOffsetCalc” is set to “0”.

8. Stop the motor when finished experimenting by:

 Set the variable “motorVars.flagEnableSys” to 0, disabling the PWM output.

 Disable “Real-Time Control” and stop the debugger.

 Turn off the power supplied to the drive kit

Conclusion

Lab project “is02_offset_gain_cal” demonstrated how to implement offset calibration, and use the offset
calibration process to verify the current and voltage sampling circuits of the hardware board. Additionally,
this write-up discussed how to set an inverter’s current and voltage offset values in a “user.h” file in order
to bypass offset calibration.

30

is03_hardware_test – Open Loop Control for Hardware
Integrity Verification

Abstract

The SVM that is used by InstaSPIN is capable of saturating to a pre-specified duty cycle. When using a
duty cycle over 100.0%, the SVM is considered to be in the over-modulation region. When in the over-
modulation region, current shunt measurement windows become small or even disappear. This lab will
show how to re-create the currents that cannot be measured due to high duty cycles during SVM over-
modulation.

Introduction

Lab “is03_hardware_test” demonstrates using an angle generator module to simulate the flux angle
based on the motor target frequency, and utilizes a volts/Hertz profile to command the resultant three-
phase motor voltage. Although the FAST estimator is not used to generate the output angle here, lab
“is03_hardware_test” will test several InstaSPIN-FOC modules through the scalar volts/Hertz control.

Prerequisites

Lab “is03_hardware_test” assumes knowledge of up to the lab “is02_offset_gain_cal”.

Objectives Learned

 How to implement a scalar volts/Frequency motor control scheme.

 How to test the following InstaSPIN-FOC modules using a volts/Hertz control technique

o Pulse-Width Modulation (PWM) module

o Analog-to-Digital Converter (ADC) module

o Clarke transform (CLARK) module

o Park transform (PARK) module

o Space Vector Generator (SVGEN) module

Background

In order to achieve better dynamic performance, a more complex control scheme needs to be applied for
control of ACI or PM motors. Scalar control refers to a simpler form of motor control using non-vector
controlled drive schemes. An AC motor can be led to steady state by either voltage fed, current
controlled, or speed controlled schemes

In V/Hz control, the speed of the AC motor is controlled by an adjustable magnitude of stator voltages and
frequencies. The V/Hz control is applied in such a way that the flux is always maintained at the desired
value during steady-state, and the torque becomes independent of the supply frequency. The stator
voltage to frequency ratio is usually based on the rated values of these variables. The typical V/Hz profile,
as this ratio is known, is shown in Figure 26. Basically, there are three-speed ranges in the V/Hz profile
as follows:

31

 At 0-fc Hz, a voltage is required, so the voltage drop across the stator resistance cannot be
neglected and must be compensated for by increasing Vs. As a result, the V/Hz profile is not
linear. The cutoff frequency (fc) and the suitable stator voltages may be analytically computed
from the steady-state equivalent circuit with Rs ≠ 0.

 At fc-frated Hz, the profile follows a constant V/Hz relationship.

 At frequencies are greater than frated Hz, the constant Vs/f ratio cannot be satisfied due to the limit
of DC bus input voltage.. In this region, the resulting air gap flux would be reduced, unavoidably
causing the decrease of developed torque. This region is usually called the “constant power
region” and a constant (“flat”) V/Hz curve is implemented to the output voltage corresponding to
the motor frequencies here.

Figure 26: Stator voltage versus frequency profile under V/Hz control

In this lab, the profile is modified, as shown in Figure 27, by imposing a lower limit on frequency. This
approach is acceptable in applications such as fan and blower drives where the speed response at low
frequencies is not critical. Since the rated voltage, which is also the maximum voltage, is applied to the
motor at rated frequency, only the rated minimum and maximum frequency information are needed to
implement the v/f profile.

The command frequency is allowed to go below the minimum frequency, fmin, with the output voltage
saturating at a minimum value, Vmin. Also, when the command frequency is higher than the maximum
frequency, fmax, the output voltage is saturated at a maximum value, Vmax.

Figure 27: Modified v/f profile

32

Lab “is03_hardware_test” uses a ramp generator module to generate the angle based on the motor target
frequency as Equation 1. For this lab, the variable StepAngleMax is used to determine the minimum
period (1/ sampling loop frequency) of the ramp signal. Adding a fixed step value to the Angle variable
causes the value in Angle to cycle at a constant rate.

�����(� + 1) = �����(�) + ������������ ∗ � Equation 1

For this implementation, the maximum step size per sampling period is calculated as Equation 2:

������������ = 2� × �� Equation 2

where Ts is the sampling period (sec).

At the end limit, the value in Angle simply wraps around and continues at the next modulo value given by
the step size. For a given step size, the frequency of the ramp output (in Hz) is given by Equation 3:

� = ��������� ∗ �� Equation 3

where fs is the sampling loop frequency in Hz..

PWMDAC

The PWMDAC module can be used to monitor variables as a virtual oscilloscope that is converted into
PWM signals output by the EPWMxA/B channels. The output represents the variable as an analog signal
after the channel outputs of the PWMxA/B pins are passed through external RC low-pass filters.
Instantiate the PWMDAC module using the following steps:

Step 1: Declare a PWMDAC object in “is03_hardware_test.c”.

Step 2a: Set the correct offset and gain for each PWMDAC channel.

Note: Follow step 2a to monitor the ANGLE_GEN for rotor angle and SVGEN for PWM output. Steps 2b
and 2c, shown later in this guide, will allow you to monitor a different set of variables using the PWMDAC
module.

 // the PWMDAC variable
 HAL_PWMDACData_t pwmDACData;

33

Step 3a: Call the PWMDAC module to compute the compare value of PWM from the previous step

Following steps 2a and 3a, the output waveforms of the PWMDACs are as shown in Figure 28.

Ch1 (Yellow) -> PWMDAC1: Rotor angle, the output of angle generator module
Ch2 (Gree) -> PWMDAC2: SVGEN output for phase A
Ch3 (Blue) -> PWMDAC3: SVGEN output for phase B
Ch4 (Pink) -> PWMDAC4: SVGEN output for phase C

 // set DAC parameters
 pwmDACData.periodMax = PWMDAC_getPeriod(halHandle->pwmDACHandle[PWMDAC_Number_1]);

 pwmDACData.ptrData[0] = &angleFoc_rad;
 pwmDACData.ptrData[1] = &pwmData.Vabc_pu.value[0];
 pwmDACData.ptrData[2] = &pwmData.Vabc_pu.value[1];
 pwmDACData.ptrData[3] = &pwmData.Vabc_pu.value[2];

 pwmDACData.offset[0] = 1.0;
 pwmDACData.offset[1] = 0.5;
 pwmDACData.offset[2] = 0.5;
 pwmDACData.offset[3] = 0.5;

 pwmDACData.gain[0] = -MATH_ONE_OVER_TWO_PI;
 pwmDACData.gain[1] = 1.0;
 pwmDACData.gain[2] = 1.0;
 pwmDACData.gain[3] = 1.0;

 // connect inputs of the PWMDAC module.
 HAL_writePWMDDACData(halHandle,&pwmDacData);

34

Figure 28: Rotor Angle and SVGEN output waveform

Note: Follow Step 2b to monitor the 3 phase motor current samples.

Step 2b: Set the correct offset and gain for each PWMDAC channel as shown below. Please follow step
3a above to again connect the PWMDAC inputs to the variables to be monitored. Following these steps,
the PWMDAC output waveform is as shown in Figure 29.

 pwmDACData.ptrData[0] = &angleFoc_rad;
 pwmDACData.ptrData[1] = &adcData.I_A.value[0];
 pwmDACData.ptrData[2] = &adcData.I_A.value[1];
 pwmDACData.ptrData[3] = &adcData.I_A.value[2];

 pwmDACData.gain[0] = -MATH_ONE_OVER_TWO_PI;
 pwmDACData.gain[1] = 1.0/USER_ADC_FULL_SCALE_CURRENT_A;
 pwmDACData.gain[2] = 1.0/USER_ADC_FULL_SCALE_CURRENT_A;
 pwmDACData.gain[3] = 1.0/USER_ADC_FULL_SCALE_CURRENT_A;

35

Figure 29: Three phase current samples and measured current via external current probe

Where
 Ch1 (Yellow) -> PWMDAC2: Phase A current sampling from ADC
 Ch2 (Gree) -> PWMDAC3: Phase B current sampling from ADC
 Ch3 (Blue) -> PWMDAC4: Phase C current sampling from ADC
 Ch4 (Pink) ->Oscilloscope: Phase A current waveform with current probe

Note: Follow Step 2c to monitor the 3 phase motor voltage samples.

Step 2c: Set the correct offset and gain for each PWMDAC channel. Assign the PWMDAC inputs as

shown in step 3a above; following, the output waveform is as shown in Figure 30.

 pwmDACData.ptrData[0] = &angleFoc_rad;
 pwmDACData.ptrData[1] = &adcData.I_A.value[0];
 pwmDACData.ptrData[2] = &adcData.I_A.value[1];
 pwmDACData.ptrData[3] = &adcData.I_A.value[2];

 pwmDACData.gain[0] = -MATH_ONE_OVER_TWO_PI;
 pwmDACData.gain[1] = 1.0/USER_ADC_FULL_SCALE_CURRENT_A;
 pwmDACData.gain[2] = 1.0/USER_ADC_FULL_SCALE_CURRENT_A;
 pwmDACData.gain[3] = 1.0/USER_ADC_FULL_SCALE_CURRENT_A;

36

Figure 30: Three-phase voltage sample and measured current via external current probe

Where
 Ch1 (Yellow) -> PWMDAC2: Phase A voltage sampling from ADC
 Ch2 (Gree) -> PWMDAC3: Phase B voltage sampling from ADC
 Ch3 (Blue) -> PWMDAC4: Phase C voltage sampling from ADC
 Ch4 (Pink) ->Oscilloscope: Phase A current waveform with current probe

DATALOG_DMA

Lab “is03_hardware_test” uses the datalog module to store variable data and implements a virtual
oscilloscope using the CCS graphing tool to monitor the input/output waveforms.

Setup and use the graph window

The following steps describe how to initialize the CCS graphing tool:

1. Select “Tools->Graph->Dual time” from the CCS menu bar. Select “Import” and choose the

appropriate graph configuration file from “..\solutions\common\sensorless_foc\debug ->

is03_hardware_test_d12.graphProp”.

2. Select “Tools->Graph->Single time” from the CCS menu bar. Select “Import” and choose the

appropriate graph configuration file from “..\solutions \ common \ sensorless_foc \debug ->

is03_hardware_test_d34.graphProp”.

37

Figure 31: Graph Tool properties configuration menu

When using the graph tool, there are several ways of updating the window. These must be selected for

each graph A and B.

 Press the button icon to reset the current graph window to auto fit the new scale of the

data array.

 Press the button icon to refresh the current graph window with the current values written

into the data array. This button needs to be pressed every time you have received new data, to

show the new graph.

 Press the button icon to enable automatic graph update, every time the data array

receives new data.

 Press the button icon to refresh the graph every time you halt the debug session.

3. For this step, follow part (a) to view the SVGEN graph data, part (b) for phase current sampling
data, and part (c) for the phase voltage sampling data

a. The inputs necessary to connect the SVGEN module to the datalog are shown below, and
the SVGEN output is shown in

b. Figure 32.

38

Figure 32: datalog graphs for SVGEN output

c. The inputs necessary to connect the sampled phase currents to the datalog are shown below,

and the rotor angle and sampled currents are shown in Figure 33.

Figure 33: datalog graphs for rotor angle and three phase current ADC values

 // set datalog parameters
 datalogObj->iptr[0] = &angleFoc_rad;
 datalogObj->iptr[1] = &pwmData.Vabc_pu.value[0];
 datalogObj->iptr[2] = &pwmData.Vabc_pu.value[1];
 datalogObj->iptr[3] = &pwmData.Vabc_pu.value[2];

 // set datalog parameters
 datalogObj->iptr[0] = &angleFoc_rad;
 datalogObj->iptr[1] = &adcData.I_A.value[0];
 datalogObj->iptr[2] = &adcData.I_A.value[1];
 datalogObj->iptr[3] = &adcData.I_A.value[2];

39

d. The necessary inputs for displaying the phase voltage samples via the datalog module are
shown below, and the angle and ADC voltage samples are shown in Figure 34.

Figure 34: Datalog graphs of rotor angle and three-phase voltage ADC samples

Project Files

Compared to lab “is02_offset_gain_cal”, the lab “is03_hardware_test” adds new source files, as shown in
Table 9.

is03_hardware_test

 angle_gen.c Defines the angle generator module routines

 vs_freq.c Defines the volts/Hertz profile module routines

Table 9: New files that must be included in lab “is03_hardware_test”

 // set datalog parameters
 datalogObj->iptr[0] = &angleFoc_rad;
 datalogObj->iptr[1] = &adcData.V_V.value[0];
 datalogObj->iptr[2] = &adcData.V_V.value[1];
 datalogObj->iptr[3] = &adcData.V_V.value[2];

40

Includes

A description of the included files for lab “is03_hardware_test” is shown in the below Table 10. Note that
“labs.h” is common across the project; as a result, there will be more included files than needed for this
lab.

labs.h
The header file containing all included files used in “is03_hardware_test.c”. Defines the
structures, global initialization, and functions used in this lab.

 modules

 angle_gen.h
Contains the public interface to the angle generator module
routines

 vs_freq.h Contains the public interface to the volts/Hertz module routines

 platforms

 hal.h Device setup and peripheral drivers. Contains the HAL object.

 user.h
Contains the motor control initialization data for the CTRL, HAL,
and EST modules

Table 10: Important header files needed for lab “is03_hardware_test”

Global Object and Variable Declarations

Global objects and declarations listed in

globals

MOTOR_Vars_t motorVars

Contains all of the flags and variables to turn on
and adjust InstaSPIN.

ANGLE_GEN_Handle
ANGLE_GEN_Obj

angle_genHandle
angle_gen

The object and handle of an Angle Generator
struct.

VS_FREQ_Handle
VS_FREQ_Obj

vs_freqHandle
vs_freq

The object and handle of a Volts/Hertz Profile
struct.

 HAL_DacData_t dacData The object of a PWMDAC.
Table 11
 below are those necessary for the lab setup. Other object and variable declarations are used for display
or information purposes for this lab.

globals

MOTOR_Vars_t motorVars

Contains all of the flags and variables to turn on
and adjust InstaSPIN.

ANGLE_GEN_Handle
ANGLE_GEN_Obj

angle_genHandle
angle_gen

The object and handle of an Angle Generator
struct.

VS_FREQ_Handle
VS_FREQ_Obj

vs_freqHandle
vs_freq

The object and handle of a Volts/Hertz Profile
struct.

 HAL_DacData_t dacData The object of a PWMDAC.

Table 11: Global object and variable declarations

Initialization and Setup

41

This section covers functions needed to set up the microcontroller and the FOC software. For a more in-
depth explanation of the parameters and return values, go to the motor control section of the InstaSPIN-
FOC User’s Guide. The below snippets of code demonstrate setting up the angle generator module and
volts/frequency profile module.

