

TMS320F2837xD Microcontroller
Workshop

Workshop Guide and Lab Manual

Kenneth W. Schachter
Revision 2.0
January 2018

Important Notice

ii TMS320F2837xD Microcontroller Workshop - Introduction

Important Notice
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or
to discontinue any product or service without notice, and advise customers to obtain the latest
version of relevant information to verify, before placing orders, that information being relied on is
current and complete. All products are sold subject to the terms and conditions of sale supplied at
the time of order acknowledgment, including those pertaining to warranty, patent infringement,
and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time
of sale in accordance with TI’s standard warranty. Testing and other quality control techniques
are utilized to the extent TI deems necessary to support this warranty. Specific testing of all
parameters of each device is not necessarily performed, except those mandated by government
requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer’s applications, adequate design and
operating safeguards must be provided by the customer to minimize inherent or procedural
hazards.

TI assumes no liability for applications assistance or customer product design. TI does not
warrant or represent that any license, either express or implied, is granted under any patent right,
copyright, mask work right, or other intellectual property right of TI covering or relating to any
combination, machine, or process in which such semiconductor products or services might be or
are used. TI’s publication of information regarding any third party’s products or services does not
constitute TI’s approval, warranty or endorsement thereof.

Copyright  2015 – 2018 Texas Instruments Incorporated

Revision History
February 2015 – Revision 1.0

May 2015 – Revision 1.1

January 2018 – Revision 2.0

Mailing Address
Texas Instruments
C2000 Training Technical
13905 University Boulevard
Sugar Land, TX 77479

 TMS320F2837xD Microcontroller Workshop

TMS320F2837xD Microcontroller Workshop - Introduction iii

TMS320F2837xD Microcontroller Workshop

TMS320F2837xD Microcontroller
Workshop

Texas Instruments
C2000 Technical Training

Copyright © 2018 Texas Instruments. All rights reserved.C2000 is trademarks of Texas Instruments.

Workshop Outline

Workshop Outline
1. Architecture Overview
2. Programming Development Environment

• Lab: Linker command file
3. Peripheral Register Header Files
4. Reset and Interrupts
5. System Initialization

• Lab: Watchdog and interrupts
6. Analog Subsystem

• Lab: Build a data acquisition system
7. Control Peripherals

• Lab: Generate and graph a PWM waveform
8. Direct Memory Access (DMA)

• Lab: Use DMA to buffer ADC results
9. Control Law Accelerator (CLA)

• Lab: Use CLA to filter PWM waveform
10. System Design

• Lab: Run the code from flash memory
11. Dual-Core Inter-Processor Communications (IPC)

• Lab: Transfer data using IPC
12. Communications
13. Support Resources

TMS320F2837xD Microcontroller Workshop

iv TMS320F2837xD Microcontroller Workshop - Introduction

Required Workshop Materials

Required Workshop Materials
http://processors.wiki.ti.com/index.php/

C2000_Multi-Day_Workshop

F28379D LaunchPad (LAUNCHXL-F28379D)

 Install Code Composer Studio v7.3.0

Run the workshop installer
F2837xD Microcontroller Workshop-2.0-Setup.exe

Lab Files / Solution Files

Workshop Manual

Development Tools

F28379D LaunchPad

Note: F28379D – 337 pin package

XD
S

10
0v

2
em

ul
at

io
n

 c
irc

ui
try

CON1: USB
emulation/

UART

JP2: GND
from USB
(disables
isolation)

JP1: 3.3V
from USB
(disables
isolation)

J2/J4 *

* = BoosterPack plug-in module connector

TMS320F28379D

J1/J3 * J5/J7 *

J6/J8 *

JP4/JP5
(connects
3.3V/5V
to J5/J7)

S1: Boot
Modes

S3: Reset

D10: GPIO31 (blue)
D9: GPIO34 (red)
D1: Power (green)

J12:
CAN

J14:
QEP_A

J15:
QEP_B

J21
(ADC-D

differential
pair inputs)

J20/J19
(Optional SMA

connector point)

JP3: 5V
from USB
(disables
isolation)

J13/J11
I2C

 TMS320F2837xD Microcontroller Workshop

TMS320F2837xD Microcontroller Workshop - Introduction v

F28379D controlCARD

SW1: Boot
Modes

TMS320F28379D

A:J1 - USB
emulation/

UART

J8: Host/
Device

XD
S

10
0v

2
em

ul
at

io
n

an
d

is
ol

at
io

n
ci

rc
ui

try

A:SW1 - isolated emulation
and UART communication

enable switch U5: µSD
card

LED LD2:
GPIO31 (red)

LED LD3:
GPIO34 (red)

LED
LD1:

Power
(green)

J2 - J7: USB
PHY connection
enable jumpers

SW2: ADC
VREFHI

ADC A & B

SW3: ADC
VREFHI

ADC C & D
Note: F28379D – 337 BGA

controlCARD Docking Station

TMS320F2837xD Microcontroller Workshop

vi TMS320F2837xD Microcontroller Workshop - Introduction

TMS320F28x7x Device Comparison

TMS320F28x7x Device Comparison
F2807x F2837xS F2837xD

C28x CPUs 1 1 2
Clock 120 MHz 200 MHz 200 MHz
Flash / RAM / OTP 256Kw / 50Kw / 2Kw 512Kw / 82Kw / 2Kw 512Kw / 102Kw / 2Kw
On-chip Oscillators P P P

Watchdog Timer P P P (each CPU)

ADC Three 12-bit Four 12/16-bit Four 12/16-bit
Buffered DAC 3 3 3
Analog COMP w/DAC P P P

FPU P P P (each CPU)

6-Channel DMA P P P (each CPU)

CLA P P P (each CPU)

VCU / TMU - / P P / P P / P (each CPU)

ePWM / HRPWM P / P P / P P / P
eCAP / HRCAP P / - P / - P / -
eQEP P P P

SCI / SPI / I2C P / P / P P / P / P P / P / P
CAN / McBSP / USB P / P / P P / P / P P / P / P
UPP - P P

EMIF 1 2 2

TMS320F28x7x Block Diagrams

F2837xD – Dual-Core Block Diagram

 TMS320F2837xD Microcontroller Workshop

TMS320F2837xD Microcontroller Workshop - Introduction vii

F2837xS – Single-Core Block Diagram

F2807x – Block Diagram

TMS320F2837xD Microcontroller Workshop

viii TMS320F2837xD Microcontroller Workshop - Introduction

TMS320F2837xD Microcontroller Workshop - Architecture Overview 1 - 1

Architecture Overview

Introduction
This architectural overview introduces the basic architecture of the C2000™ family of
microcontrollers from Texas Instruments. The F28x7x series adds a new level of high
performance processing ability. The C2000™ is ideal for applications combining digital signal
processing, microcontroller processing, efficient C code execution, and operating system tasks.

Unless otherwise noted, the terms C28x and F28x7x refer to TMS320F28x7x devices throughout
the remainder of these notes. For specific details and differences please refer to the device data
sheet, user’s guide, and technical reference manual.

Module Objectives
When this module is complete, you should have a basic understanding of the F28x7x architecture
and how all of its components work together to create a high-end, uniprocessor control system.