Background

mainISR

The main ISR function is a time critical function that performs the FOC loop. A block diagram of lab
“is03_hardware_test” is shown in Figure 35. The main ISR function calls the Clarke module, reads the
ADC, performs ANGLE_GEN_run, VS_FREQ_run, and inverse Park transform, runs SVGEN and finally
writes to the PWM for scalar control.

Figure 35: Block diagram of the volt/Hz motor control technique used in this lab

 //
 // initialize the angle generate module
 //
 angleGenHandle = ANGLE_GEN_init(&angleGen, sizeof(angleGen));
 ANGLE_GEN_setParams(angleGenHandle, userParams.ctrlPeriod_sec);

 //
 // initialize the Vs per Freq module
 //
 VsFreqHandle = VS_FREQ_init(&VsFreq, sizeof(VsFreq));
 VS_FREQ_setVsMagPu(VsFreqHandle, userParams.maxVsMag_pu);
 VS_FREQ_setMaxFreq(VsFreqHandle, USER_MOTOR_FREQ_MAX_HZ);
 VS_FREQ_setProfile(VsFreqHandle,
 USER_MOTOR_FREQ_LOW_HZ, USER_MOTOR_FREQ_HIGH_HZ,
 USER_MOTOR_VOLT_MIN_V, USER_MOTOR_VOLT_MAX_V);

42

Lab Procedure

**Please note: It is possible to experience motor vibration while running this lab; as this lab is intended
for hardware verification, it is not an issue to see this effect in this lab.

Before running a motor with lab “is03_hardware_test”, changes are needed for the “user.h” header file.

Open user.h following these steps:

1. Expand user.c from the CCS “Project Explorer” window
2. Right-mouse click on user.c and select “Open”, this opens the file user.c
3. Right-mouse click on the highlighted “user.h” and select “Open Declaration”, this opens user.h
4. Opening the CCS “Outline View” will provide an outline of the user.h contents

For a new motor, it may be necessary to change the below parameters to ensure proper project
execution.

#define USER_MOTOR_FREQ_MIN_HZ (5.0) // Hz
#define USER_MOTOR_FREQ_MAX_HZ (600.0) // Hz

#define USER_MOTOR_FREQ_LOW_HZ (20.0) // Hz
#define USER_MOTOR_FREQ_HIGH_HZ (400.0) // Hz
#define USER_MOTOR_VOLT_MIN_V (4.0) // Volt
#define USER_MOTOR_VOLT_MAX_V (24.0) // Volt

The structure ‘motorVars’ contains the variables necessary to run lab “is03_hardware_test” project and
has been defined in labs.h. A script has been written to easily add these variables to the CCS “Real-Time
Watch Window.”

 Select the scripting tool from the debugger menu via “View->Scripting Console”.
 The scripting console window will appear somewhere in the debugger.

 Open the script by clicking the icon that is in the upper right corner of the scripting tool.
 Select the file “\solutions\common\sensorless_foc\debug\is03_hardware_test.js”.
 The appropriate motor variables are now automatically populated into the watch window as

shown in the following figure.
 The variables should look like Figure 36

o Note the number format.
o For example, if “motorVars.flagEnableSys” is displayed as a character, right- click on it

and select “Number Format -> Decimal”

43

Figure 36: Expressions watch window in project “is03_hardware_test”

The previous discussion has been an investigation and initialization of the volts/Hz control scheme
employed in this lab. The steps to run the motor using the volts/Hz are now as follows:

1. With the motor disconnected, power on the EVM kit and import the lab “is03_hardware_test”
project. From the previous write-up sections, follow the PWMDAC and DATALOG module
instruction to monitor signals from either ANGEL_GEN or SVGEN modules.

 Enable real-time debugger. .
 A dialog box will appear, select “Yes”.

 Click the “Run” button .

 Enable “Continuous Refresh” on the watch window. .
 Set the variable “motorVars.flagEnableSys” equal to 1.
 Set the variable “motorVars.flagRunIdentAndOnLine” equal to 1.

2. Power off the EVM kit, and follow the PWMDAC and DATALOG module instructions to now

monitor the discussed ADC signals.
 Set the variable “motorVars.flagRunIdentAndOnLine” to 0 to disable the PWM outputs.
 Turn off “Real-Time Control” and stop the debugger.
 Power off the EVM kit

3. Connect the motor and power on the EVM kit to now view the ADC signals
 Enable real-time debugger again.
 Set the variable “motorVars.flagEnableSys” and “motorVars.flagRunIdentAndOnLine”

equal to 1 again.

44

 Set the variable “motorVars.speedRef_Hz” to a different value to ensure the motor runs
smoothly.

4. Set “motorVars.flagRunIdentAndOnLine” and “motorVars.flagEnableSys” equal to 0 and power off
the EVM kit when finished the experimenting.

Conclusion

Lab “is03_hardware_test” demonstrated how to implement a scalar volts/frequency control to test the
integrity of the PWM and ADC hardware modules. Additionally, the PWMDAC and Datalog functions were
used to verify the correct operation of the SVGEN, Park, and PWM modules.

45

is04_signal_chain_test – Current Closed Loop Control for
Signal Chain Integrity Verification

Abstract

This lab implements a scalar current/frequency motor control technique to test the signal chain integrity—
mainly the hardware current/voltage sensing and controller ADC module. Additionally, lab
“is04_signal_chain_test” employs a closed current loop, open speed loop PI control topology. While
compatible with Texas Instruments’ hardware, this lab is intended for custom hardware verification.

Introduction

Lab “is04_signal_chain_test” shows an example without using the FAST estimator. This lab uses an
angle generator module to generate the angle based on target frequency of the motor, and a closed
current loop to control Id and Iq to run a motor. The objective is to test the InstaSPIN-FOC modules
through current closed loop control without rotor position information. Tested software modules include
PI, PWM, ADC, CLARK, PARK I-PARK and SVGEN.

Prerequisites

Assumes knowledge of up to the lab “is03_hardware_test”.

Objectives Learned

 How to implement a current closed loop control of motor without estimator angle.

 How to test ADC sampling and some InstaSPIN-FOC modules

PWMDAC

As in lab “is03_hardware_test”, this lab “is04_signal_chain_test” also uses the PWMDAC module to view
critical FOC signals from the ADC or PI modules.

Step 1: Follow the same instructions for step 1 as shown in the lab project “is04_signal_chain_test” guide.
Step 2: Set the correct offset and gain for each PWMDAC channel as shown below.

46

Step 3: Follow the same instructions for step 2 as shown in the lab project “is04_signal_chain_test” guide.

In lab “is04_signal_chain_test”, we connect current reference and feedback variables to the PWMDAC
module and monitor the output waveforms as shown in Figure 37.

Figure 37: Id and Iq reference and feedback current waveforms

Where
 Ch1-> PWMDAC1: Iq reference
 Ch2-> PWMDAC2: Iq feedback
 Ch3-> PWMDAC3: Id reference
 Ch4-> PWMDAC4: Id feedback

 pwmDACData.ptrData[0] = &pi_Iq.refValue;
 pwmDACData.ptrData[1] = &pi_Iq.fbackValue;
 pwmDACData.ptrData[2] = &pi_Id.refValue;
 pwmDACData.ptrData[3] = &pi_Id.fbackValue;

 pwmDACData.offset[0] = 0.5;
 pwmDACData.offset[1] = 0.5;
 pwmDACData.offset[2] = 0.5;
 pwmDACData.offset[3] = 0.5;

 pwmDACData.gain[0] = 1.0/USER_ADC_FULL_SCALE_CURRENT_A;
 pwmDACData.gain[1] = 1.0/USER_ADC_FULL_SCALE_CURRENT_A;
 pwmDACData.gain[2] = 1.0/USER_ADC_FULL_SCALE_CURRENT_A;
 pwmDACData.gain[3] = 1.0/USER_ADC_FULL_SCALE_CURRENT_A;

47

DATALOG_DMA

As in lab project “is03_hardware_test”, the lab project “is04_signal_chain_test” uses the datalog and
graph tools to monitor the input/output waveforms of this project.

Step 1: Select “Tools->Graph->Dual time” in the CCS menu. Choose “Import” and select

“..\solutions\common\ sensorless_foc \debug->is04_signal_chain_test_d12.graphProp”

Step 2: Select “Tools->Graph->Dual time” in the CCS menu. Choose “Import” and select

“..\solutions\common\ sensorless_foc \debug->is04_signal_chain_test_d34.graphProp”

Step 3: Connect the inputs of the datalog module as shown in the code snippet below. The datalog

graphs for Id and Iq PI reference and feedback signals are shown in Figure 38.

Figure 38: Id and Iq reference and feedback current datalog waveforms

Project Files

No new project files in the lab project “is04_signal_chain_test” compared to the lab project
“is03_hardware_test”.

Includes

No new includes in files in the lab project “is04_signal_chain_test” compared to the lab project
“is03_hardware_test”.

 // set datalog parameters
 datalogObj->iptr[0] = &pi_Iq.refValue;
 datalogObj->iptr[1] = &pi_Iq.fbackValue;
 datalogObj->iptr[2] = &pi_Id.refValue;
 datalogObj->iptr[3] = &pi_Id.fbackValue;

48

Global Object and Variable Declarations

There are no new global object and variable declarations.

Initialization and Setup

Nothing has changed in initialization and setup from the previous project “is04_signal_chain_test”.

Background

The background loop makes use of functions that allow user interaction with the FOC software.

mainISR

A block diagram of the mainISR used in lab project “is04_signal_chain_test” is shown in Figure 39.

Figure 39: Block diagram of scalar motor control technique with current closed loop

Lab Procedure

49

**Please note: It is possible to experience motor vibration while running this lab; as this lab is intended
for hardware verification, it is not an issue to see this effect.

Step 1: Connect the motor and power on the EVM kit. Start the lab as shown in previous write-ups, and
follow the PWMDAC and DATALOG instructions to monitor signals from the SVGEN module.

 Enable the real-time debugger. .
o A dialog box will appear, select “Yes”.

 Click the run button. .

 Enable continuous refresh on the watch window. .

 Set the variable “motorVars.flagEnableSys” equal to 1.
 Set the variable “motorVars.flagRunIdentAndOnLine” equal to 1.
 Set the variables “motorVars.speedRef_krpm”, “motorVars.IdSet_A” and “motorVars.IqSet_A” to

different values to ensure the motor runs smoothly.

Step 2: Power off the EVM kit, change the PWMDAC and DATALOG configurations to monitor signals
from ANGEL_GEN and ADC modules instead of SVGEN.

Step 3: Once done experimenting with the scalar control and are satisfied with the performance of the
signal chain, disable the debugger to end the lab.

 Set the variable “motorVars.flagRunIdentAndOnLine” equal to 0 to disable the PWM output
 Turn off real-time control and stop the debugger
 Power off EVM kit

Conclusion

Lab “is04_signal_chain_test” demonstrated how to implement a current closed loop scalar control to test
the integrity of the signal chain hardware. The intended result is verification of the signal chain hardware
abstraction layer (HAL) setup, specifically the ADC module for current sensing. While functional for
existing Texas Instruments’ EVMs, this lab should mainly be used to verify ADC functionality on custom
hardware not provided in the MotorControl SDK. Additionally, the PWMDAC and Datalog functions were
used to verify the PI, PWM, ADC, CLARK, PARK, I-PARK and SVGEN modules.

50

is05_motor_id – Motor Parameters Identification

Abstract

Motor parameter identification is an InstaSPIN-FOC feature that allows the identification of the
parameters needed by the estimator to sensorless control the motor during closed loop operation. The
motor identification feature of InstaSPIN enables users to run their motor to its highest performance, even
when motor parameters are unknown.

Introduction

InstaSPIN-FOC utilizes Texas Instruments’ FAST technology to create a self-sensored, field oriented
motor controller, offering sensorless estimation and cascaded FOC and speed control loops.
MotorControl SDK InstaSPIN labs have been developed to showcase the various features of the
InstaSPIN-FOC estimator from on-chip ROM. All other FOC modules, besides the FAST estimator, are
executable from RAM/FLASH, and are open source available. The library is very robust and can be
customized for many different applications. Lab “is05_motor_id” will demonstrate what enables the motor
parameter identification as well as how to start the motor.

Objectives Learned

 Include FOC open source code and call the API functions to set up the sensorless FOC system.
 Setup the user.h file for the motor and inverter.
 Start the automatic motor parameter estimation.
 Update user.h for your motor using the identified parameters.
 How the FAST observer is initialized and set up.
 How to run the FAST observer.

Background

Lab “is05_motor_id” adds the function calls necessary for identifying and running a motor. The block
diagram of Figure 40 shows both the FAST estimator functionality of the ROM library, and the InstaSPIN-
FOC modules executed in user memory. Lab “is05_motor_id” follows this block diagram to implement a
full sensorless FOC drive with FAST estimator and InstaSPIN-FOC function calls.

51

Figure 40: Block diagram of FAST in ROM with the rest of InstaSPIN-FOC in user memory

Project Files

Lab project “is05_motor_id” adds new InstaSPIN-FOC source files when compared to the

project “is04_signal_chain_test”, which are shown in Table 12:

ctrl.c Contains code for CTRL_run and CTRL_setup, the module that runs the FOC.

traj.c Contains code for creating ramp functions.

is05_motor_id

Table 12: New files included in project “is05_motor_id”

Includes

52

A description of the new included files critical for InstaSPIN setup is shown in the figure below. Note that
labs.h is common across all labs so there will be more includes in labs.h than are needed for this lab as
shown in Table 13.

labs.h

modules

math.h Common math conversions, defines, and shifts

est.h Function definitions for the FAST ROM library

platforms

ctrl.h

Function definitions for the CTRL ROM library. Contains the CTRL object

declaration.
hal.h Device setup and peripheral drivers. Contains the HAL object declaration.

user.h User fi le for configuration of the motor, drive, and system parameters.

Header fi le containing all included files used in main.c

Table 13: Important header files needed for motor parameter identification

Global Object and Variable Declarations

Global object and declarations that are listed in the table below are only the objects that are absolutely
needed for the motor controller. Other object and variable declarations are used for display or information
for the purpose of this lab as shown in Table 14.

globals

CTRL

CTRL_Handle
The handle to a controller object (CTRL). The controller object implements all of

the FOC algorithms and calls the FAST observer functions.

OTHER

MOTOR_Vars_t

Not needed for the implementation of InstaSPIN but in the project this structure

contains all of the flags and variables to turn on and adjust InstaSPIN. The

structure defined by this declaration will be put into the CCS watch window.

Table 14: Global object and variable declarations necessary for motor parameter identification

Initialization and Setup

This section covers functions needed to set up the microcontroller and the FOC software. Only the
functions that are mandatory will be listed in the table below. Functions that are not listed in Table 15 are
in the project for enhanced capability of the laboratory and not fundamentally needed to set up the motor
control. For a more in-depth explanation for definitions of the parameters and return values go to the
document motor control section of this document (InstaSPIN-FOC User’s Guide).

53

setup

CTRL

CTRL_initCtrl
Initializes all handles required for field oriented control and FAST observer

interface. Returns a handle to the CTRL object.

CTRL_setParams
Copies all scale factors that are defined in the file user.h and used by CTRL into the

CTRL object.

EST_initEst Initialize the handle for estimator

EST_setParams Set the default estimator parameters
Table 15: Important setup functions needed for the motor control estimator and controller

Main Run-Time loop (forever loop)

The background loop makes use of functions that allow user interaction with the FAST observer and FOC
software. Table 16 lists the important functions used. The flowchart of Figure 41 shows the logic of the
background (forever) loop. The flowchart block labeled “Update Global Variables” is used to update
variables such as speed, stator resistance, inductance, etc.

TRAJ_setMaxDelta Sets the maximum acceleration rate of the speed reference.

HAL

HAL_enablePWM
Turns on the outputs of the EPWM peripherals which will allow the power switches

to be controlled.

HAL_disablePWM
Turns off the outputs of the EPWM peripherals which will put the power switches

into a high impedance state.

EST
EST_enable Enables the FAST estimator

EST_enableTraj Enables the trajectory generator for estimator

EST_updateState Updates the estimator state

EST_configureCtrl Configures the controller for each of the estimator states

Table 16: Functions used for error checking and setup of the InstaSPIN controller and FAST observer

54

Begin forever loop

Disable control
Disable Power Switches

CTRL
error?

Enable/Disable Control
depending on

flagRunIdentAndOnLine

CTRL state
changed?

CTRL state
OffLine?

Enable Power Switches

CTRL state
OnLine?

CTRL state
Idle? Update Offsets

Enable Power Switches

User Motor
Parameters

Used?

Disable Power Switches
flagRunIdentAndOnLine=0

Motor Parameters
Identified?

Set Max Speed ref. Acceleration
Set Max current ref. slope
flagMotorIdentified=true

Get Max current ref. slope

Update Global Variables

End forever loop

A

B

C

TRUE

FALSE

TRUE

FALSE TRUE

FALSE

TRUE

FALSE

TRUE

FALSE

TRUE

FALS
E

System Flag
Enabled?

TRUE

FALS
E

EST state locked
rotor? TRUE

FALSE

Figure 41 : Motor Identification forever loop flowchart

Main ISR

The main ISR calls time critical functions that run the FOC and FAST observer. The new functions
required for project “is05_motor_id” are listed in Table 17 below.

mainISR

CTRL

EST_setupTraj Sets up the trajectory generator

EST_runTraj Runs the trajectory generator

EST_run Runs the estimator

CTRL_run Runs the controller

CTRL_setup
Is responsible for updating the CTRL state machine and must be called in the

same timing sequence as CTRL_run().
Table 17: InstaSPIN functions called in the main ISR

Lab Procedure

The code for lab “is05_motor_id” is set up according to the flowchart shown in Figure 41. The first step
when running a motor with InstaSPIN is to fill the library with nameplate data from the motor. As such,
the first topic that needs to be covered before running any motor with InstaSPIN is the “user.h” header file.

55

Open “user.h” following these steps:

5. Expand “src_fast->user.c” from the “Project Explorer” window

6. Right-click on “user.c” and select “Open”, this opens the file “user.c”

7. Right-click on the highlighted “user.h” and select “Open Declaration,” this opens the file “user.h”.

8. Opening the “Outline View” will provide an outline of the “user.h” contents as shown in Figure 42.

Figure 42: the content of “user.h” header file in Outline

Alternatively, open “user.h” from the directory in MotorControl SDK as shown in Figure 43.

56

Figure 43: Directory structure for the “user.h” header file

Halfway through the “user.h” file, there is a section containing definitions of motor parameters. The
section of code starts with the name “USER MOTOR & ID SETTINGS.” To customize this file, a new
motor definition must be created; for now, name the new definition “My_Motor.”

To define a new motor, add a line with a unique number:

 #define my_motor_1 301

Comment out the current motor definition by placing a double slash “//” before the code, which will look
like the following:

#define USER_MOTOR teknic_2310P

Then add the following line instead:

 #define USER_MOTOR my_motor_1

For the actual motor parameters, copy and paste an empty set of motor parameter definitions (see
“my_motor_1” for PMSM placeholder) and convert them as below if it is a PMSM, IPM or BLDC motor:

#define USER_MOTOR_TYPE MOTOR_TYPE_PM

#define USER_MOTOR_NUM_POLE_PAIRS (4)

#define USER_MOTOR_Rr_Ohm (NULL)

#define USER_MOTOR_Rs_Ohm (NULL)

#define USER_MOTOR_Ls_d_H (NULL)

#define USER_MOTOR_Ls_q_H (NULL)

#define USER_MOTOR_RATED_FLUX_VpHz (NULL)

#define USER_MOTOR_MAGNETIZING_CURRENT_A (NULL)

#define USER_MOTOR_RES_EST_CURRENT_A (2.0)

#define USER_MOTOR_IND_EST_CURRENT_A (-2.0)

#define USER_MOTOR_MAX_CURRENT_A (5.0)

#define USER_MOTOR_FLUX_EXC_FREQ_Hz (40.0)

57

And as below if it is an ACIM motor (see “my_motor_2” for ACIM placeholder):

#define USER_MOTOR_TYPE MOTOR_TYPE_INDUCTION

#define USER_MOTOR_NUM_POLE_PAIRS (2)

#define USER_MOTOR_Rr_Ohm (NULL)

#define USER_MOTOR_Rs_Ohm (NULL)

#define USER_MOTOR_Ls_d_H (NULL)

#define USER_MOTOR_Ls_q_H (NULL)

#define USER_MOTOR_RATED_FLUX_VpHz (0.8165*230.0/60.0)

#define USER_MOTOR_MAGNETIZING_CURRENT_A (NULL)

#define USER_MOTOR_RES_EST_CURRENT_A (0.5)

#define USER_MOTOR_IND_EST_CURRENT_A (NULL)

#define USER_MOTOR_MAX_CURRENT_A (5.0)

#define USER_MOTOR_FLUX_EXC_FREQ_Hz (5.0)

A few values can already be populated in “user.h” before motor parameter identification.

 USER_MOTOR_TYPE = MOTOR_TYPE_PM or MOTOR_TYPE_INDUCTION Motor type must be
known and entered in this parameter.

 USER_MOTOR_NUM_POLE_PAIRS Number of pole pairs of the motor

 USER_MOTOR_MAX_CURRENT Maximum nameplate current of the motor

 USER_MOTOR_RES_EST_CURRENT The motor will have to initially be started in open loop
during identification. This value sets the peak of the current used during initial startup of the
motor. If the motor has high cogging torque or some kind of load, increase this current value until
the motor will start spinning. After motor identification, this value is never used.

 USER_MOTOR_IND_EST_CURRENT Must be zero for ACIM motors. For PMSM motors this

value can be set to the negative of the current used for USER_MOTOR_RES_EST_CURRENT. For
example, if USER_MOTOR_RES_EST_CURRENT is 1.0, then USER_MOTOR_IND_EST_CURRENT
can be -1.0.

 USER_MOTOR_NUM_POLE_PAIRS Number of pole pairs of the motor

 USER_MOTOR_RATED_FLUX Must be zero for PMSM motors. For ACIM motors the rated flux
should be set to nameplate values calculated as follows:
USER_MOTOR_RATED_FLUX = SQRT(2)/SQRT(3)*Rated_VAC/Rated_F
So for a 220VAC motor with a rated frequency of 60 Hz, then the rated flux would be:
USER_MOTOR_RATED_FLUX = SQRT(2)/SQRT(3)*220.0/60.0 = 2.9938

 USER_MOTOR_FLUX_EST_FREQ_Hz A starting point for this frequency if the motor is a
PMSM motor is 20.0 Hz, and if it is an ACIM motor, a good starting point is 5.0 Hz.

Later in the lab, after the motor parameters are identified, the appropriate NULL values will be updated
with the identified values. One thing to note is that if the motor is defined to be a permanent magnet
motor, the terms “Magnetizing Current” and “Rr” are not needed and therefore will always be left NULL.
Also, note that the inverter has already been defined. In the top half of the “user.h” file, there are
definitions for currents and voltages, clocks and timers, and poles. These definitions are used to set up
current, voltage scaling, and filter parameters for the library.
Now, connect the motor that will be run with InstaSPIN to the kit. Connect the USB cable to the
controlCARD or LaunchPad. Finally, apply power to the kit. In Code Composer Studio, build lab project
“is05_motor_id”. Start a Debug session and download the “is05_motor_id.out” file to the MCU.

58

A structure containing the variables to run this lab from the Code Composer “Real-Time Watch Window”
has been created by the name of “motorVars” and is defined in “labs.h.” A script has been written to
easily add these variables to the watch window as shown in Figure 44.

 Select the scripting tool, from the debugger menu “View->Scripting Console”.
 The scripting console window will appear somewhere in the debugger.

 Open the script by clicking the icon that is in the upper right corner of the scripting tool.
 Select the file “\solutions\common\sensorless_foc\debug\is05_motor_id.js”.
 The appropriate motor variables are now automatically populated into the watch window as

shown in the following figure.
 The variables should look like below

o Note the number format.
o For example, if “motorVars.flagEnableSys” is displayed as a character, right-mouse click

on it and select “Number Format -> Decimal”

 Enable the real-time debugger. .
o A dialog box will appear, select “Yes”.

 Click the run button .

 Enable continuous refresh on the watch window. .

To start the motor identification,
 Set the variable “motorVars.flagEnableSys” equal to 1.
 Set the variable “motorVars.flagRunIdentAndOnLine” equal to 1.

Figure 44: Expressions Watch Window after running the lab project “is05_motor_id” variable script

The controller will now start identifying the motor. Be sure not to try to stop the shaft of the motor while
identification is running or else there will be inaccurate identification results. Once the

59

“motorVars.flagRunIdentAndOnLine” is equal to 0, and we are identifying a PMSM motor, the motor
parameters have been identified. If we are identifying an ACIM motor, the controller and estimator states
will show the following state:

If this is the case, then lock the rotor, and enable the controller again by setting “motorVars.
flagEnableRunAndIdentify ” to 1. Once “motorVars. flagEnableRunAndIdentify” is equal to 0, and then the
ACIM is done identifying.

 Record the watch window values with the newly defined motor parameters in user.h as follows:
o USER_MOTOR_Rr = motorVars.Rr_Ohm’s value (ACIM motors only)
o USER_MOTOR_Rs = motorVars.Rs_Ohm’s value
o USER_MOTOR_Ls_d = motorVars.Ls_d_H’s value
o USER_MOTOR_Ls_q = motorVars.Ls_q_H’s value
o USER_MOTOR_RATED_FLUX = motorVars.flux_VpHz’s value

o USER_MOTOR_MAGNETIZING_CURRENT = motorVars.magneticCurrent_A’s value
(ACIM motors only)

The motor is not energized anymore. If an ACIM was identified, remove whatever instrument was used to
lock the rotor at this time. To run the motor,

 Set the variable “motorVars.flagRunIdentAndOnLine” equal to 1 again.

The control will re-calibrate the feedback offsets and then re-measure Rs_Ohm. After the measurements
are done, the motor shaft will accelerate to the default target speed. The speed feedback is shown (in
electrical frequency with Hertz) by the variable “motorVars.speed_Hz”. The target speed reference is (in
electrical frequency with Hertz) set by the variable “motorVars.speedRef_Hz”.

 Set the variable “motorVars.speedRef_Hz” to a different value and watch how the motor shaft
speed will follow.

Notice that when changing between speeds, the motor shaft speed does not change instantaneously. An
acceleration trajectory is set up between the input speed reference and the actual speed reference
commanding the input of the speed PI controller.
To change the acceleration,

 Enter a different acceleration value for the variable “motorVars.accelerationMax_Hzps”.

When done experimenting with the motor,

 Set the variable “motorVars.flagRunIdentAndOnLine” to 0 to disable the PWM output
 Turn off real-time control and stop the debugger.

API functions used to interface with the variables in the watch window during this lab are shown in Table .

60

TRAJ

TRAJ_setTargetValue Sets the output speed reference value in the controller in Hz.

TRAJ_setMaxDelta Sets the maximum acceleration rate of the speed reference in Hzps.

EST

EST_getFm_lp_Hz Gets the speed value in Hz.

EST_computeTorque_Nm Gets the torque value in N.m.

EST_getRs_Ohm Gets the stator resistance value in Ohms.

EST_getLs_d_H Gets the direct stator inductance value in Henries (H)

EST_getLs_q_H
Gets the stator inductance value in the quadrature coordinate direction in Henries

(H).

EST_getFlux_Wb

The estimator continuously calculates the flux linkage between the rotor and

stator, which is the portion of the flux that produces torque. This function returns

the flux linkage, ignoring the number of turns, between the rotor and stator coils, in

Volts per Hertz, or V/Hz.

EST_getState Gets the state of the estimator.

updateGlobalVariables

Table 18: Functions used to interface with the watch window variables during lab project “is05_motor_id”

Conclusion

Lab “is05_motor_id” has demonstrated the basics of using the FAST estimator and InstaSPIN-FOC library.
A new motor has been identified and the values were entered into the file user.h. The recorded motor
parameters will be used in the following labs to bypass motor commissioning and speed up the initial
startup of the motor.

61

is06_torque_control – Torque Control Mode and Tuning Id/Iq
PI Controller

Abstract

A technique of setting the proportional gain (Kp) and integral gain (Ki) for the current controllers of the
InstaSPIN-FOC system is explored in this lab. After the Kp and Ki gains are calculated, we will then learn
how to program InstaSPIN with these values.

Introduction

This lab explains how to tune PI gains for current control when controlling an electric motor using
InstaSPIN-FOC

Objectives Learned

 How to calculate the PI gains for the current controller.

 Program the Kp and Ki gains into InstaSPIN.

Background

A popular form of the proportional-integral (PI) controller (and the one used for this lab) is the “series”
topology which is shown in Figure .

Figure 45: Series PI current controlled motor system including the stator.

PI and PID loops are a fundamental system explored in classic control theory, and many publications
exist that expand on the topic. Additionally, PI controllers are integral parts of FOC-based motion control.
InstaSPIN-FOC depends on a nested combination of a PI current controller and a PI speed controller.
The PI speed controller will be discussed in lab 06. With respect to this lab, ��

������ sets the zero of the PI

controller, and ��
������ sets the bandwidth of the closed-loop system response, with respective equations

shown in Equation 4 and Equation 19.

��
������ =

�

�
 Equation 4

62

�(�) =
1

�

��
������ � + 1

→ ��
������ = � ∗ ��������ℎ

Equation 5

Project Files

There are no new project files.

Includes

There are no new includes.

Global Object and Variable Declarations

There are no new global object and variable declarations.

Initialization and Setup

There are no new initialization and setup operations. The block diagram of this lab is shown in Figure 46.