Module Objectives

Review the F28x7x block diagram and
device features

Describe the F28x7x bus structure
and memory map

 Identify the various memory blocks on
the F28x7x

 Identify the peripherals available on
the F28x7x

Introduction to the TMS320F28x7x

1 - 2 TMS320F2837xD Microcontroller Workshop - Architecture Overview

Chapter Topics
Architecture Overview .. 1-1

Introduction to the TMS320F28x7x ... 1-3
C28x Internal Bussing ... 1-4

C28x CPU + FPU + VCU + TMU and CLA ... 1-5
Special Instructions ... 1-6
CPU Pipeline ... 1-7
C28x CPU + FPU + VCU + TMU Pipeline .. 1-8
Peripheral Write-Read Protection ... 1-9

Memory ... 1-10
Memory Map ... 1-10
Dual Code Security Module (DCSM) .. 1-11
Peripherals .. 1-11

Fast Interrupt Response Manager .. 1-12
Math Accelerators ... 1-13

Viterbi / Complex Math Unit (VCU-II) .. 1-13
Trigonometric Math Unit (TMU)... 1-14

On-Chip Safety Features .. 1-15
Summary ... 1-16

 Introduction to the TMS320F28x7x

TMS320F2837xD Microcontroller Workshop - Architecture Overview 1 - 3

Introduction to the TMS320F28x7x
The TMS320F37xD, TMS320F37xS, and TMS320F07x, collectively referred to as the
TMS320F28x7x or F28x7x, are device members of the C2000™ microcontroller (MCU) product
family. These devices are most commonly used within embedded control applications. Even
though the topics presented in this workshop are based on the TMS320F2837xD dual-core
device series, most all of the topics are fully applicable to the TMS320F2837xS and
TMS320F2807x single-core device series. The F2837xD dual-core MCU design is based on the
TI 32-bit C28x CPU architecture. Each core is identical with access to its own local RAM and
flash memory, as well as globally shared RAM memory. Sharing information between the two
CPU cores is accomplished with an Inter-Processor Communications (IPC) module. Additionally,
each core shares access to a common set of highly integrated analog and control peripherals,
providing a complete solution for demanding real-time high-performance signal processing
applications, such as digital power, industrial drives, inverters, and motor control.

TMS320F28x7x Core Block Diagram

Sectored
Flash

Program Bus

Data Bus

RAM
Boot
ROM

3
32-bit

Timers

PIE
Interrupt
Manager

WD

CLA

CLA Bus

32x32 bit
Multiplier

FPU

CPU
Register Bus

R-M-W
Atomic

ALU

TMU

VCU

DMA
6 Ch.

DMA Bus

EMIF

ePWM

eCAP

eQEP

ADC

McBSP

I2C

SCI

SPI

CAN 2.0B

USB 2.0

GPIO

DAC

CMPSS

The above block diagram represents an overview of all device features and is not specific to any
one device. The F28x7x device is designed around a multibus architecture, also known as a
modified Harvard architecture. This can be seen in the block diagram by the separate program
bus and data bus, along with the link between the two buses. This type of architecture greatly
enhances the performance of the device.

In the upper left area of the block diagram is the memory section, which consists of the boot
ROM, sectored flash, and RAM. Also, notice that the six-channel DMA has its own set of buses.

In the lower left area of the block diagram is the execution section, which consists of a 32-bit by
32-bit hardware multiplier, a read-modify-write atomic ALU, a floating-point unit, a trigonometric
math unit, and a Viterbi complex math CRC unit. The control law accelerator (CLA) is an
independent and separate unit that has its own set of buses.

The peripherals are grouped on the right side of the block diagram. The upper set is the control
peripherals, which consists of the ePWM, eCAP, eQEP, and ADC. The lower set is the

Introduction to the TMS320F28x7x

1 - 4 TMS320F2837xD Microcontroller Workshop - Architecture Overview

communication peripherals and consists of the multichannel buffered serial port, I2C, SCI, SPI,
CAN, and USB.

The PIE block, or Peripheral Interrupt Expansion block, manages the interrupts from the
peripherals. In the bottom right corner is the general-purpose I/O. The CPU has a watchdog
module and three 32-bit general-purpose timers are available. Also, the device features an
external memory interface, as shown on the left side.

C28x Internal Bussing
As with many high performance microcontrollers, multiple busses are used to move data between
the memory blocks, peripherals, and the CPU. The C28x memory bus architecture consists of six
buses (three address and three data):

• A program read bus (22-bit address line and 32-bit data line)

• A data read bus (32-bit address line and 32-bit data line)

• A data write bus (32-bit address line and 32-bit data line)

Program-read Data Bus (32)

C28x CPU Internal Bus Structure

Data-write Address Bus (32)

Program Address Bus (22)

Execution
R-M-W
Atomic

ALU
Real-Time

JTAG
Emulation

Program

Decoder
PC

XAR0
to

XAR7

SP
DP @X

ARAU MPY32x32

XT
P

ACC

ALU

Registers Debug

Register Bus / Result Bus

Data/Program-write Data Bus (32)

Data-read Address Bus (32)

Data-read Data Bus (32)

TMU
TR0-TR7

Program
Memory

Data
Memory

Peripherals

VCU
VR0-VR8

CLA
MR0-MR3

FPU
R0H-R7H

The 32-bit-wide data busses provide single cycle 32-bit operations. This multiple bus architecture
(Harvard Bus Architecture) enables the C28x to fetch an instruction, read a data value and write a
data value in a single cycle. All peripherals and memory blocks are attached to the memory bus
with prioritized memory accesses.

 C28x CPU + FPU + VCU + TMU and CLA

TMS320F2837xD Microcontroller Workshop - Architecture Overview 1 - 5

C28x CPU + FPU + VCU + TMU and CLA
The C28x is a highly integrated, high performance solution for demanding control applications.
The C28x is a cross between a general purpose microcontroller and a digital signal processor
DSP), balancing the code density of a RISC processor and the execution speed of a DSP with
the architecture, firmware, and development tools of a microcontroller.

The DSP features include a modified Harvard architecture and circular addressing. The RISC
features are single-cycle instruction execution, register-to-register operations, and a modified
Harvard architecture. The microcontroller features include ease of use through an intuitive
instruction set, byte packing and unpacking, and bit manipulation.

C28x CPU + FPU + VCU + TMU and CLA
 MCU/DSP balancing code density &

execution time
16-bit instructions for improved code density
32-bit instructions for improved execution time

 32-bit fixed-point CPU + FPU
 32x32 fixed-point MAC, doubles as dual

16x16 MAC
 IEEE Single-precision floating point

hardware and MAC
 Floating-point simplifies software

development and boosts performance
 Viterbi, Complex Math, CRC Unit (VCU)

adds support for Viterbi decode, complex
math and CRC operations

 Parallel processing Control Law Accelerator
(CLA) adds IEEE Single-precision 32-bit
floating point math operations

 CLA algorithm execution is independent of
the main CPU

 Trigonometric operations supported by TMU
 Fast interrupt service time
 Single cycle read-modify-write instructions

Data Bus

3
32-bit

Timers
CPU

Register Bus

Program Bus

32x32 bit
Multiplier

FPU

R-M-W
Atomic

ALU
CLA

CLA Bus

TMU

VCU

PIE

Watchdog

The C28x design supports an efficient C engine with hardware that allows the C compiler to
generate compact code. Multiple busses and an internal register bus allow an efficient and
flexible way to operate on the data. The architecture is also supported by powerful addressing
modes, which allow the compiler as well as the assembly programmer to generate compact code
that is almost one to one corresponded to the C code.