Figure 46: Block diagram of an opened source InstaSPIN-FOC implementation

63

Main Run-Time loop (forever loop)

During motor identification or when motor parameters from “user.h” are used, the ��

������ gain is

calculated based on the motor R/L pole. The bandwidth of the controller, or ��
������, is set to not be too

high and cause instability in the current control loop. Immediately after motor identification has finished,
the ��

������ and ��
������ gains for the current controller are calculated in the function setupControllers().

After setupControllers() is called, the global variables motorVars.Kp_Id, motorVars.Kp_Iq,
motorVars.Ki_Id, and motorVars.Ki_Iq are initialized with the newly calculated ��

������ and ��
������ gains.

The following Figure 47 shows the logic flowchart needed to implement the current controller gain
initialization.

setupControllers Calculates the speed and current PI controller gains based on motor parameters

updateControllers Sets the custom speed and current PI controller gains

Forever Loop

Table 19: New API function calls during the main run-time loop

Is Motor
Identified?

flagSetupController == false?

Yes

setupControllers()

Yes

Initialize Kp and Ki
setupControllers()

End

flagSetupController = true

No

flagSetupController = true

Figure 47: Flowchart showing how the watch window ��
������ and ��

������ variables are initialized.

Main ISR

Nothing has changed in this section of the code from the previous lab.

Lab Procedure

Build lab project “is06_torque_control”, connect to the target and load the .out file.

 Add the appropriate watch window variables by calling the script “is06_torque_control.js”.
 Enable real-time debugger.

64

 Click the run button.
 Enable continuous refresh on the watch window.

Calculate the ��

������ gain using the relationship: ��
������ = �/�.

 Record the Rs and Ls values that are stored in “user.h” for the motor being tested.
 Record the sampling frequency from “user.h,” listed as USER_PWM_FREQ_Khz.
 ��

������ has to be per unitized to ��
������(��)

Calculate current controller period:

�� =
1

���_����_��� ∙ 1000
∙ ������������ ∙ ������������� ∙ �����������������

Where:

 �� is the current controller period

 ���_����_��� can be taken from USER_PWM_FREQ_kHz parameter in user.h
 �������� ���� is the tick rate between PWM and interrupts,

USER_NUM_PWM_TICKS_PER_ISR_TICK
 ������������ ���� is the tick rate between interrupts and current control,

USER_NUM_ISR_TICKS_PER_CURRENT_TICK

Calculate the ��
������(��) = ���

��� ���.

Start the control

 Set motorVars.flagEnableSys = true
 Set motorVars.flagRunIdentAndOnLine = true

Compare ��

������ values

 Compare the calculated ��
������ against the ��

������ terms that are initially stored in
“motorVars.Ki_Id” and “motorVars.Ki_Iq.” The two values should be the same or both Iq and Id.

Compare and adjust ��

������ values

 Since the ��
������ gain controls bandwidth of the controller, adjustment of this parameter is

optimized when knowing the mechanics of the whole motor system and the required system time
response. For this experiment, we will show effective ranges to adjust the ��

������ gain.

 Calculate the ��
������ gain based on the ISR frequency.

o Use a bandwidth that is 1/20 of the current controller frequency. Keep in mind that the
bandwidth needed to calculate the controller gains is in radians per second, and the
controller frequency is in Hz, so the following conversion is used:

��������ℎ(
���

�
) = 2� ∙ ���������������������(��) ∙

1

20

o Example:
�

��
= 10kHz, �� = 620μH

o ��
������ = 0.00062 ∙ 2π ∙ (10000 20⁄) = 1.95

o ��
������ has to be per unitized to ��

������(��)

o ��
������(��) = ��

������ ∙ ��� ���⁄

 ��� = USER_IQ_FULL_SCALE_CURRENT_A found in “user.h”

65

 ��� = USER_IQ_FULL_SCALE_VOLTAGE_V found in “user.h”

 Put your new calculated ��

������ into motorVars.Kp_Id and motorVars.Kp_Iq.

As the bandwidth increases, the sampling delay more negatively affects the phase margin of the
controller, causing the control loop to become unstable. Figure 48 is a plot of the motor current
waveform with a stable ��

������ setting. As ��
������ increases, the phase margin of the control loop

becomes smaller. After a while, the control loop becomes unstable and starts to oscillate as shown in
Figure 49. The current controller gain should not be set to this high of a value. When current loop
instability occurs, lower the ��

������ gain until the current waveform is like the one in the following figure.

Figure 48: ��
������ setting that has been calculated at 1/20th of the bandwidth.

66

Figure 49: ��
������ setting that is too high, resulting in the controller becoming unstable.

Increasing the K�
������ gain and bandwidth

 Start with the ��
������ gain set to 1/20 of the bandwidth and gradually increase ��

������ until the

motor starts making a higher pitch noise.
 When the motor makes the high pitch noise, the current waveform looks like that in Figure 49.
 Reset ��

������ back to the value that was calculated before.

o The above is a passable way of tuning the current control bandwidth when no current
measurement is available.

When done experimenting with the motor:

 Set the variable “motorVars.flagRunIdentAndOnLine” to 0 to disable the PWM output to the motor.
 Turn off real-time control and stop the debugger.

It is important to notice that by default in the ROM code the current controller gains are set to the
following values:

��
������ = 0.25 ∙ �� ∙

1

��

��
������ =

��

��

∙ ��

Although it is considered full bandwidth when it is equal to the same frequency of the current controller as
follows:

��
������ = �� ∙

2�

��

Conclusion

67

In the lab project “is06_torque_control”, the ��
������ and ��

������ gains of the current controller were

adjusted. The ��
������ gain creates a zero that cancels the pole of the motor’s stator and can easily be

calculated. The ��
������ gain adjusts the bandwidth of the current controller-motor system. When a speed

controlled system is needed for a certain damping, the ��
������ gain of the current controller will be related

to the time constant of the speed controlled system; as such, it is advised to obtain more knowledge of
the mechanical system before calculating the current controller’s ��

������.

68

is07_speed_control – Speed Control Mode and Tuning Speed
PI Controller

Abstract

InstaSPIN-FOC provides a standard PI speed controller. The InstaSPIN library will give a “rule of thumb”
estimation of Kp and Ki for the speed controller based on the maximum current and motor inertia setting
in “user.h.” The estimated PI controller gains are a good starting point, but to obtain better dynamic
performance the Kp and Ki terms need to be tuned based on the whole mechanical system that the motor
is running. This lab will show how to adjust the Kp and Ki terms in the PI speed controller.

Introduction

Tuning the speed controller is much more difficult than tuning the current controller. The speed controller
resides in the mechanical domain which has much slower time constants where phase delays can be
tighter, having more of an effect on the stability of the system. The most important parameter needed for
accurately tuning a speed controlled system is inertia. That being said, two different approaches for
tuning the speed loop are covered here. The first technique uses trial and error and can be used if no
parameters of the mechanical system are known. The second technique assumes that inertia and
mechanical bandwidth are already known and then designs the current control and speed control gains.

Objectives Learned

 Tune the speed controller quickly using a trial and error technique.
 Tune the speed controller with the knowledge of inertia and mechanical bandwidth.
 Program the Kp and Ki gains into InstaSPIN.

Background

Trial and Error Tuning:

Many times when trying to tune an electric motor, the inertia is not immediately available. InstaSPIN
provides the capability to use a very simple but effective technique to quickly tune the PI speed control
loop without knowledge of any mechanical parameters. For this next discussion, InstaSPIN uses the
“parallel” PI controller for the speed control loop which is illustrated in Figure 50.

69

Figure 50: Parallel PI control.

Generally, increasing �� gain stiffens the systems as strengthening the spring. The dampening of the
system is controlled by the �� gain. For example, if the �� gain is set very low, �� will take over and the

motor control system will act like a spring. When a step load is applied to the system, it will oscillate.
Increasing the damping (��) will reduce the oscillations.

Calculated Speed PI Tuning

Figure 51: Speed controller cascaded with a current controller and speed filter.

The speed signal often needs to be filtered before it is usable by the control system. For our purposes,
let’s assume that we are using a single-pole low pass filter of the form

���������(�) =
1

�� + 1
 Equation 6

Where � is the time constant of the velocity filter low pass filter (green block from above diagram).

Then, the current control, the closed-loop transfer function is:

 1

1

1

s
K

L
sG

series
p

current

Equation 7

70

��
������ is the error multiplier term in the current regulator’s PI structure. ��

������ is not visible to the outside

world since it is set to cause pole/zero cancellation within the current controller’s transfer function. The K
can be set to torque constant Kt over inertia J as shown in the following Equation 8, and �������� can be
approximated to 1 if the current control bandwidth is sufficiently higher than the speed control bandwidth,
like Equation 19. Therefore, if we eliminate the effect of the current controller pole, the open loop transfer
function becomes Equation 9.

J

K
K T Equation 8

��(�) =

� ∙ �����
������ ∙ �����

������ �1 +
�

�����
�������

��(1 + ��)

Equation 9

Assuming that the zero dB frequency occurs somewhere between the zero at � = �����

������ and the two
nonzero poles in the denominator of the expression, we should end up with a Bode plot that looks
something like Figure 52:

Figure 52: Bode plot of how the system should be tuned.

The reason the shape of this curve is so important is because the phase shift at the 0 dB frequency
determines the stability of the system. In general, in order to get a phase shift at 0 dB that leads to good
stability, the magnitude response should cross 0 dB at a rate no steeper than -20 dB per decade.

For now, let’s assume that the delta in frequency between the pole 1/τ and the zero spdK�
������ is fixed. In

order to achieve maximum phase margin (phase shift +180), the unity gain frequency should occur
exactly half way in between these two frequencies on a logarithmic scale. Translating from dB to a
normal gain scale, this means the following is true:

������_���� = � ∙ �����
������

71

And
�

�
= � ∙ ������_����

Combining the last two equations, we establish that:

�

�
= �� ∙ �����

������

Solving for �����

������ :

 �����

������ =
�

���

Where we will use δ as the "damping factor." If δ is increased, it forces the zero corner frequency

(spdK�
������) and the velocity filter pole (1/τ) to be further apart. Theoretically, any value of δ > 1 is stable

since phase margin > 0. However, values of δ close to 1 are usually not practical as they result in

severely underdamped performance.

From Figure 53, you can see how decreasing the damping factor increases the bandwidth of the velocity

loop. The values below two (δ = 1.5, 2.5) are usually unacceptable due to the large amount of overshoot

they produce. At the other end of the scale, values much above 35 produce extremely long rise and
settling times. Your design target window will usually be somewhere in between these two values.

Figure 53: Closed loop magnitude response of the speed loop for various

We select a value for the damping factor (δ) which allows us to precisely quantify the tradeoff between
velocity loop stability and bandwidth. Through some additional algebra calculations and approximation,
the spdK�

������ and spdK�
������ become as follows.

2

1series
ispdK Equation 10

72

KK

spdK
spdK

series
iseries

p

1 Equation 11

The benefit of this approach is that instead of trying to empirically tune four PI coefficients which have
seemingly little correlation to system performance, you just need to define two meaningful system
parameters: the bandwidth of the current controller and the damping coefficient of the speed loop. Once
these are selected, the four PI coefficients are calculated automatically.

The current controller bandwidth is a meaningful system parameter, but in speed controlled systems, it is
usually the bandwidth of the speed controller that we would like to specify first and then set the current
controller bandwidth based on that.

EXAMPLE

An Anaheim Automation 24V permanent magnet synchronous motor has the following characteristics:

Rs = 0.4 ohms

Ls = 0.65 mH

Back-EMF = 0.0054 v-sec/radians (peak voltage phase to neutral, which also equals flux in Webers in the
SI system)

Inertia = 2E-4 kg-m
2

Rotor poles = 8

Speed filter pole = 100 rad/sec

Sample frequency, Fs = 10 kHz (or sampling period, Ts = 100 µs)

The desired current controller bandwidth is 20 times lower than the sampling frequency and we would like
a damping factor () of 4. Find all the current and speed PI coefficients:

SOLUTION

Since we are trying to set the current bandwidth 20 times lower than the sampling frequency, we solve
this equation:

��� =
2���

20
=

2� ∙ 10kHz

20
= 3141.59

And now we calculate the controller gain based on this bandwidth:

��
������ = ��� ∙ � = 2.042

Now, the integral gain of the current controller is using the following equation:

��
������ =

�

�
=

0.4Ω

0.65mH
= 615.3846

For the speed controller, we take into account the speed filter and using the following equation:

�����
������ =

1

���
=

1

4� �
1

200
�

= 6.25

Finally, recall that

73

� =
3���

4�
=

3 ∙ 8 ∙ 0.0054

4 ∙ 0.0002
= 162

And

�����
������ =

1

� ∙ � ∙ �
=

1

4 ∙ 162 ∙ �
1

100
�

= 0.1543

The simulated speed transient step response for this example is shown in Figure 54 where the time axis
is now scaled appropriately for this design example.

Figure 54: speed transient step response

Project Files

There are no new project files.

Includes

There are no new includes.

Global Object and Variable Declarations

There are no new global object and variable declarations.

Initialization and Setup

There are no new initialization and setup operations. The block diagram of this lab is shown in Figure 55.

74

Figure 55: Block diagram of an opened source InstaSPIN implementation.

Main Run-Time loop (forever loop)

The get and set functions for the Kp and Ki speed controller have been added. Immediately after
identification, the speed PI gains are updated to pre-calculated versions that were used during motor
identification. After the gains are updated, they can be changed in real time by using the “motorVars”
structure.

Main ISR
Nothing has changed in this section of the code from the previous lab.

Lab Procedure

Build lab project “is07_speed_control”, connect to the target and load the target .out file.

 Add the appropriate watch window variables by calling the script “is07_speed_control.js”.
 Enable the real-time debugger.
 Click the run button.
 Enable continuous refresh on the watch window.

Trial and Error Tuning of the Motor

First, we will not worry about finding any data for the motor that is being tuned. The motor control will be
set to reference speed of 0 rpm. Then by hand, one can feel how the motor is performing.

75

Turn on the motor control
 Set “motorVars.flagEnableOffsetCalc” = 1
 Set “motorVars.flagEnableSys” = 1
 Set “motorVars.flagRunIdentAndOnLine” = 1
 Set “motorVars.flagEnableForceAngle” = 0

Turn the motor into a spring
 Set “motorVars.speedRef_Hz” = 0.0
 While quickly turning the motor shaft by about 90 degrees and then letting go, decrease the Kp

gain of the speed control with “Kp_spd” until the motor shaft has a dampened oscillation. Note
that Kp_spd can be reduced by as much as 100 times from its original calculated value.

o As the Kp_spd gain is reduced, notice how the motor shaft behaves more like a spring.
o If the Ki_spd setting is too large, it will be harder to turn the motor shaft. Reduce the

Ki_spd value so that the motor behaves like a weak spring.
o Example values for the BOOSTXL-DRV8320RS RevA kit + LAUNCHXL_F280049C

LaunchPadand a Anaheim BLY172S motor:
 Kp_spd = 0.1
 Ki_spd = 0.018

Dampen the Motor
 Increase the Kp_spd gain until the spring feeling is gone. Notice how increasing the Kp_spd gain

causes the motor to be more dampened.
 Because Kp_spd causes dampening, it can be increased to a large value and example for the

BOOSTXL-DRV8320RS RevA kit + LAUNCHXL_F280049C LaunchPad with the Anaheim
BLY172S motor is:

o Kp_spd = 8.0

Increase the stiffness of the system

 Now increase the Ki_spd gain to increase the stiffness.
 A typical value for the BOOSTXL-DRV8320RS RevA kit + LAUNCHXL_F280049C LaunchPad

with the Anaheim BLY172S motor is:
o Ki_spd = 0.1

By knowing that the Ki_spd value increases the spring constant of the system if a speed controlled
system is unstable, reduce the Ki_spd value to stabilize the system. Knowing that the Kp_spd gain
dampens the speed controlled system can help stabilize the system by increasing Kp_spd.

Calculated Speed Loop Tuning

Obtain the motor parameters

 Rs – Motor resistance
 Ls – Motor total inductance
 P – Number of poles for the motor
 Ke – Motor flux constant in V/Hz
 J - Inertia of the whole mechanical system

Obtain the controller scale values from “user.h:”

�� =
1

���_����_��� ∙ 1000
∙ ������������ ∙ ����������������

Where:

 �� is the current controller period

 ���_����_��� can be taken from USER_PWM_FREQ_kHz parameter in user.h

76

 ������������ is the tick rate between PWM and interrupts,
USER_NUM_PWM_TICKS_PER_ISR_TICK

 ���������������� is the tick rate between interrupts and current controllers,
USER_NUM_ISR_TICKS_PER_CURRENT_TICK

�� =
1

���_����_��� ∙ 1000
∙ ������������ ∙ ��������������

Where:

 �� is the speed controller period

 �������������� is the tick rate between interrupts and speed controllers,
USER_NUM_ISR_TICKS_PER_SPEED_TICK

 ����� = ����_����_�����_����_�� – Full scale frequency in Hz

 ��� = ����_���_����_�����_�������_� – Full scale current in A

 ��� = ����_���_����_�����_�������_� – Full scale voltage in V

Choose a speed loop damping factor

 For this lab � = 4

Calculate ��
������ from the current controller bandwidth, keeping these limits in mind:

10�

��
< ��

������ <
2��

10��

 ��
������ = ��� ∙ ��

Calculate��
������

 ��
������ =

��

��

Calculate �����
������

 �����
������ =

�

��∙�

Calculate the constant � t from the motor parameters

 � =
����

��

Calculate �����
������

 �����
������ =

�

�∙�∙�

As a reminder, the PI analysis that came up with these calculations is based on the series PI loop.
InstaSPIN uses a series PI loop for the current controllers and a parallel PI loop for the speed controller.
The speed PI gains have to be converted from the series form to the parallel form. Equation 12 and
shows the conversion.

�����
��������

= �����
������ Equation 12

�����
��������

= �����
������ ∙ �����

��������
 Equation 13

The calculations that have been done so far have not been converted to be used in the digital PI regulator.
All of the Ki gains precede a digital integrator. The digital integrator is multiplied by the sampling time. To

77

reduce the number of multiplies that are needed in the code, the sampling time must be multiplied by the
Ki gains before importing the values into the code.

Convert the integral gains to the suitable value for use in the digital PI control

 ����� = �����
��������

∙ �� ∙
��∙�����

���∙�

 ����� = ��
������ ∙ ��

The proportional gains must be per-unitized before being entered into the digital PI control

 ����� = �����
��������

∙
��∙�����

���∙�

 ����� = ��
������ ∙

���

���

Enter the per-unit gain values into the appropriate gain values

 motorVars.Kp_spd =�����

 motorVars.Ki_spd =�����
 motorVars.Kp_Id = �����

 motorVars.Ki_Id = �����
 motorVars.Kp_Iq = �����

 motorVars.Ki_Iq = �����

Run the motor and load the shaft to see the performance

Compare the gain values between the trial and error and calculated tuning techniques

When done experimenting with the motor:
 Set the variable “motorVars.flagRunIdentAndOnLine” to disable PWM outputs to the motor.
 Turn off real-time control and stop the debugger.

The resulting plot of this speed controller, compared to a simulation using the exact same gains looks like
Figure 56:

78

Figure 56: Speed response simulation using the calculated gains

Now if we add a small value of viscous damping factor to the simulation, then we get a perfect match as
Figure 57.

Figure 57: Speed response simulation using a small damping factor

Conclusion

Tuning the speed controller has more unknowns than tuning a current controller. Therefore the first
approach to tuning the speed controller in this lab is by using a trial and error approach. It was shown
that the parallel speed PI closed loop control correlates to a mass, spring, damper system. If more
parameters are known about the mechanical system of the motor controlled system, then the optimum
calculated approach can be used. The calculated approach will identify the gains for the speed and
current controllers based on the bandwidth and damping selected by the user.

79

is08_overmodulation – Space Vector Over-Modulation

Abstract

The SVM that is used by InstaSPIN is capable of saturating to a pre-specified duty cycle. When using a
duty cycle over 100.0%, the SVM is considered to be in the over-modulation region. When in the over-
modulation region, current shunt measurement windows become small or even disappear. This lab will
show how to re-create the currents that cannot be measured due to high duty cycles during SVM over-
modulation.

Introduction

In a typical three-phase inverter, one of the preferred methods to measure motor currents is with low side
shunt resistors as shown in Figure 56. This provides an economical solution since the reference of the
current measurement is the same as the microcontroller ground. However, it introduces a limitation since
the low side shunt resistor carries current only when the low side PWM is ON.

Figure 56: Current shunt layout

Also, when driving a motor with a three-phase inverter, it is desirable to allow full voltage to the motor
windings, not only sinusoidal modulated waveforms. This requirement pushes Space Vector Modulation

to its limitation and causes extensive periods of time where the low side PWM ON time basically
disappears. Figure 57 shows a scenario where the pulse in PWM1L is too narrow to allow a valid
conversion on Phase A.

The method used in this lab utilizes a current reconstruction technique and a set trigger function that
allow measuring currents even when narrow pulses like this are generated by the inverter. If we can
measure two phase currents at least, the unknown phase can be calculated using current symmetry
�� + �� + �� = 0. Therefore, we can know all three phases’ currents if two phases are always guaranteed
to measure current. The current reconstruction method used in this lab is a voltage reconstruction method
that relocates phase voltage to guarantee the minimum width in two phases. Even though phase voltages
are changed during over-modulation, the line-to-line voltage between these phases is preserved because
of the phase compensation method. Being able to reconstruct currents while performing over-modulation
allows a field oriented control system to work even during heavy over-modulation or trapezoidal control.

80

Figure 57: SOC without over-modulation where a low-side pulse is too narrow to sample

Prerequisites

It assumes knowledge of up to project “is07_speed_control”.

Objectives Learned

The objective of this lab is to show users an implementation of current measurement reconstruction when
the measurement window is not wide enough.

Detailed Description

In lab “is08_overmodulation“, a new approach to implementing over-modulation is explored. There are
four aspects of this algorithm:

 Output Voltage Generation. This is the ability of space vector modulation to create output
waveforms from zero, into sinusoidal waveforms, and then into trapezoidal waveforms, all by just
increasing the magnitude of the inputs in alpha/beta coordinates.

 Currents Reconstruction. Since this is based on a current control algorithm such as FOC,
current feedback needs to be always available for Id and Iq current controllers to work.
Depending on which current measurements are available, this algorithm reconstructs the three-
phase currents when the low side PWM duty cycles fall below a minimum width.

 Output Voltage Compensation. The output phases are relocated to guarantee minimum duty
width in two phases at least. To achieve this minimum duty width, the algorithm analyzes the
number of current phases that are able to be measured when compared against a user-defined
maximum output voltage limit. When two-phase voltages are bigger than the limit voltage,
meaning they cannot be accurately sampled, an offset is found based on the voltage phase with
the second-smallest current sample window. The offset is defined as the difference between the
magnitude of the “middle” voltage (phase with the second smallest sample window) and the user-
defined limiting voltage. Once the offset voltage is defined, all phase voltages are reduced by the
offset voltage with keeping line-to-line voltage. Based on the duty cycles loaded on the present
and next PWM cycle, this algorithm can also define which currents will be ignored in the next
PWM cycle.

81

 Setting the Start of Conversion (SOC) trigger. During the creation of PWM outputs, there are
several switching events that must be avoided in order to have clean current measurements. This
algorithm analyzes the PWM duty cycles and the ignore shunt value previously calculated to
properly set the trigger for the next ADC start of conversion signal.

Output Voltage Generation

The implementation of space vector modulation (SVM) allows input amplitudes up to (2/3) pu when in the
Alpha-Beta coordinate system. In order to ensure SVM can generate outputs up to (2/3) pu, call the
USER_setParams() function to set the maximum modulation index:

Notes: To achieve a pure sinusoidal current waveform, it’s recommended to limit the maximum

modulation index to (1.0/√3).

Define the maximum Vs magnitude limit in “user.h”

#define USER_MAX_VS_MAG_PU (0.55) // Set to 0.5774 for a pure sinewave
with a peak at 100% duty cycle which need a current reconstruction

Set the maximum Vs magnitude to be the DC bus voltage scaled by the per unit limit, and set the Iq and
Id limits per this value

 // Set the maximum voltage output
 userParams.maxVsMag_V = userParams.maxVsMag_pu * adcData.dcBus_V;
 PI_setMinMax(piHandle_Id,-userParams.maxVsMag_V, userParams.maxVsMag_V);

Current Reconstruction

The second aspect of over-modulation is to allow currents to be reconstructed when needed. When
sampling the currents in the ISR, currents are read and scaled through the HAL with the following function
call:

 // read the ADC data with offsets
 HAL_readADCDataWithOffsets(halHandle,&adcData);

 // calculate Vbus scale factor to scale offsets with Vbus
 motorVars.Vbus_sf = adcData.dcBus_V * motorVars.offset_invVbus_invV;

 // remove offsets
 adcData.I_A.value[0] -= motorVars.offsets_I_A.value[0];
 adcData.I_A.value[1] -= motorVars.offsets_I_A.value[1];
 adcData.I_A.value[2] -= motorVars.offsets_I_A.value[2];

 adcData.V_V.value[0] -= motorVars.offsets_V_V.value[0] * motorVars.Vbus_sf;
 adcData.V_V.value[1] -= motorVars.offsets_V_V.value[1] * motorVars.Vbus_sf;
 adcData.V_V.value[2] -= motorVars.offsets_V_V.value[2] * motorVars.Vbus_sf;

Following the above code, all current values are stored in the adcData.I_A structure. Some of the values
may not be valid depending on how narrow the low side PWM pulse was when the corresponding current
was measured. Since we have over-modulation, we make use of an SVM extension module,
SVGENCURRENT. This module reconstructs phase currents in a simple way depending on the state of

82

an enumeration called “SVGENCURRENT_IgnoreShunt_e.” The following logic is implemented as part of
the SVGENCURRENT module in “svgen_current.h” in order to reconstruct the currents.

Add two variables to save the previous current sample and PWM output duty for over-modulation

// the previous data of ADC result and PWM output
MATH_Vec3 adcDataPrev_A = {0.0, 0.0, 0.0};
MATH_Vec3 pwmDataPrev = {0.0, 0.0, 0.0};

The second stage of current reconstruction is added to this lab to account for corner case conditions
when two of the three current readings are not valid. This approach makes use of a running average,
where the principle is simple: if a current is not valid, use a software approximation with a filter and its
past values. The code in “svgen_current.h” shows how this is done.

After this stage of current reconstruction, the measured and estimated currents are as close as possible
in order to operate a sensorless FOC system during extreme over-modulation conditions.

Output Voltage Compensation

The third aspect relates to compensating output phase voltage to guarantee minimum duty in at least two
phases. This is done by running an SVGENCURRENT function that updates the PWM output value:
SVGENCURRENT_compPWMData(). In this function, there are three main functions for output PWM
compensation.

 Define compensation mode

All phase voltages are compared with VLIM to check if the phase current is measurable. The limit

voltage VLIM is defined as the maximum phase output voltage needed to guarantee the minimum

duty width for shunt current measurement. If all phase voltages are less than VLIM, the

compensation mode is defined as “ALL_PHASE_MEASURABLE” for all three sampled current

phases. If two-phase voltages are less than VLIM, the compensation mode is defined as

“TWO_PHASE_MEASURABLE;” likewise, if only one phase voltage is less than VLIM, the

compensation mode is defined as “ONE_PHASE_MEASURABLE”. In case of

“ONE_PHASE_MEASURABLE” mode, voltage compensation is carried out by finding a middle

voltage VMIDDLE.

 Phase voltage compensation
In “ONE_PHASE_MEASURABLE” mode, all voltage reconstruction should account for offset voltage
to guarantee two measurable phases. The offset voltage calculation and subtraction are shown in
“svgen_current.h” shows how this is done

 Ignore Shunts

The third module relates to knowing which currents will be ignored in the next interrupt. This

function is carried out by comparing the average output voltage and the limit voltage VLIMIT. The

IgnoreShunt value is set to two main categories of values. The code from line 501 to line 517 in

“svgen_current.h” shows how this is done.

o USE_ALL: If all phase voltages are less than the limit voltage, all currents are sampled,

because the width of all pulses is wider than the minimum acceptable width.

83

o IGNORE_A, IGNORE_B or IGNORE_C: Used when the corresponding phase being

measured is less than an acceptable measurement window. It also assumes that the

difference between the phase being ignored, and the other two, is larger than an

acceptable time.

Figure 58: The top diagram shows a scenario where 2 of the 3 phases feature sample windows too
narrow to be sampled. The bottom diagram shows the updated switching state, which fixes this problem

using offset correction

Setting the Start of Conversion (SOC) trigger

The last aspect of over-modulation is setting the start of conversion trigger in the right spot to ensure the

best possible current measurement is taken during the next PWM cycle. This is done through the HAL

layer, with function call HAL_setTrigger(). This function sets the trigger of the next conversion based on:

 Next Sample Pulse values: When all shunts are used, the setTrigger function needs to know

which pulse is the narrowest one, so the trigger can be placed in the center of the pulse.

 ignoreShunts: Depending on which shunts are ignored, the trigger changes to accommodate the

best shunt.

 midVolShunt: When ignoring 1 or 2 shunts, the setTrigger function needs to know which pulse

features the second smallest sample window out of three pulses, because this “middle length”

pulse is the minimum duty. The PWM trigger is placed in the center of this pulse.

84

When all the shunts are valid, the trigger is set right in the middle of the narrowest pulse of all three as

shown in the following diagram:

MinWidth

PWM1L

PWM2L

PWM3L

PWM1H

PWM2H

PWM3H

SOC = (pwm2CMPA + pwm2DBFED – pwm2CMPAM) / 2 + 1

Figure 59: Changing the SOC trigger to successfully sample within the minimum pulse width

When two shunts are valid after output voltage compensation, the trigger is set right in the middle of the
middle length out of all three.