The C28x is as efficient in DSP math tasks as it is in system control tasks. This efficiency
removes the need for a second processor in many systems, though the F2837xD is a dual-core
device for even higher performance. The 32 x 32-bit multiply-accumulate (MAC) capabilities can
also support 64-bit processing, enable the C28x to efficiently handle higher numerical resolution
calculations that would otherwise demand a more expensive solution. Along with this is the
capability to perform two 16 x 16-bit multiply accumulate instructions simultaneously or Dual
MACs (DMAC). The devices also feature floating-point units.

The addition of the Floating-Point Unit (FPU) to the fixed-point CPU core enables support for
hardware IEEE-754 single-precision floating-point format operations. The FPU adds an extended
set of floating-point registers and instructions to the standard C28x architecture, providing
seamless integration of floating-point hardware into the CPU.

C28x CPU + FPU + VCU + TMU and CLA

1 - 6 TMS320F2837xD Microcontroller Workshop - Architecture Overview

Special Instructions

C28x Atomic Read/Modify/Write

Registers ALU / MPY

LOAD

STORE

WRITE

READ

CPU Mem

Atomic Instructions Benefits

 Simpler programming

 Smaller, faster code

 Uninterruptible (Atomic)

 More efficient compiler

AND *XAR2,#1234h

2 words / 1 cycles

Atomic Read/Modify/Write

MOV AL,*XAR2
AND AL,#1234h
MOV *XAR2,AL

DINT

EINT

6 words / 6 cycles

Standard Load/Store

Note: Example shows non-atomic assembly instructions vs. atomic assembly instruction; Compiler intrinsics can
be used for generating the atomic assembly instructions if the user needs guaranteed atomicity at the C level

Atomic instructions are a group of small common instructions which are non-interuptable. The
atomic ALU capability supports instructions and code that manages tasks and processes. These
instructions usually execute several cycles faster than traditional coding.

 C28x CPU + FPU + VCU + TMU and CLA

TMS320F2837xD Microcontroller Workshop - Architecture Overview 1 - 7

CPU Pipeline

F1 F2 D1 D2 R1 R2 E

C28x CPU Pipeline

Protected Pipeline

 Order of results are as written in
source code

 Programmer need not worry about
the pipeline

8-stage pipeline
F1 F2 D1 D2 R1 R2 E

F1 F2 D1 D2 R1 R2 E

F1 F2 D1 D2 R1 R2 E

F1 F2 D1 D2 R1 R2 E

F1 F2 D1 D2 R1 R2 E

F1 F2 D1 D2 R1 R2 E

F1 F2 D1 D2 R1 R2 E

A
B
C

D
E
F
G

W

W

W

W

W

W

W

W

E & G Access
same address

R1 R2 E W

D2 R1 R2 E W

F1: Instruction Address
F2: Instruction Content
D1: Decode Instruction
D2: Resolve Operand Addr
R1: Operand Address
R2: Get Operand
E: CPU doing “real” work
W: store content to memory

H

The C28x uses a special 8-stage protected pipeline to maximize the throughput. This protected
pipeline prevents a write to and a read from the same location from occurring out of order.

This pipelining also enables the C28x CPU to execute at high speeds without resorting to
expensive high-speed memories. Special branch-look-ahead hardware minimizes the latency for
conditional discontinuities. Special store conditional operations further improve performance.
With the 8-stage pipeline most operations can be performed in a single cycle.

C28x CPU + FPU + VCU + TMU and CLA

1 - 8 TMS320F2837xD Microcontroller Workshop - Architecture Overview

C28x CPU + FPU + VCU + TMU Pipeline

C28x CPU + FPU + VCU + TMU Pipeline

 Floating Point Unit, VCU and TMU has an unprotected pipeline
 i.e. FPU/VCU/TMU can issue an instruction before previous instruction has

written results
 Compiler prevents pipeline conflicts
 Assembler detects pipeline conflicts
 Performance improvement by placing non-conflicting

instructions in floating-point pipeline delay slots

F1 F2 D1 D2 R1 R2 E WF28x Pipeline
Fetch Decode Read Exe Write

Floating-point math operations, conversions between integer and floating-
point formats, and complex MPY/MAC require 1 delay slot – everything else

does not require a delay slot (load, store, max, min, absolute, negative, etc.)

Load
Store

0 delay slot instruction
1 delay slot instruction

D R E1 E2/WVCU / TMU Instruction

D R E1 E2/WFPU Instruction

Floating-point unit (FPU), VCU and TMU operations are not pipeline protected. Some
instructions require delay slots for the operation to complete. This can be accomplished by insert
NOPs or other non-conflicting instructions between operations.

In the user’s guide, instructions requiring delay slots have a ‘p’ after their cycle count. The 2p
stands for 2 pipelined cycles. A new instruction can be started on each cycle. The result is valid
only 2 instructions later.

Three general guideslines for the FPU/VCU/TMU pipeline are:

Math MPYF32, ADDF32,
SUBF32, MACF32,
VCMPY

2p cycles
One delay slot

Conversion I16TOF32, F32TOI16,
F32TOI16R, etc…

2p cycles
One delay slot

Everything else* Load, Store, Compare,
Min, Max, Absolute and
Negative value

Single cycle
No delay slot

* Note: MOV32 between FPU and CPU registers is a special case.

 C28x CPU + FPU + VCU + TMU and CLA

TMS320F2837xD Microcontroller Workshop - Architecture Overview 1 - 9

Peripheral Write-Read Protection

Peripheral Write-Read Protection

 CPU pipeline protects W-R order for the same address
 Write-Read protection mechanism protects W-R order

for different addresses
 The following address ranges have Write-Read Protection:

 Block Protected Zone 1 (0x0000 4000 to 0x0000 7FFF)

 Block Protected Zone 2 (0x0004 0000 to 0x0005 FFFF)

Suppose you need to write to a peripheral register and
then read a different register for the same peripheral

(e.g., write to control, read from status register)?

Peripheral Frame 1 ePWM, eCAP, eQEP, DAC, CMPSS, SDFM

Peripheral Frame 2 McBSP, SPI, uPP, WD, XINT, SCI, I2C, ADC, X-BAR, GPIO

Peripheral Frame 2 USB, EMIF, CAN, IPC, System Control

The peripheral write-read protection is a mechanism to protect the write-read order for peripherals
at different addresses. This works similar to the CPU pipeline protection of write-read order for
the same address.

Memory

1 - 10 TMS320F2837xD Microcontroller Workshop - Architecture Overview

Memory
The F28x7x MCU utilizes a memory map where the unified memory blocks can be accessed in
either program space, data space, or both spaces. This type of memory map lends itself well for
supporting high-level programming languages. The memory structure consisting of dedicated
RAM blocks, shared local RAM blocks, shared global RAM blocks, message RAM blocks, Flash,
and one-time programmable (OTP) memory. The Boot is factory programmed with boot software
routines and standard tables used in math related algorithms.