Lab Procedure

Step 1.

Set the maximum phase voltage magnitude in “user.h” to be higher than 0.5 and less than 0.667 of Vbus.

By default, the value is set to (1.0/√3).

#define USER_MAX_VS_MAG_PU (0.570)

Step 2.

Open project “is08_overmodulation”, build and load

Step 3.

Load variables to your watch window. New variables for this lab are:

 userParams.maxVsMag_pu. This variable will be used to set the limits on the output modulation.
A maximum of 2/3 would create a trapezoidal output waveform on the voltage.

 userParams.maxVsMag_V. Use this variable to monitor the real limitation output voltage for the
current regulator, which is calculated by multiplying with a scale factor or
userParams.maxVsMag_pu by DC bus voltage.

85

 svgencurrent.minWidth. This variable sets the minimum width for current measurement. This is
hardware dependent, but a value corresponding to 2 microseconds is usually good for all
applications.

 svgencurrent.ignoreShunt. Use this variable to monitor which shunts are being ignored as the
motor spins.

 svgencurrent.compMode. Use this variable to monitor how many phases are able to be
measurable.

Step 4.

Run the motor by setting these two flags to true: motorVars.flagEnableSys = 1 and
motorVars.flagRunIdentAndOnLine = 1

Step 5.

Increase the speed reference, motorVars.speedRef_Hz, until the ignore shunt value shows that shunts
are being ignored as the motor spins

Step 6.

Change maximum modulation value, and monitor the maximum speed you can reach. For example, using
the BOOSTXL-DRV8320RS RevA kit and LAUNCHXL_F280049C LaunchPad, and driving an Anaheim
motor with 24V under light load, these were the top speeds with each modulation value:

Maximum Output Vs Vector Top Speed
0.5 360Hz
1/sqrt(3) = 0.5774 400Hz

Table 20: Changing the maxVsMag_pu value to reach different speed during over-modulation

Notes: It is not recommend setting the modulation index higher than (1.0/√3)

Conclusion

In this lab, several aspects of over-modulation were discussed, allowing the usage of the entire input
voltage. Shunt resistor based current sense challenges are also solved using software techniques to
reconstruct currents and to set the trigger point at the right spot.

86

is09_flying_start – Using Flying Start

Abstract

The flying start feature is used to control an already rotating motor and resume normal operation with
minimal impact on load or speed. Project “is09_flying_start” shows how to use the flying start function in
InstaSPIN-FOC.

Introduction

Lab “is09_flying_start” provides a guideline for applying the flying start feature in InstaSPIN-FOC. Flying
start is a feature that allows the drive to determine the speed and direction of a spinning motor and begin
the output voltage and frequency at that speed and direction. Without flying start, the drive will begin its
output at zero volts and zero speed and attempt to ramp to the commanded speed. If the inertia or
direction of rotation of a load requires the motor to produce a large amount of torque, excess current may
result and overcurrent trips may occur on the drive. These problems can be eliminated with flying start.

Prerequisites

It assumes knowledge of project “is07_speed_control” or “is08_overmodulation”.

Objectives Learned

The objective of this lab is to learn how to control an already rotating motor using InstaSPIN-FOC with the
flying start function.

Detailed Description

Flying start is the capacity to start control at any speed other than ZERO, which is an important function in
some applications such as traction, washing machine, fan, e-bike, and e-scooter.

When a motor is started in its normal mode, the control initially applies a frequency of 0 Hz and ramps to
the desired frequency. If the drive is started in this mode with the motor already spinning with non-zero
frequency, large currents are generated. An over current trip can result if the current limiter cannot react
quickly enough. Even if the current limiter is fast enough to prevent an over current trip, it can take an
unacceptable amount of time for synchronization to occur and for the motor to reach its desired
frequency. In addition, larger mechanical stress is placed on the application.

In flying start mode, the drive’s response to a start command is to synchronize with the motor’s speed
(frequency and phase) and voltage. The motor then accelerates to the commanded frequency. This
process prevents an over current trip and significantly reduces the time for the motor to reach its
commanded frequency. Because the drive synchronizes with the motor at its rotating speed and ramps to
the proper speed, little or no mechanical stress are present.

The flying start function implements an algorithm that searches for the rotor speed. The algorithm
searches for a motor voltage that corresponds with the excitation current applied to the motor.

87

When the motor is spinning, the speed and position information can be estimated from the BEMF
voltages. Since the stator voltage is measured in InstaSPIN drive, the speed and position are easily
obtained by switching the inverter. A zero torque current is applied to the motor and the generated
current and stator voltage is measured, then InstaSPIN-FOC module uses these signals to estimate rotor
position and speed.

Project Files
There are no new project files.

Includes

There are no new includes.

Initializing and Setup the Flying Start Module

The code from line 517 to line 530 in “is09_flying_start.c” shows how the flying start module is initialized
and configured with default values.

The control program flowchart of flying start is shown in Figure 60, the flying start module outputs a flag
to enable or disable speed close loop control. A zero reference torque current is set and the speed PI
controller output is disabled while flying start is operating.

Figure 60: Flying start control program flowchart

The flying start frequency and angle search algorithm function is new to this lab, and must be called in the
main ISR.

88

The flying start variables and flags are updated in the following new function, which can be called in the
main background loop outside of the ISR.

As shown in Figure 61, the module routine disables speed close loop control, sets the reference Iq to
zero, and enables the InstaSPIN-FOC module. After the phase currents and voltages are measured, the
routine runs InstaSPIN-FOC and the real motor speed can be estimated. The program re-enables speed
closed loop control and sets the speed reference value after flying start is completed. The current
waveform during restart is shown in Figure 62 and Figure 63.

 // run the flying start function
 runFlyingStart(estHandle);

 // run motor control function
 runMotorCtrl(estHandle);

89

Figure 61: Flying start module program flowchart

90

Figure 62: Motor restarting from non-zero speed with flying start function

Figure 63: Motor restarting from non-zero speed without flying start function

91

Lab Procedure

Step 1.
Set up the lab kit, making sure to correctly connect the motor and power supply.

Step 2.
In the “user.h” header file, ensure the motor parameters are known and correctly set. Lab
“is09_flying_start” will only work with permanent magnet synchronous motors.

Step 3.
In Code Composer, build project “is09_flying_start”, connect to the target and load the .out file.

 Open the file \solutions\common\sensorless_foc\debug\is09_flying_start.js” via the Scripting Console

o This will add the variables that we will be using for this project into the watch window
 Enable the realtime debugger

o This will let the debugger update the watch window variables
 Click the run button.

o This will run the program on the microcontroller
 Enable continuous refresh on the watch window.

o This will continuously update the variables in the watch window

Step 4.
To run the motor with flying start function

 To start the project, set the variable “motorVars.flagEnableSys” equal to 1.
 To enable flying start function, set the variable “motorVars.flagEnableFlyingStart” equal to 1.
 To turn on the PWMs to the motor, set the variable “motorVars.flagEnableRunAndIdentify” equal
to 1.
 The acceleration can be modified by adjusting the value in “motorVars.accelerationMax_Hzps”.
 Set a reference speed using “motorVars.speedRef_Hz” in order to run the motor at a target speed.

Step 5.
When finished experimenting to stop the motor

 Set the variable “motorVars. flagEnableRunAndIdentify” to ‘0’ to turn off the PWMs to the motor.
 Turn off real-time control and stop the debugger.
 Turn off power supply of drive kit.

Conclusion

Lab “is09_flying_start” adds the flying start functions to an InstaSPIN-FOC example. The flying start
feature allows a motor to start at any speed different to zero without over current trips occurring in the
drive.

92

is10_rs_recalc – Using Rs Online Recalibration

Abstract

The stator resistance of the motor’s coils, also noted as Rs, can vary drastically depending on the
operating temperature of the coils (also known as motor windings). This temperature might increase due
to several factors. The following examples list a few of those conditions where the stator coils
temperature might be affected:

 Excessive currents through the coils.
 Motor's enclosure does not allow self-cooling.
 Harsh operation environment leading to temperature increase
 Other heating elements in motor's proximity.

As a result of the temperature increase, there is a resistance increase in the motor's windings. This
resistance to temperature relationship is well defined depending on the materials used for the windings
themselves.

Introduction

Lab “is10_rs_recalc” provides a guideline for applying the Rs online recalibration feature by running a
motor.

Prerequisites

It assumes knowledge of project “is07_speed_control” or “is08_overmodulation”.

Objectives Learned

 Run Rs Online recalibration feature.
 See the Rs value being updated while motor is running.

Project Files

There are no new project files.

Includes

There are no new includes.

Global Object and Variable Declarations

There are no new global object and variable declarations.

Initialization and Setup

93

The following functions are new to this lab as shown in Table 21. These functions are all bundled in a
new function called runRsOnLine() which is called from the main background loop. This function contains
the following estimator functions:
Background
Loop

EST

EST_getState
Gets the Estimator State to make sure the estimator is running
before enabling Rs Online Recalibration

EST_setFlag_enableRsOnLin

Enables the Rs Online feature. After calling this function with a true
as a parameter, a new varying Id reference will be generated to
recalibrate Rs

 EST_setRsOnLineId_mag_A
This function sets the level of current to be generated in Id
reference. The value needed by this function is in SI units (A)

EST_setFlag_updateRs

When this function is called with true as a parameter, the internal Rs
value used by the estimator will use the Rs Online value. It is
recommended to enable this update flag only when the Rs Online
value has settled.

EST_setRsOnLineId_A
It is recommended to call this function with a zero as a parameter to
clear the accumulated Id reference when the motor is not running

EST_setRsOnLine_Ohm

It is recommended to call this function with a zero as a parameter to
initialize the Rs Online value to the existing Rs value before
enabling Rs Online feature

Table 21: API function calls in runRsOnLine()

The block diagram of InstaSPIN is shown in Figure 64, and in red, the function call that enables Rs
Online. Also, in red, the Id reference that comes from FAST that allows Rs Online to work when it is
enabled.

94

Figure 64: Block diagram of InstaSPIN-FOC with Rs online recalibration

The state machine flowchart of lab“is10_rs_recalc” is shown in Figure 65 that allows Rs online
recalibration to work from the background loop.

95

Figure 65: InstaSPIN lab project “is10_rs_recalc” state machine diagram

Lab Procedure

Build project “is10_rs_recalc”, connect to the target and load the .out file.

1. Add the appropriate watch window variables by calling the script
“\solutions\common\sensorless_foc\debug\is10_rs_recalc.js”.

2. Enable the real-time debugger.

3. Click the run button.

4. Enable continuous refresh on the watch window.

5. Set both “motorVars.flagEnableSys” and “motorVars.flagEnableRunAndIdentify” flags to “1” to run
the motor.

6. Set “motorVars.flagEnableRsOnLine” flag to “1” to enable Rs online.

Once the motor starts running, the current will start looking as shown in Figure 66 if there is a low
frequency component to it. This means that the Rs Online is running and Id reference is being modified

96

by the algorithm. The following oscilloscope plot was taken while Rs Online was running. There is a
command of 0.5 A max amplitude for Rs Online in this case:

Figure 66: Phase current while running Rs Online with a command of 0.5 A

Now notice both Rs Online and Rs as below.

7. Now change the maximum amplitude used for Rs Online by changing the following variable to 1.0

(A), the current will start looking as shown in Figure 67.

97

Figure 67: Phase current while running Rs Online with a command of 1.0 A

Now notice both Rs Online and Rs are the same and stable:

8. When done experimenting, set “motorVars.flagEnableRunAndIdentify” flag to “0” to turn motor off.

Conclusion

In many applications, the motor is subject to overheating conditions. This causes the stator resistance in
a motor to change. We have run the Rs Online feature of InstaSPIN, where the motor stator resistance is
updated while the motor is running and will update resistance even if resistance goes up or down due to
temperature changes.

98

is11_dual_motor – Dual Motor Sensorless Velocity Control

Abstract

The lab covers how to use InstaSPIN-FOC to control two motors based on one MCU.

Introduction

In lab “is11_dual_motor”, sensorless InstaSPIN-FOC is implemented to control two motors independently
by one MCU.

Prerequisites

It assumes knowledge of project “is07_speed_control”

Objectives Learned

 How to use InstaSPIN-FOC to control two motors based on one single MCU.
 How to run two motors synchronously or independently.

Detailed Description

Lab “is11_dual_motor” implements a dual motor control by leveraging two instances of InstaSPIN-FOC
on a single C2000 MCU. The same control techniques used to control a single motor are now used for
both motors. Lab “is11_dual_motor” continues to use a single interrupt subroutine mainISR() to run time
critical InstaSPIN-FOC code for both motors.

In “is11_dual_motor.c”, initialize parameters for each motor, set up common hardware for both motors,
create a new hardware abstraction layer object and set up the drive parameters for each motor, and
definine all control objects for each motor.

Phase control is implemented to improve the current sampling for both motor feedback signals. A phase
relationship of 90º is established between the respective PWM modules, with motor_1 set as a master
module and motor_2 as slave module. Configuration of the PWM modules is performed in
HAL_setupPWMs() which is defined in ‘hal_dm.c.’

An example PWM output waveform for dual motor control is shown in Figure 68, and the motor current

waveforms are shown in Figure 69.

99

Figure 68: Dual motor PWM output with phase difference of 90º

Where
ch1->PWM_UH for motor_1
ch2-> PWM_UH for motor_2

Figure 69: Dual motor phase current waveforms with phase offset of 90º

Where
ch3->Phase U current of motor_1
ch4-> Phase U current of motor_2

100

CPU Usage Time Calculation

The mainISR() is time critical. When integrating your code into this ISR, it is important to verify that these
two ISRs run in real-time.

The CPU_Time module allows measuring CPU time used by the ISR. Depending on this information,
users might want to free up some space to add other functions, or might want to increase the ISR
frequency to have a tighter current control. Adding the CPU_Time module to lab11 is described below:

Step 1.

Add “\libraries\utilities\cpu_time\source\cpu_time.c” to the project, as well as include "cpu_time.h" in
“labs_dm.h”.

Step 2.

Declare the object and handle for the CPU usage measurement as follows:

Step 3.
Initialize the CPU_Time module and set the parameters to configure the timers and initialize the global
variables.

Step 4.

In order to measure the ISR execution cycles that it takes to execute the ISR with this module, add the
following lines of code at the beginning of the ISR

Step 5.

Add the following at the end of the ISR to get the total number of cycles:

 // define CPU time for performance test
 CPU_TIME_Obj cpuTime;
 CPU_TIME_Handle cpuTimeHandle;

 // initialize the CPU usage module
 cpuTimeHandle = CPU_TIME_init(&cpuTime,sizeof(cpuTime));
 CPU_TIME_setParams(cpuTimeHandle,
 EPWM_getTimeBasePeriod(halMtrHandle[HAL_MTR_1]->pwmHandle[0]));

 // read the timer 1 value and update the CPU usage module
 uint32_t timer1Cnt = HAL_readTimerCnt(halHandle, 2);
 CPU_TIME_updateCnts(cpuTimeHandle,timer1Cnt);

 // read the timer 2 value and update the CPU usage module
 timer1Cnt = HAL_readTimerCnt(halHandle, 2);
 CPU_TIME_run(cpuTimeHandle, timer1Cnt);

101

The CPU_TIME_run() function calculates a maximum, minimum and average ISR CPU usage time. If
users want to reset these values and restart the calculation, set the “cpuTime.flag_resetStatus” flag to 1.