Memory Map
The C28x CPU core contains no memory, but can access on-chip and off-chip memory. The
C28x uses 32-bit data addresses and 22-bit program addresses. This allows for a total address
reach of 4G words (1 word = 16-bits) in data memory and 4M words in program memory.

Simplified F28x7x Memory Map

M0 RAM (1Kx16)

M1 RAM (1Kx16)

PIE Vectors
(512x16)

CLA to CPU MSG
RAM (128x16)

CPU to CLA MSG
RAM (128x16)

EMIF-2 (4Kx16)

LS0 - LS5 RAM
(2Kx16 each)
D0 - D1 RAM
(2Kx16 each)

0x000000

0x000400

0x000D00

0x001480

0x002000

0x008000

0x00B000

0x001500

GS0 - GS15 RAM
(4Kx16 each)

CPU2 to CPU1 IPC
MSG RAM (1Kx16)
CPU1 to CPU2 IPC
MSG RAM (1Kx16)

FLASH (256Kx16)

User OTP (1Kx16)

EMIF-1 (2Mx16)

Boot ROM (32Kx16)
BROM Vectors (64x16)

0x00C000

0x03F800

0x03FC00

0x078000

0x080000

0x100000

0x3F8000
0x3FFFC0

LS0 - LS5 RAM
accessible by
CPU & CLA

GS0 - GS15
and EMIF1

accessible by DMA
(only GS0 - GS7
RAM on F2807x)

Notes:
1. Only EMIF-1 on

F2807x
2. IPC MSG RAMs

only on F2837xD
3. 512Kx16 FLASH

on F2837xS

There are four dedicated RAM block (M0, M1, D0, and D1) which are tightly coupled with the
CPU, and only the CPU has access to them. The PIE Vectors are a special memory area
containing the vectors for the peripheral interrupts. The six local shared memory blocks, LS0
through LS5, are accessible by its CPU and CLA. Global shared memory blocks GS0 through
GS15 on the F2837x and through GS7 on the F2807x are accessible by CPU and DMA.

There are two types of message RAM blocks: CPU message RAM blocks and CLA message
RAM blocks. The CPU message RAM blocks are used to share data between CPU1 subsystem
and CPU2 subsystem in a dual-core device via inter-processor communications. The CLA
message RAM blocks are used to share date between the CPU and CLA.

The user OTP is a one-time, programmable, memory block which contains device specific
calibration data for the ADC, internal oscillators, and buffered DACs, in addition to settings used
by the flash state machine for erase and program operations. Additionally, it contains locations
for programming security settings, such as passwords for selectively securing memory blocks,
configuring the standalone boot process, as well as selecting the boot-mode pins in case the

 Memory

TMS320F2837xD Microcontroller Workshop - Architecture Overview 1 - 11

factory-default pins cannot be used. This information is programmed into the dual code security
module (DCSM). The flash memory is primarily used to store program code, but can also be
used to store static data. Notice that the external memory interface is assigned a region within
the memory map. The boot ROM and boot ROM vectors are located at the bottom of the memory
map.

Dual Code Security Module (DCSM)

Dual Code Security Module
 Prevents reverse engineering and protects valuable

intellectual property

 Various on-chip memory resources can be assigned to
either zone 1 or zone 2

 Each zone has its own password
 128-bit user defined password is stored in OTP
 128-bits = 2128 = 3.4 x 1038 possible passwords
 To try 1 password every 8 cycles at 200 MHz, it would take

at least 4.3 x 1023 years to try all possible combinations!

Z1_CSMPSWD0
Z1_CSMPSWD1
Z1_CSMPSWD2
Z1_CSMPSWD3

Z2_CSMPSWD0
Z2_CSMPSWD1
Z2_CSMPSWD2
Z2_CSMPSWD3

Peripherals
The F28x7x is available with a variety of built in peripherals optimized to support control
applications. These peripherals vary depending on which F28x7x device selected.

• ePWM • SDFM

• eCAP • SPI

• eQEP • SCI

• CMPSS • I2C

• ADC • McBSP

• DAC

• Watchdog Timer

• DMA

• CLA

• CAN

• USB

• GPIO

• EMIF

Fast Interrupt Response Manager

1 - 12 TMS320F2837xD Microcontroller Workshop - Architecture Overview

Fast Interrupt Response Manager
The fast interrupt response manage is capable of automatically performing context save of critical
registers. This results in the ability of servicing many asynchronous events with minimal latency.
The F28x7x implements a zero cycle penalty to do 14 registers context saved and restored during
an interrupt. This feature helps reduces the interrupt service routine overheads.

C28x Fast Interrupt Response Manager
 192 dedicated PIE

vectors
 No software decision

making required
 Direct access to RAM

vectors
 Auto flags update
 Concurrent auto

context save

28x CPU Interrupt logic

C28x
CPUINTM192

Pe
rip

he
ra

l I
nt

er
ru

pt
s

 1
2x

16
 =

 1
92

12 interrupts

INT1 to
INT12

PIE
Register

Map

PIE module
For 192

interrupts

T ST0
AH AL
PH PL
AR1 (L) AR0 (L)
DP ST1
DBSTAT IER
PC(msw) PC(lsw)

Auto Context Save

IFR IER

By incorporating the very fast interrupt response manager with the peripheral interrupt expansion
(PIE) block, it is possible to allow up to 192 interrupt vectors to be processed by the CPU. More
details about this will be covered in the reset, interrupts, and system initialization modules.

 Math Accelerators

TMS320F2837xD Microcontroller Workshop - Architecture Overview 1 - 13

Math Accelerators

Viterbi / Complex Math Unit (VCU-II)

Viterbi / Complex Math Unit (VCU-II)
Extends C28x instruction

set to support:
 Viterbi operations

 Decode for communications
 Complex math

 16-bit fixed-point complex FFT
 used in spread spectrum

communications, and many signal
processing algorithms

 Complex filters
 used to improve data reliability,

transmission distance, and power
efficiency

 Power Line Communications
(PLC) and radar applications

 Cyclic Redundancy Check
(CRC)
 Communications and memory

robustness checks
 Other: OFDM interleaving &

de-interleaving, Galois Field
arithmetic, AES acceleration

VCU execution
registers VCU-II

VSTATUS

VR0

VR1

VR2

VR3

VR4

VR5

VR6

VR7

VR8

VT0

VT1

VCRC

VSM0
to

VSM63

Data path logic for VCU-II
Instruction

1. General instructions
2. CRC instructions
3. Arithmetic instructions
4. Galois Field instructions
5. Complex FFT instructions

VCU II
Control Logic

The Viterbi, Complex Math, and CRC Unit (VCU) adds an extended set of registers and
instructions to the standard C28x architecture for supporting various communications-based
algorithms, such as power line communications (PLC) standards PRIME and G3. These
algorithms typically require Viterbi decoding, complex Fast Fourier Transform (FFT), complex
filters, and cyclical redundancy check (CRC). By utilizing the VCU a significant performance
benefit is realized over a software implementation. It performs fixed-point operations using the
existing instruction set format, pipeline, and memory bus architecture. Additionally, the VCU is
very useful for general-purpose signal processing applications such as filtering and spectral
analysis.

Math Accelerators

1 - 14 TMS320F2837xD Microcontroller Workshop - Architecture Overview

Trigonometric Math Unit (TMU)

Trigonometric Math Unit (TMU)

 Supported by natural C and C-intrinsics
 Significant performance impact on algorithms such as:

• Park / Inverse Park • dq0 Transform & Inverse dq0
• Space Vector GEN • FFT Magnitude & Phase Calculations

Adds instructions to FPU for
calculating common

Trigonometric operationsx

y
r

y =
 r

* s
in

(ra
d)

x = r * cos(rad)

Operation Instruction Exe Cycles Result Latency FPU Cycles w/o TMU
Z = Y/X DIVF32 Rz,Ry,Rx 1 5 ~24
Y = sqrt(X) SQRTF32 Ry,Rx 1 5 ~26
Y = sin(X/2pi) SINPUF32 Ry,Rx 1 4 ~33
Y = cos(X/2pi) COSPUF32 Ry,Rx 1 4 ~33
Y = atan(X)/2pi ATANPUF32 Ry,Rx 1 4 ~53
Instruction To
Support ATAN2
Calculation

QUADF32 Rw,Rz,Ry,Rx
ATANPUF32 Ra,Rz
ADDF32 Rb,Ra,Rw

3 11 ~90

Y = X * 2pi MPY2PIF32 Ry,Rx 1 2 ~4
Y = X * 1/2pi DIV2PIF32 Ry,Rx 1 2 ~4

The Trigonometric Math Unit (TMU) is an extension of the FPU and the C28x instruction set, and
it efficiently executes trigonometric and arithmetic operations commonly found in control system
applications. Similar to the FPU, the TMU provides hardware support for IEEE-754 single-
precision floating-point operations that are specifically focused on trigonometric math functions.
Seamless code integration is accomplished by built-in compiler support that automatically
generates TMU instructions where applicable. This dramatically increases the performance of
trigonometric functions, which would otherwise be very cycle intensive. It uses the same pipeline,
memory bus architecture, and FPU registers as the FPU, thereby removing any special
requirements for interrupt context save or restore.

 On-Chip Safety Features

TMS320F2837xD Microcontroller Workshop - Architecture Overview 1 - 15

On-Chip Safety Features

On-Chip Safety Features
 Memory Protection

 ECC and parity enabled RAMs, shared RAMs protection
 ECC enabled flash memory

 Clock Checks
 Missing clock detection logic
 PLLSLIP detection
 NMIWDs
 Windowed watchdog

 Write Register Protection
 LOCK protection on system configuration registers
 EALLOW protection
 CPU1 and CPU2 PIE vector address validity check

 Annunciation
 Single error pin for external signalling of error

Summary

1 - 16 TMS320F2837xD Microcontroller Workshop - Architecture Overview

Summary

Summary
 High performance 32-bit CPU
 32x32 bit or dual 16x16 bit MAC
 IEEE single-precision floating point unit (FPU)
 Hardware Control Law Accelerator (CLA)
 Viterbi, complex math, CRC unit (VCU)
 Trigonometric math unit (TMU)
 Atomic read-modify-write instructions
 Fast interrupt response manager
 256Kw on-chip flash memory
 Dual code security module (DCSM)
 Control peripherals
 ADC module
 Comparators
 Direct memory access (DMA)
 Shared GPIO pins
 Communications peripherals

TMS320F2837xD Microcontroller Workshop - Programming Development Environment 2 - 1

Programming Development Environment

Introduction
This module will explain how to use Code Composer Studio (CCS) integrated development
environment (IDE) tools to develop a program. Creating projects and setting building options will
be covered. Use and the purpose of the linker command file will be described.

Module Objectives

Module Objectives

Use Code Composer Studio to:
Create a Project
Set Build Options

Create a user linker command file which:
Describes a system’s available memory
Indicates where sections will be placed

in memory

Code Composer Studio

2 - 2 TMS320F2837xD Microcontroller Workshop - Programming Development Environment

Chapter Topics
Programming Development Environment .. 2-1

Code Composer Studio ... 2-3
Software Development and COFF Concepts .. 2-3
Code Composer Studio ... 2-4
Edit and Debug Perspective (CCSv7) ... 2-5
Target Configuration ... 2-6
CCSv7 Project ... 2-7
Creating a New CCSv7 Project ... 2-8
CCSv7 Build Options – Compiler / Linker ... 2-9
CCS Debug Environment .. 2-10

Creating a Linker Command File .. 2-12
Sections... 2-12
Linker Command Files (.cmd) .. 2-15
Memory-Map Description .. 2-15
Section Placement .. 2-16
Summary: Linker Command File .. 2-17

Lab File Directory Structure .. 2-18
Lab 2: Linker Command File ... 2-19

 Code Composer Studio

TMS320F2837xD Microcontroller Workshop - Programming Development Environment 2 - 3

Code Composer Studio

Software Development and COFF Concepts
In an effort to standardize the software development process, TI uses the Common Object File
Format (COFF). COFF has several features which make it a powerful software development
system. It is most useful when the development task is split between several programmers.

Each file of code, called a module, may be written independently, including the specification of all
resources necessary for the proper operation of the module. Modules can be written using Code
Composer Studio (CCS) or any text editor capable of providing a simple ASCII file output. The
expected extension of a source file is .ASM for assembly and .C for C programs.

Code Composer Studio

 Code Composer Studio includes:
 Integrated Edit/Debug GUI
Code Generation Tools
 TI-RTOS

Asm Link

Editor

Debug

Compile

Graphs,
Profiling

Code
Simulator

Development
Tool

External
Emulator

MCU
Board

Libraries

lnk.cmd
Build

Code Composer Studio includes a built-in editor, compiler, assembler, linker, and an automatic
build process. Additionally, tools to connect file input and output, as well as built-in graph
displays for output are available. Other features can be added using the plug-ins capability

Numerous modules are joined to form a complete program by using the linker. The linker
efficiently allocates the resources available on the device to each module in the system. The
linker uses a command (.CMD) file to identify the memory resources and placement of where the
various sections within each module are to go. Outputs of the linking process includes the linked
object file (.OUT), which runs on the device, and can include a .MAP file which identifies where
each linked section is located.

The high level of modularity and portability resulting from this system simplifies the processes of
verification, debug and maintenance. The process of COFF development is presented in greater
detail in the following paragraphs.

The concept of COFF tools is to allow modular development of software independent of hardware
concerns. An individual assembly language file is written to perform a single task and may be
linked with several other tasks to achieve a more complex total system.

Code Composer Studio

2 - 4 TMS320F2837xD Microcontroller Workshop - Programming Development Environment

Writing code in modular form permits code to be developed by several people working in parallel
so the development cycle is shortened. Debugging and upgrading code is faster, since
components of the system, rather than the entire system, is being operated upon. Also, new
systems may be developed more rapidly if previously developed modules can be used in them.

Code developed independently of hardware concerns increases the benefits of modularity by
allowing the programmer to focus on the code and not waste time managing memory and moving
code as other code components grow or shrink. A linker is invoked to allocate systems hardware
to the modules desired to build a system. Changes in any or all modules, when re-linked, create
a new hardware allocation, avoiding the possibility of memory resource conflicts.