The maximum and minimum CPU usage time can be monitored from the watch window as shown in

Figure 70. Ensure the value of “cpuTime.timer_delta_max” is less than [“cpuTime.pwm_period” – 100] to
avoid ISR time overflow.

Figure 70: Monitor CPU Cycles of mainISR() for Dual Motor Control

Project Files

Compared to lab “is07_speed_control” replaces some of the original files with new files

is11_dual_motor

hal_dm.c Contains the various functions related to the HAL object

user_dm.c
Contains the function for setting initialization data to the HAL, and
EST modules

Table 22: New files that must be included in the project for dual motors control

Includes

A description of the included files for lab “is11_dual_motor”, is shown in the below tables. Note that
“labs_dm.h” is common across the project so there will be more included files than needed for this lab.

Labs_dm.h
Header file containing all included files used in is11_dual_motor.c, brief Defines the
structures, global initialization, and functions used in lab

 modules

 math.h Common math conversions, defines, and shifts

 est.h
Contains the public interface to the estimator (EST) module
routines

 platforms

 hal_dm.h
Contains public interface to various functions related to the HAL
object

 hal_obj_dm.h Defines the structures for the HAL object

 user_com.h
Contains the public interface for user initialization data for user
parameters

 user_m1.h
Contains the motor1 initialization parameters for the HAL, and
EST modules

102

 user_m2.h
Contains the motor2 initialization parameters for the HAL, and
EST modules

Table 23: Important header files needed for the dual motors control

Global Object and Variable Declarations
Global objects and declarations listed in below table are the objects that are absolutely needed for the
drive setup. Other object and variable declarations are used for display or information for the purpose of
this lab.

globals

 EST_Handle estHandle[2]

The handle to an estimator object. The controller
object implements all of the FOC algorithms and calls
the FAST observer functions.

 MOTOR_Vars_t motorVars[2]

Not needed for the implementation of InstaSPIN, but
in the example project, this structure contains all of
the flags and variables used to turn on and adjust
InstaSPIN.

 HAL_PWMData_t pwmData[2] The PWM voltage values for the three phases.

 HAL_ADCData_t adcData[2]
The voltage and current ADC values used by the
CTRL controller and the FAST estimator.

 HAL_Handle_mtr halHandleMtr[2]
The handle for the hardware abstraction layer
specific to the motor board.

 HAL_Obj_mtr halMtr[2]
The hardware abstraction layer object specific to the
motor board.

 HAL_Handle halHandle
The handle for the hardware abstraction layer for
common CPU setup

 HAL_Obj hal The hardware abstraction layer object

 SYSTEM_Vars_t systemVars
This structure contains all of the flags and variables
to control dual motors synchronously

Table 24: Global object and variable declarations important for the setup

Lab Procedure

Step 1.
Use one LAUNCHXL-F280049C and two sets of BOOSTXL-DRV8320RS to set up the lab kit. Connect
the motor and power supply to kit. Import the CCS Project located here:
“\solutions\boostxl_drv8320rs\f28004x\ccs\sensorless_foc\is11_dual_motor.projectspec”

Step 2.

In “user_dm.h,” “user_com.h,” “user_m1.h,” and “user_m2.h,” ensure motor parameters are known
and correctly set. Lab “is11_dual_motor” only works with two PMSM motors.

Step 3.

In Code Composer Studio, build lab “is11_dual_motor”, connect to the target and load the .out file:

 Open the command file “\solutions\common\sensorless_foc\debug\is11_dual_motor.js” via the
‘Scripting Console’

 o This will add the variables that we will be using for this project into the watch window

103

 Enable the real-time debugger

 o This will let the debugger update the watch window variables

 Click the ‘Run’ button.

 o This will run the program on the microcontroller

 Enable continuous refresh on the watch window.

 o This will continuously update the variables in the watch window

Step 4.

 To start the project, set the variable “systemVars.flagEnableSystem” equal to “1”. In this lab, the
“motorVars[0].flagEnableSys” and “motorVars[1].flagEnableSys” variables will be set to “1”
automatically to complete the current and voltage offset calibration.

To run the two motors synchronously using the same flag and speed reference:

 To enable synchronous control, set the variable “systemVars.flagEnableSynControl” equal to 1.

 To start the current and speed loop controller, set the variable “systemVars.flagEnableRun” equal
to 1.

 The acceleration can be modified by adjusting the value in “systemVars.
accelerationMaxSet_Hzps”.

 Set a reference speed to “systemVars.speedSet_krpm” in order to run the motor at a target speed.

To run the dual motors independently using different flags and speed references:

 To run the first motor (motor_1):

o To disable synchronous control, set the variable “systemVars.flagEnableSynControl” to “0”.

o To enable the PWM output to motor_1, set the variable
“motorVars[0].flagEnableRunAndIdentify” to “1”.

o The acceleration can be modified by adjusting the value in
“motorVars[0].accelerationMax_Hzps”.

o Set a reference speed to “motorVars[0].speedRef_Hz” in order to run the motor_1 at a target
speed.

 To run the second motor (motor_2):

o To disable synchronous control, set the variable “systemVars.flagEnableSynControl” to 0.

o To enable the PWM output to motor_2, set the variable
“motorVars[1].flagEnableRunAndIdentify” to “1”.

o The acceleration can be modified by adjusting the value in
“motorVars[1].accelerationMax_Hzps”.

o Set a reference speed to “motorVars[1]. speedRef_Hz” in order to run the motor_2 at a target
speed.

Step 5.

When finished experimenting, stop the motor:

104

 Set the variable “systemVars.flagEnableRun” to “0” if using synchronous control, or set
“motorVars[0].flagEnableRunAndIdentify” or “motorVars[1].flagEnableRunAndIdentify” to “0” if not
using synchronous control to disable the PWM output to the motors.

 Turn off real-time control and stop the debugger.

 Turn off power supply of drive kit.

Conclusion

Lab “is11_dual_motor” showed how to use InstaSPIN-FOC in a dual motor system, demonstrating a
quickly deployable setup for sensorlessly controlling two motors using a single C2000 device.

105

is12_variable_pwm_frequency – Online Variable Switching
Frequencies

Abstract

In a motor drive application, the thermal consumption and efficiency of the inverter must be considered in
the design. The online variable switching frequency can reduce power module loss which in turn drives
the motor more efficiently. The lab shows how to use the online variable switching frequencies function in
instaSPIN-FOC project.

Introduction

Lab “is12_variable_pwm_frequency” provides an example of the online variable switching frequency
feature of InstaSPIN-FOC. Online variable switching frequency is a feature that allows the drive to
change a FET’s switching frequency to optimize the motor drive efficiency without changing any
additional control parameters. Changing the switching frequencies can help minimize the heat generation
and loss during low speed operation, reduce the current ripple, and decrease the audible noise in the
high speed region by using a higher switching frequency.

Prerequisites

It assumes knowledge of is07_speed_control lab project.

Objectives Learned

The objective of this lab is to learn how to implement online variable switching frequencies in a lab
project.

Detailed Description

The total loss of the power module includes Insulated Gate Bipolar Transistor (IGBT) loss and Free
Wheeling Diode (FWD) loss. The IGBT loss includes steady state conduction loss and switching loss as

shown in Equation , and the FWD loss includes steady state conduction loss and reverse recovery loss

as shown in Equation 19.

�����(����) = �����(����) + ���(����) Equation 14

�����(���) = �����(���) + ����(���) Equation 15

The conduction losses of the IGBT and freewheeling diode can be calculated as the integration over the
conducting period of the current flowing through the collector/anode multiplied by the saturation voltage.
In contrast, switching losses arise as a result of energy losses that occur during the transition and
switching events. The conduction losses mainly depend on the duty cycle, load current and junction
temperature; whereas switching losses depend on the load current, dc link voltage, junction temperature,
and switching frequency, as shown in Equation 16 and Equation 17. The IGBT switching loss and FWD
reverse recovery loss increase with the switching frequency, while the total loss increases as the current
increases. If the switching frequency is higher, then the losses will be higher, leading to more heat
generation which requires a larger power module and a cooling system. To solve this problem, an online
variable switching frequency scheme is used to reduce power module inefficiencies that arise from
switching losses.

���(����) = (��� + ����) × ��� Equation 16

106

����(���) = ���� × ��� Equation 17

Files Needed for Online Variable Switching Frequencies

Add vsf.c into the project, and add the vsf.h header file include directory in lab.h

1. user.h

Define USER_EST_FREQ_Hz, USER_CTRL_FREQ_Hz, USER_CTRL_PERIOD_sec, and
USER_TRAJ_FREQ_Hz

2. user.c

1). Change the USER_ISR_FREQ_Hz in all xxxWaitTime[xxx] in user.c to the USER_EST_FREQ_Hz as
shown in the example code below.

2). Change the estimator, controller and trajectory frequencies and period as below:

3. hal.c

Add below code in HAL_enableADCInts() to enable a dedicated timer for the FAST estimator and
controller. In this example project, CPU timer 0 interrupt is used.

Add the function HAL_setupEstTimer() and call it in HAL_setParams() to configure CPU timer 0 to
trigger the FAST estimator ISR. Other unused timers can be assigned to trigger the ISR per the system
requirement, such as: EPWM4, EPWM5, CPU Timer 1, etc.

4. hal.h

Initialize the interrupt vector table and point the FAST ISR to the chosen timer interrupt.

 pUserParams->estWaitTime[EST_State_RoverL] =
 (int_least32_t)(5.0 * USER_EST_FREQ_Hz);

 pUserParams->estFreq_Hz = USER_EST_FREQ_Hz;
 pUserParams->ctrlFreq_Hz = USER_CTRL_FREQ_Hz;
 pUserParams->trajFreq_Hz = USER_TRAJ_FREQ_Hz;

 pUserParams->pwmPeriod_usec = USER_PWM_PERIOD_usec;
 pUserParams->ctrlPeriod_sec = USER_CTRL_PERIOD_sec;

#ifdef _VSF_EN_
 // enable the cpu timer 0 interrupt for FAST estimator
 Interrupt_enable(INT_TIMER0);
#endif // _VSF_EN_

#ifdef _VSF_EN_
 // setup the timer for estimator
 HAL_setupEstTimer(handle, USER_SYSTEM_FREQ_MHz, USER_EST_FREQ_Hz);
#endif // _VSF_EN_

107

Variables Needed for Online Variable Switching Frequencies

Add a new handle and object for the online variable switching frequency function in the
is12_variable_pwm_frequency source file.

Initialize the Online Variable Switching Frequencies Module

Initialize and setup the parameters for the online variable switching frequency function. The constants are
defined in vsf.h and can be changed based on the specification of real system.

UpdateOnline Variable Switching Frequencies in the Background Loop

Call the below two functions in the background loop to set the target PWM switching frequency as
required.

Update the PWM Period in the ISR

Call the below function to set the period register of the ePWM module to update the switching frequency.

Lab Procedure

#ifdef _VSF_EN_
 Interrupt_register(INT_TIMER0, &estISR);
#endif // _VSF_EN_

VSF_Obj vsfVars; //!< the handle for the variable PWM frequency
VSF_Handle vsfHandle; //!< the variable PWM frequency object

uint16_t pwmFreqSet_Hz = (uint16_t)(USER_PWM_FREQ_kHz * 1000.0);

 vsfHandle = VSF_init(&vsfVars, sizeof(vsfVars));
 VSF_initParameters(vsfHandle, &userParams);

 VSF_setupPwmMode(halHandle);
 VSF_setState(vsfHandle, VSF_IDLE);

 VSF_setFreqMax(vsfHandle, NUM_VSF_MAX_FREQ_HZ);
 VSF_setFreqMin(vsfHandle, NUM_VSF_MIN_FREQ_HZ);

 VSF_setFreqDelta(vsfHandle, NUM_VSF_DELTA);
 VSF_setWaitTime(vsfHandle, NUM_VSF_WAIT_TIME);

 VSF_setFreq(vsfHandle, pwmFreqSet_Hz);
 VSF_computeFreqParams(vsfHandle);

 VSF_setPeriod(halHandle,vsfHandle);

108

Step 1.

Set up the lab kit by connecting the motor and power supply.

Step 2.
In user.h, make sure the motor parameters are known and correctly set.

Step 3.

In Code Composer, build project “is12_variable_pwm_frequency,” connect to the target and load
the .out file.
 Open the command file “solutions\common\sensorless_foc\debug\is12_variable_pwm_frequency.js”
via the Scripting Console

o This will add the variables that we will be using for this project into the watch window
 Enable the real-time debugger

o This will let the debugger update the watch window variables
 Click the run button.

o This will run the program on the microcontroller
 Enable continuous refresh on the watch window.

o This will continuously update the variables in the watch window

Step 4.

Run the motor
 To start the project, set the variable “motorVars.flagEnableSys” equal to 1.
 To turn on the PWMs to the motor, set the variable “motorVars.flagEnableRunAndIdentify” equal
to 1.
 The acceleration can be modified by adjusting the value in “motorVars.accelerationMax_Hzps”.
 Set a reference speed to “motorVars.speedRef_Hz” in order to run the motor at a target speed.

Step 5.

To run the motor with the variable online switching frequency function
 Set pwmFreqSet_Hz to the target switching frequency; the unit is Hz.
 The NUM_VSF_DELTA and NUM_VSF_WAIT_TIME in vsf.h are used to set the ramp speed of

changing switching frequency.

Step 6.

When finished experimenting, stop the motor
 Set the variable “motorVars.flagEnableRunAndIdentify” to 0 to turn off the PWMs to the motor.
 Turn off real-time control and stop the debugger.
 Turn off power supply of drive kit.

Conclusion

This lab adds an online variable switching frequency function to the InstaSPIN-FOC feature set. This
feature allows changing the switching frequency at runtime to improve the inverter efficiency by reducing
the power loss.

109

is13_fwc_mtpa – Field Weakening and Maximum Torque per
Ampere Control

Abstract

This lab shows an example on how to implement Field Weakening (FW) and Maximum Torque Per
Ampere (MTPA) techniques to control three-phase Interior Permanent Magnet Synchronous Motors (IPM)
over a wide speed range in an InstaSPIN-FOC project. During this example, the operation mode will
automatically change from constant torque region with MTPA control to constant power region with FW
control based on the speed command and the input DC-link voltage.