Code Composer Studio

Code Composer Studio: IDE

 Integrates: edit, code generation,
and debug

 Single-click access using buttons

 Powerful graphing/profiling tools

 Automated tasks using Scripts

 Built-in access to RTOS functions

 Based on the Eclipse open source
software framework

Code Composer Studio™ (CCS) is an integrated development environment (IDE) for Texas
Instruments (TI) embedded processor families. CCS comprises a suite of tools used to develop
and debug embedded applications. It includes compilers for each of TI's device families, source
code editor, project build environment, debugger, profiler, simulators, real-time operating system
and many other features. The intuitive IDE provides a single user interface taking you through
each step of the application development flow. Familiar tools and interfaces allow users to get
started faster than ever before and add functionality to their application thanks to sophisticated
productivity tools.

CCS is based on the Eclipse open source software framework. The Eclipse software framework
was originally developed as an open framework for creating development tools. Eclipse offers an
excellent software framework for building software development environments and it is becoming
a standard framework used by many embedded software vendors. CCS combines the
advantages of the Eclipse software framework with advanced embedded debug capabilities from
TI resulting in a compelling feature-rich development environment for embedded developers.
CCS supports running on both Windows and Linux PCs. Note that not all features or devices are
supported on Linux.

 Code Composer Studio

TMS320F2837xD Microcontroller Workshop - Programming Development Environment 2 - 5

Edit and Debug Perspective (CCSv7)
A perspective defines the initial layout views of the workbench windows, toolbars, and menus that
are appropriate for a specific type of task, such as code development or debugging. This
minimizes clutter to the user interface.

Edit and Debug Perspective (CCSv7)
 Each perspective provides a set of functionality aimed

at accomplishing a specific task

 Edit Perspective
 Displays views used

during code development
 C/C++ project, editor, etc.

 Debug Perspective
 Displays views used for

debugging
 Menus and toolbars

associated with debugging,
watch and memory
windows, graphs, etc.

Code Composer Studio has “Edit” and “Debug” perspectives. Each perspective provides a set of
functionality aimed at accomplishing a specific task. In the edit perspective, views used during
code development are displayed. In the debug perspective, views used during debug are
displayed.

Code Composer Studio

2 - 6 TMS320F2837xD Microcontroller Workshop - Programming Development Environment

Target Configuration
A Target Configuration defines how CCS connects to the device. It describes the device using
GEL files and device configuration files. The configuration files are XML files and have a
*.ccxml file extension.

Creating a Target Configuration

 File  New  Target
Configuration File

 Select connection type

 Select device

 Save configuration

 Code Composer Studio

TMS320F2837xD Microcontroller Workshop - Programming Development Environment 2 - 7

CCSv7 Project
Code Composer works with a project paradigm. Essentially, within CCS you create a project for
each executable program you wish to create. Projects store all the information required to build
the executable. For example, it lists things like: the source files, the header files, the target
system’s memory-map, and program build options.

CCSv7 Project

 List of files:
 Source (C, assembly)
 Libraries
 Linker command files
 TI-RTOS configuration file

 Project settings:
 Build options (compiler,

assembler, linker, and TI-RTOS)
 Build configurations

Project files contain:

A project contains files, such as C and assembly source files, libraries, BIOS configuration files,
and linker command files. It also contains project settings, such as build options, which include
the compiler, assembler, linker, and TI-RTOS, as well as build configurations.

To create a new project, you need to select the following menu items:

File  New  CCS Project

Along with the main Project menu, you can also manage open projects using the right-click popup
menu. Either of these menus allows you to modify a project, such as add files to a project, or
open the properties of a project to set the build options.

Code Composer Studio

2 - 8 TMS320F2837xD Microcontroller Workshop - Programming Development Environment

Creating a New CCSv7 Project
A graphical user interface (GUI) is used to assist in creating a new project. The GUI is shown in
the slide below.

Creating a New CCSv7 Project

 File  New  CCS Project

1. Project Name, Location, and Device

2. Advanced Settings

3. Project Templates and Examples

After a project is created, the build options are configured.

 Code Composer Studio

TMS320F2837xD Microcontroller Workshop - Programming Development Environment 2 - 9

CCSv7 Build Options – Compiler / Linker
Project options direct the code generation tools (i.e. compiler, assembler, linker) to create code
according to your system’s needs. When you create a new project, CCS creates two sets of build
options – called Configurations: one called Debug, the other Release (you might think of as
optimize).

To make it easier to choose build options, CCS provides a graphical user interface (GUI) for the
various compiler and linker options. Here’s a sample of the configuration options.

CCSv7 Build Options – Compiler / Linker

 Compiler
 20 categories for code

generation tools
 Controls many aspects of

the build process, such as:
 Optimization level
 Target device
 Compiler / assembly / link

options

 Linker
 9 categories for linking

 Specify various link
options

 ${PROJECT_ROOT}
specifies the current
project directory

There is a one-to-one relationship between the items in the text box on the main page and the
GUI check and drop-down box selections. Once you have mastered the various options, you can
probably find yourself just typing in the options.

There are many linker options but these four handle all of the basic needs.
• -o <filename> specifies the output (executable) filename.

• -m <filename> creates a map file. This file reports the linker’s results.

• -c tells the compiler to autoinitialize your global and static variables.

• -x tells the compiler to exhaustively read the libraries. Without this option libraries are
searched only once, and therefore backwards references may not be resolved.

To help make sense of the many compiler options, TI provides two default sets of options
(configurations) in each new project you create. The Release (optimized) configuration invokes
the optimizer with –o3 and disables source-level, symbolic debugging by omitting –g (which
disables some optimizations to enable debug).

Code Composer Studio

2 - 10 TMS320F2837xD Microcontroller Workshop - Programming Development Environment

CCS Debug Environment
The basic buttons that control the debug environment are located in the top of CCS:

The common debugging and program execution descriptions are shown below:

Start debugging

Image Name Description Availability

New Target
Configuration

Creates a new target configartion file. File New Menu
Target Menu

Debug Opens a dialog to modify existing debug configura-
tions. Its drop down can be used to access other
launching options.

Debug Toolbar
Target Menu

Connect
Target

Connect to hardware targets. TI Debug Toolbar
Target Menu

Debug View Context Menu

Terminate All Terminates all active debug sessions. Target Menu
Debug View Toolbar

 Code Composer Studio

TMS320F2837xD Microcontroller Workshop - Programming Development Environment 2 - 11

Program execution

Image Name Description Availability

Halt Halts the selected target. The rest of the debug
views will update automatically with most recent
target data.

Target Menu
Debug View Toolbar

Run Resumes the execution of the currently loaded
program from the current PC location. Execution
continues until a breakpoint is encountered.

Target Menu
Debug View Toolbar

Run to Line Resumes the execution of the currently loaded
program from the current PC location. Execution
continues until the specific source/assembly line is
reached.

Target Menu
Disassembly Context Menu
Source Editor Context Menu

Go to Main Runs the programs until the beginning of function
main in reached. Debug View Toolbar

Step Into Steps into the highlighted statement. Target Menu
Debug View Toolbar

Step Over Steps over the highlighted statement. Execution
will continue at the next line either in the same
method or (if you are at the end of a method) it
will continue in the method from which the current
method was called. The cursor jumps to the decla-
ration of the method and selects this line.