Introduction

The permanent magnet synchronous motor (PMSM) is widely used in home appliance, industrial drive
and automotive applications due to its high power density, high efficiency, and wide speed range. The
PMSM includes two major types: the surface-mounted PMSM (SPM), and the interior PMSM (IPM). SPM
motors are easier to control due to their linear relationship between the torque and q-axis current.
However, the IPMSM has both electromagnetic torque and reluctance torque due to a large saliency ratio.
The total torque, including the electromagnetic torque and reluctance torque, is non-linear with respect to
the rotor angle. As a result, the MTPA technique can be used for IPM motors to optimize torque
generation in the constant torque region. The aim of the field weakening control is to optimize I� to reach
the highest power and efficiency of a PMSM drive. Field weakening can enable operation over the base
motor speed, expanding the operating limits of a permanent-magnet motor to reach speeds higher than
rated speed and allow optimal control across the entire speed and voltage range.

Lab “is13_fwc_mtpa” builds on top of the “is10_rs_recalc” lab project, adding Field Weakening (FW) and
Maximum Torque per Ampere (MTPA) control modules. These two modules can be used simultaneously
or can be used separately based on the motor control requirement.

Prerequisites

This lab assumes that the motor’s parameters are known and the “is10_rs_recalc” lab project is
understood.

Objectives Learned

 Learn where the FW and MTPA modules are added into the lab “is13_fwc_mtpa”.

 Tune the FW module to perform field weakening control to extend the speed range.
 Tune the MTPA module to perform maximum torque per ampere control to produce a greater

amount of electromagnetic torque.

Detailed Description

The voltage equations of the mathematical model of an IPMSM can be described in d-q coordinates as

shown in Equation 18 and Equation 19.

�� = ��
���

��
+ ���� − ������� Equation 18

110

�� = ��
���

��
+ ���� + ������� + ����� Equation 19

Where:
��, �� are the �- and �- axis stator voltages;

��, �� are the �- and �- axis stator currents;

��, are the stator per phase resistance;
��, �� are the �- and �- axis stator inductances;

��, is the permanent magnetic flux linkage;
��, is the rotor angle speed in rad/s;
�, is the number of the pole pairs;
�

��
 , is the differential operator;

 �� ��

 ��

 ��

���� ��

��

 ��

��

 ��

����

������

Figure 73 Equivalent Circuit of an IPM Synchronous Motor

The dynamic equivalent circuit of an IPM synchronous motor is shown in Figure 73. The total torque T�

generated by the IPMSM can be expressed as Equation 20 that the produced torque is composed of two
distinct terms. The first term corresponds to the mutual reaction torque occurring between torque current
�� and the permanent magnet ��, while the second term corresponds to the reluctance torque due to the

differences in d-axis and q-axis inductance.

�� =
�

�
�� ���� + (�� − ��)����� Equation 20

Where: ��, are the electromagnetic torque;

In most applications, IPMSM drives have speed and torque constraints, mainly due to inverter or motor
rating currents and available DC link voltage limitations respectively. These constraints can be expressed
with the mathematical equations Equation 21 and Equation 22.

�� = ���
� + ��

� ≤ ���� Equation 21

�� = ���
� + ��

� ≤ ���� Equation 22

Where V��� and I��� are the maximum allowable voltage and current of the inverter or motor. In a two-
level three-phase Voltage Source Inverter (VSI) fed machine, the maximum achievable phase voltage is
limited by the DC link voltage and the PWM strategy. The maximum voltage is limited to the value as

shown inEquation 23 if Space Vector Modulation (SVPWM) is adopted:

���
� + ��

� ≤ ���� =
���

√3
 Equation 23

Usually the resistance �� is negligible at high speed operation and the derivate of the currents is zero in

steady state, thus Equation 24 is obtained as below.

���
� (�� +

���

��
)� + ��

� ��
� ≤

����

��
 Equation 24

111

The current limitation of Equation 21 produces a circle of radius ���� in the stator currents’ d-q plane,

and the voltage limitation of Equation 24 produces an ellipse whose radius decreases as speed
increases. The resultant d-q plane current vector must be controlled to obey the current and voltage
constraintssimultaneously. According to these constraints, three operation regions for the IPMSM can be

distinguished as shown in Figure 74.

��

��

�� ��
Figure 74 IPMSM control operation regions

І. Constant Torque Region: MTPA can be implemented in this operation region to ensure maximum
torque generation.
П. Constant Power Region: Field weakening control must be employed and the torque capacity is
reduced as the current constraint is reached.
Ш. Constant Voltage Region: In this operation region, deep field weakening control keeps a constant
stator voltage to maximize the torque generation.

In the constant torque region, according to Equation 20, the total torque of an IPMSM includes the
electromagnetic torque from the magnet flux linkage and the reluctance torque from the saliency between
L� and L�. The electromagnetic torque is proportional to the q-axis current, and the reluctance torque is

proportional to the multiplication of the d-axis current, the q-axis current, and the difference between ��,
and ��.

Conventional vector control systems for SPM motors utilize only electromagnetic torque, setting the
commanded i� to zero for non-field weakening modes. But for an IPMSM, to utilize the reluctance torque
of the motor, d-axis current should be controlled as well. The aim of the MTPA control is to calculate the
reference currents �� and �� to maximize the ratio between produced electromagnetic torque and

reluctance torque. The relationship between i�, i�, and the vectorial sum of the stator current �� is shown

in the following equations:

�� = ���
� + ��

� Equation 25

�� = �� cos � Equation 26

�� = �� sin � Equation 27

Where � is the stator current angle in the synchronous (d-q) reference frame.

Equation 20 can be expressed as Equation 28 where �� substituted for �� and ��.

�� =
�

�
��� sin � � �� + (�� − ��)�� cos �� Equation 28

112

Equation 28 shows that motor torque depends on the angle of the stator current vector; as such, the
maximum efficiency point can be calculated when the motor torque differential is equal to zero. The

MTPA point can be found when this differential,
���

��
, is zero, as given in Equation 29:

���

��
=

�

�
�� ���� cos � +(�� − ��)��

� cos 2�� = 0 Equation 29

Following, the current angle of the MTPA control can be derived as in Equation 30:

����� = cos��
−�� + ���

� + 8 ∗ ��� − ���
�

∗ ��
�

4 ∗ ��� − ��� ∗ ��

Equation 30

Thus, the effective d-axis and q-axis reference currents can be expressed by Equation 31 and Equation
32 using the current angle of the MTPA control.
�� = �� ∗ cos ����� Equation 31

�� = �� ∗ sin ����� Equation 32

However, as shown in Equation 30, the angle of the MTPA control is related to d-axis and q-axis
inductance. This means that the variation of inductance will impede the ability to find the optimal MTPA
point. To improve the efficiency of a motor drive, the d-axis and q-axis inductances should be estimated
online, but the parameters L� and L� are not easily measured online and are influenced by saturation

effects. A robust Look-Up Table (LUT)-ensures controllability under electrical parameter variations.
Usually, to simplify the mathematical model, the coupling effect between d-axis and q-axis inductance can
be neglected. Thus, L� changes with i� only, and L� changes with i� only. Consequently, d- and q-axis

inductances can be modeled as a function of their d-q currents respectively, as shown in Equation 33

and Equation 34:

�� = �����, ��� = ��(��) Equation 33

�� = �����, ��� = ������ Equation 34

The ISR calculation burden can be reduced by simplifying Equation 30. Using the motor-parameter-
based constant �����, Equation 30 is expressed instead as Equation 36, where ����� is computed in

the background loop using the updated �� and ��.

����� =
��

4 ∗ ��� − ���
= 0.25 ∗

��

��� − ���
 Equation 35

����� = ����� ������/�� − ������� ��⁄ �
�

+ 0.5� Equation 36

A second intermediate variable �����, described in Equation 37, is defined to further simplify the

calculation. Using �����, Equation 36 can be expressed as equation Equation 38. The calculation of

both equations is performed in the ISR to achieve a real current angle.

����� = ����� ��⁄ Equation 37

����� = ����� ������ − ������
� + 0.5� Equation 38

113

In all cases, the magnetic flux can be weakened to extend the achievable speed range by acting on the
direct axis current ��. As a consequence of entering this constant power operating region, field weakening
control is chosen instead of the MTPA control used for the constant torque region.

Since the maximum inverter voltage is limited, PMSM motors cannot operate in such speed regions
where the back-electromotive force, almost proportional to the permanent magnet field and motor speed,
is higher than the maximum output voltage of the inverter. The direct control of magnet flux is not an
option in PM motors. However, the air gap flux can be weakened by the demagnetizing effect due to the
d-axis armature reaction by adding a negative i�. Considering the voltage and current constraints, the

armature current I� and the terminal voltage V� are limited as Equation 21 and Equation 22. The
inverter input voltage (DC-Link voltage) variation limits the maximum output of the motor. Furthermore,

the maximum fundamental motor voltage also depends on the PWM method used. In Equation 24, the
IPMSM has two factors: one is a permanent magnet value and the other is made by inductance and
current of flux.

Speed
PI

ref

Is_ref

Vs_ref

Vq

Vd

Vbus

FW
PI

Iq
PI

Iq_ref

Iq

Id_ref

Id

�� = ���
� + ��

�

��_��� =
���

√3
 ∗ ����Mmax

Vs

MTPA

�����

Switching
ControlIs

���

 �����

Id
PI

Vq

Vd

LUT

�� ��

��
����� =

��

4 ∗ ��� − ���

Figure 75 Block diagram of field-weakening and maximum torque per ampere control

Figure 75 shows the typical control structure used to implement field weakening; ��� is the output of the

field weakening (FW) PI controller and generates the reference i� and i�. Before the voltage magnitude

reaches its limit, the input of the PI controller of FW is always positive and therefore the output is always
saturated at 0.

A block diagram of Figure 76 shows the implementation of InstaSPIN-FOC. The block diagram provides
an overview of the InstaSPIN-FOC system's functions and variables. The key modules include:

 Trajectory control module for speed
 Clarke forward transform modules for current and voltage
 Park forward and inverse transform module
 Angle and speed estimator module (FAST)
 Proportional integral controller modules for speed and current
 Field weakening (FW) and Maximum torque per ampere (MTPA) module
 Space vector modulation module

114

�� �� ��

Figure 76 Block Diagram of InstaSPIN-FOC with MTPA and FWC

���

�����

 ��

 ��
�

 �� ��
�

��

 ��
�

Figure 77 Current phasor diagram of an IPMSM during FW and MTPA

There are two control modules in the InstaSPIN-FOC motor drive system as shown in Figure 75: one is
MTPA control and the other one is field weakening control. These two modules generate a current angle
respectively based on input parameters. The switching control module is used to decide which angle
should be applied, and then calculate the reference i�, and i� as shown in Figure 77. The current angle

� is chosen as follows.
 � = ��� if ��� > �����

 � = ����� if ��� ≤ �����

115

Figure 78 is the flowchart that shows the steps required to run InstaSPIN-FOC with FW and MPTA in the
main loop and interrupt.

Figure 78 Flowchart for an InstaSPIN-FOC Project with FW and MTPA

Files Needed for FW and MTPA

1). Add fwc.c and mtpa.c into the project and add the include directory of their header files (fwc.h and
mtpa.h) in lab.h as demonstrated below.

#include "fwc.h"
#include "mtpa.h"

2). Add the header file directory to the #include search path by selecting Project->Properties->Build-
>C2000 Compiler->Include Options as below.

${MCSDK_ROOT}/libraries/control/fwc/include
${MCSDK_ROOT}/libraries/control/mtpa/include

116

Variables Needed for FW and MTPA modules

Add two new handles and objects for FW and MTPA control in project file.

Initializing the FW and MTPA Modules

Initialize and setup parameters for FW and MTPA modules. The constants are defined in user.h that can
be changed based on the specification of a real system.

Updating the control parameters for FW and MTPA modules in the Background Loop

Call FWC and MTPA functions as the codes from line 602 to line 637 during the background loop in
“is13_fwc_mtpa.c”, to calculate the control constant of MTPA based on the updated motor parameters.
The tables for the calculation of �� and �� according to the armature current I� are defined in mtpa.h, and

the update process is done in the background loop.

Update the FW and MTPA modules in the ISR

Call the FW and MTPA functions as in the code from line 1029 to line 1077 in “is13_fwc_mtpa.c” to
calculate current angle, and then compute the reference currents of d-axis and q-axis.

Lab Procedure

Step 1.

Set up hardware kit, connect the motor and apply power supply correctly to the kit.

Step 2.

In user.h, make sure the motor parameters are known and correctly set. In mtpa.h, make sure the tables
are set properly for �� and �� calculations according to the specification of a motor.

FWC_Handle fwcHandle; //!< the handle for the Field Weakening Control (FWC)
FWC_Obj fwc; //!< the Field Weakening Control (FWC) object

MTPA_Handle mtpaHandle; //!< the handle for the Maximum torque per ampere (MTPA)
MTPA_Obj mtpa; //!< the Maximum torque per ampere (MTPA) object

 fwcHandle = FWC_init(&fwc, sizeof(fwc));

 FWC_setParams(fwcHandle, USER_FWC_KP, USER_FWC_KI,
 USER_FWC_MIN_ANGLE_RAD, USER_FWC_MAX_ANGLE_RAD);

 mtpaHandle = MTPA_init(&mtpa, sizeof(mtpa));

 MTPA_computeMotorConstant(mtpaHandle,
 userParams.motor_Ls_d_H,
 userParams.motor_Ls_q_H,
 userParams.motor_ratedFlux_Wb);

117

Step 3.

In CCS, build the “is13_fwc_mtpa” project, connect to the target and load the .out file.
 Open the command file “solutions\common\sensorless_foc\debug\is13_fwc_mtpa.js” via the Scripting
Console

o This will add the variables that we will be using for this project into the watch window
 Enable the real-time debugger

o This will let the debugger update the watch window variables
 Click the run button.

o This will run the program on the microcontroller
 Enable continuous refresh on the watch window.

o This will continuously update the variables in the watch window

Step 4.

To run the motor with speed closed loop:
 To start the project, set the variable “motorVars.flagEnableSys” equal to 1.
 To turn on the PWMs to the motor, set the variable “motorVars.flagEnableRunAndIdentify” equal
to 1.
 The acceleration can be modified by adjusting the value in “motorVars.accelerationMax_Hzps”.
 Set a reference speed to “motorVars.speedRef_Hz” in order to run the motor at a target speed.

Step 5.

To run the motor with FW and MTPA functions:
 To enable FW, set “motorVars.flagEnableFWC” to “1”.

o Tune control parameters for FW by setting motorVars.Kp_fwc, motorVars.Ki_fwc, and
motorVars.angleMax_fwc_rad.

 To enable MTPA, set “motorVars.flagEnableMTPA” to “1”.

Step 6.

When finished experimenting, to stop the motor:
 Set the variable “motorVars. flagEnableRunAndIdentify” to “0” to turn off the PWMs to the motor.
 Turn off real-time control and stop the debugger.
 Turn off the power supply of drive kit.

Conclusion

This lab adds field weakening (FW) and maximum torque per ampere (MTPA) control features in
InstaSPIN-FOC. These features allow improved torque output in the constant torque region with MTPA
and to extend the speed range over the base speed with FW with a very smooth transition between
MTPA and FW.