Target Menu
Debug View Toolbar

Step Return Steps out of the current method. Target Menu
Debug View Toolbar

Reset Resets the selected target. The drop-down menu
has various advanced reset options, depending on
the selected device.

Target Menu
Debug View Toolbar

Restart Restores the PC to the entry point for the currently
loaded program. If the debugger option "Run to
main on target load or restart" is set the target will
run to the specified symbol, otherwise the execu-
tion state of the target is not changed.

Target Menu
Debug View Toolbar

Assembly
Step Into

The debugger executes the next assembly instruc-
tion, whether source is available or not.

TI Explicit Stepping Toolbar
Target Advanced Menu

Assembly
Step Over

The debugger steps over a single assembly instruc-
tion. If the instruction is an assembly subroutine,
the debugger executes the assembly subroutine
and then halts after the assembly function returns.

TI Explicit Stepping Toolbar
Target Advanced Menu

Creating a Linker Command File

2 - 12 TMS320F2837xD Microcontroller Workshop - Programming Development Environment

Creating a Linker Command File

Sections
Looking at a C program, you'll notice it contains both code and different kinds of data (global,
local, etc.). All code consists of different parts called sections. All default section names begin
with a dot and are typically lower case. The compiler has default section names for initialized and
uninitialized sections. For example, x and y are global variables, and they are placed in the
section .ebss. Whereas 2 and 7 are initialized values, and they are placed in the section called
.cinit. The local variables are in a section .stack, and the code is placed in a section called .txt.

Sections

 All code consists of
different parts called
sections

 All default section
names begin with “.”

 The compiler has
default section names
for initialized and
uninitialized sections

int x = 2;

int y = 7;

void main(void)

{

long z;

z = x + y;

}

Global vars (.ebss) Init values (.cinit)

Local vars (.stack) Code (.text)

In the TI code-generation tools (as with any toolset based on the COFF – Common Object File
Format), these various parts of a program are called Sections. Breaking the program code and
data into various sections provides flexibility since it allows you to place code sections in ROM
and variables in RAM. The preceding diagram illustrated four sections:
• Global Variables
• Initial Values for global variables
• Local Variables (i.e. the stack)
• Code (the actual instructions)

 Creating a Linker Command File

TMS320F2837xD Microcontroller Workshop - Programming Development Environment 2 - 13

The following is a list of the sections that are created by the compiler. Along with their
description, we provide the Section Name defined by the compiler. This is a small list of compiler
default section names. The top group is initialized sections, and they are linked to flash. In our
previous code example, we saw .txt was used for code, and .cinit for initialized values. The
bottom group is uninitialized sections, and they are linked to RAM. Once again, in our previous
example, we saw .ebss used for global variables and .stack for local variables.

Compiler Section Names

Name Description Link Location
.text code FLASH
.cinit initialization values for FLASH

global and static variables
.econst constants (e.g. const int k = 3;) FLASH
.switch tables for switch statements FLASH
.pinit tables for global constructors (C++) FLASH

Initialized Sections

Name Description Link Location
.ebss global and static variables RAM
.stack stack space low 64Kw RAM
.esysmem memory for far malloc functions RAM

Uninitialized Sections

Note: During development initialized sections could be linked to RAM since
the emulator can be used to load the RAM

Sections of a C program must be located in different memories in your target system. This is the
big advantage of creating the separate sections for code, constants, and variables. In this way,
they can all be linked (located) into their proper memory locations in your target embedded
system. Generally, they’re located as follows:

Program Code (.text)

Program code consists of the sequence of instructions used to manipulate data, initialize system
settings, etc. Program code must be defined upon system reset (power turn-on). Due to this basic
system constraint it is usually necessary to place program code into non-volatile memory, such as
FLASH or EPROM.

Constants (.cinit – initialized data)

Initialized data are those data memory locations defined at reset.It contains constants or initial
values for variables. Similar to program code, constant data is expected to be valid upon reset of
the system. It is often found in FLASH or EPROM (non-volatile memory).

Variables (.ebss – uninitialized data)

Uninitialized data memory locations can be changed and manipulated by the program code
during runtime execution. Unlike program code or constants, uninitialized data or variables must
reside in volatile memory, such as RAM. These memories can be modified and updated,
supporting the way variables are used in math formulas, high-level languages, etc. Each variable

Creating a Linker Command File

2 - 14 TMS320F2837xD Microcontroller Workshop - Programming Development Environment

must be declared with a directive to reserve memory to contain its value. By their nature, no value
is assigned, instead they are loaded at runtime by the program.

Next, we need to place the sections that were created by the compiler into the appropriate
memory spaces. The uninitialized sections, .ebss and .stack, need to be placed into RAM; while
the initialized sections, .cinit, and .txt, need to be placed into flash.

Placing Sections in Memory

.ebss

.cinit

.text

Memory
RAMM0
(0x400)

0x00 0000

0x08 0000

0x00 0400 RAMM1
(0x400)

FLASH
(0x40000)

Sections

.stack

Linking code is a three step process:

1. Defining the various regions of memory (on-chip RAM vs. FLASH vs. External Memory).

2. Describing what sections go into which memory regions

3. Running the linker with “build” or “rebuild”

 Creating a Linker Command File

TMS320F2837xD Microcontroller Workshop - Programming Development Environment 2 - 15

Linker Command Files (.cmd)
The linker concatenates each section from all input files, allocating memory to each section
based on its length and location as specified by the MEMORY and SECTIONS commands in the
linker command file. The linker command file describes the physical hardware memory and
specifies where the sections are placed in the memory. The file created during the link process is
a .out file. This is the file that will be loaded into the microcontroller. As an option, we can
generate a map file. This map file will provide a summary of the link process, such as the
absolute address and size of each section.

Linking

Linker

Link.cmd

.map

.obj .out

 Memory description
 How to place s/w into h/w

Memory-Map Description
The MEMORY section describes the memory configuration of the target system to the linker.

The format is: Name: origin = 0x????, length = 0x????

For example, if you placed a 256Kw FLASH starting at memory location 0x080000, it would read:

MEMORY
{
 FLASH: origin = 0x080000 , length = 0x040000
}

Each memory segment is defined using the above format. If you added RAMM0 and RAMM1, it
would look like:

MEMORY
{
 RAMM0: origin = 0x000000 , length = 0x0400
 RAMM1: origin = 0x000400 , length = 0x0400

Creating a Linker Command File

2 - 16 TMS320F2837xD Microcontroller Workshop - Programming Development Environment

}

Remember that the MCU has two memory maps: Program, and Data. Therefore, the MEMORY
description must describe each of these separately. The loader uses the following syntax to
delineate each of these:

Linker Page TI Definition

Page 0 Program

Page 1 Data

Linker Command File

SECTIONS
{

.text:> FLASH PAGE = 0

.ebss:> RAMM0 PAGE = 1

.cinit:> FLASH PAGE = 0

.stack:> RAMM1 PAGE = 1
}

MEMORY
{
PAGE 0: /* Program Memory */
FLASH: origin = 0x080000, length = 0x40000

PAGE 1: /* Data Memory */
RAMM0: origin = 0x000000, length = 0x400
RAMM1: origin = 0x000400, length = 0x400

}

A linker command file consists of two sections, a memory section and a sections section. In the
memory section, page 0 defines the program memory space, and page 1 defines the data
memory space. Each memory block is given a unique name, along with its origin and length. In
the sections section, the section is directed to the appropriate memory block.

Section Placement
The SECTIONS section will specify how you want the sections to be distributed through memory.
The following code is used to link the sections into the memory specified in the previous example:

SECTIONS
{
 .text:> FLASH PAGE 0
 .ebss:> RAMM0 PAGE 1
 .cinit:> FLASH PAGE 0
 .stack:> RAMM1 PAGE 1
}

 Creating a Linker Command File

TMS320F2837xD Microcontroller Workshop - Programming Development Environment 2 - 17

The linker will gather all the code sections from all the files being linked together. Similarly, it will
combine all ‘like’ sections.

Beginning with the first section listed, the linker will place it into the specified memory segment.

Summary: Linker Command File
The linker command file (.cmd) contains the inputs — commands — for the linker. This
information is summarized below:

Linker Command File Summary

Memory Map Description
Name
Location
Size

Sections Description
Directs software sections into named

memory regions
Allows per-file discrimination
Allows separate load/run locations

Lab File Directory Structure

2 - 18 TMS320F2837xD Microcontroller Workshop - Programming Development Environment

Lab File Directory Structure

Lab File Directory Structure

 All modified files are in the
Project Folder

Project Source Files

Other Source Files that are
“Added” to the Project Folder

Supporting Files

Note: CCSv7 will automatically add ALL files contained in the folder where the project is created

 Easier to make projects portable
 ${PROJECT_ROOT} provides

an anchor point for paths to files
that travel with the project

 Easier to maintain and update
supporting files

 Source files for multiple part
lab exercises

 Lab 2: Linker Command File

TMS320F2837xD Microcontroller Workshop - Programming Development Environment 2 - 19

Lab 2: Linker Command File
 Objective

Use a linker command file to link the C program file (Lab2.c) into the system described below.

Lab 2: Linker Command File

System Description:
• TMS320F2837x
• All internal RAM

blocks allocated

Placement of Sections:
• .text into RAM Block RAMGS0123 on PAGE 0 (program memory)
• .cinit into RAM Block RAMGS0123 on PAGE 0 (program memory)
• .ebss into RAM Block RAMM0 on PAGE 1 (data memory)
• .stack into RAM Block RAMM1 on PAGE 1 (data memory)

F2837x

Memory

on-chip
memory

 Initial Hardware Set Up

Note: The lab exercises in this workshop have been developed and targeted for the F28379D
LaunchPad. Optionally, the F28379D Experimenter Kit can be used. Other F2807x or
F2837xS development tool kits may be used and might require some minor modifications
to the lab code and/or lab directions; however the Inter-Processor Communications lab
exercise will require either the F28379D LaunchPad or the F28379D Experimenter Kit.
Refer to Appendix A for additional information about the F28379D Experimenter Kit.

• F28379D LaunchPad:

Using the supplied USB cable – plug the USB Standard Type A connector into the computer USB
port and the USB Mini Type B connector into the LaunchPad. This will power the LaunchPad
using the power supplied by the computer USB port. Additionally, this USB port will provide the
JTAG communication link between the device and Code Composer Studio.

At the beginning of the workshop, boot mode switch S1 position 3 must be set to “1 – ON”. This
will configure the device for emulation boot mode.

 Initial Software Set Up
Code Composer Studio must be installed in addition to the workshop files. A local copy of the
required C2000Ware files is included with the lab files. This provides portability, making the

Lab 2: Linker Command File

2 - 20 TMS320F2837xD Microcontroller Workshop - Programming Development Environment

workshop files self-contained and independent of other support files or resources. The lab
directions for this workshop are based on all software installed in their default locations.

 Procedure

Start Code Composer Studio and Open a Workspace
1. Start Code Composer Studio (CCS) by double clicking the icon on the desktop or selecting it

from the Windows Start menu. When CCS loads, a dialog box will prompt you for the
location of a workspace folder. Use the default location for the workspace and click OK.

This folder contains all CCS custom settings, which includes project settings and views when
CCS is closed so that the same projects and settings will be available when CCS is opened
again. The workspace is saved automatically when CCS is closed.

2. The first time CCS opens an introduction page appears. Close the page by clicking the X on
the “Getting Started” tab. You should now have an empty workbench. The term “workbench”
refers to the desktop development environment. Maximize CCS to fill your screen.

The workbench will open in the CCS Edit perspective view. Notice the “CCS Edit” icon in the
upper right-hand corner. A perspective defines the initial layout views of the workbench
windows, toolbars, and menus which are appropriate for a specific type of task (i.e. code
development or debugging). This minimizes clutter to the user interface. The CCS Edit
perspective is used to create or build C/C++ projects. A CCS Debug perspective view will
automatically be enabled when the debug session is started. This perspective is used for
debugging C/C++ projects.

Setup Target Configuration

3. Open the target configuration dialog box. On the menu bar click:

File  New  Target Configuration File

In the file name field type F2837xD.ccxml. This is just a descriptive name since multiple
target configuration files can be created. Leave the “Use shared location” box checked and
select Finish.

4. In the next window that appears, select the emulator using the “Connection” pull-down list
and choose “Texas Instruments XDS100v2 USB Debug Probe”. In the “Board or Device” box
type TMS320F28379D to filter the options. In the box below, check the box to select
“TMS320F28379D”. Click Save to save the configuration, then close the “F2837xD.ccxml”
setup window by clicking the X on the tab.

5. To view the target configurations, click:

View  Target Configurations

and click the plus sign (+) to the left of “User Defined”. Notice that the F2837xD.ccxml file is
listed and set as the default. If it is not set as the default, right-click on the .ccxml file and
select “Set as Default”. Close the Target Configurations window by clicking the X on the tab.

Create a New Project
6. A project contains all the files you will need to develop an executable output file (.out) which

can be run on the MCU hardware. To create a new project click:

File  New  CCS Project or click: Project  New CCS Project…

 Lab 2: Linker Command File

TMS320F2837xD Microcontroller Workshop - Programming Development Environment 2 - 21

A CCS Project window will open. At the top of this window, filter the “Target” options by using
the pull-down list on the left and choose “2837xD Delfino”. In the pull-down list immediately
to the right, choose the “TMS320F28379D”.

Leave the “Connection” box blank. We have already set up the target configuration.

7. The next section selects the project settings. In the Project name field type Lab2. Uncheck
the “Use default location” box. Click the Browse… button and navigate to:

C:\C28x\Labs\Lab2\cpu01

Click OK.

8. Next, open the “Advanced setting” section and set the “Linker command file” to “<none>”.
We will be using our own linker command file rather than the one supplied by CCS. Leave
the “Runtime Support Library” set to “<automatic>”. This will automatically select the
“rts2800_fpu32.lib” runtime support library for floating-point devices.

9. Then, open the “Project templates and examples” section and select the “Empty Project”
template. Click Finish.

10. A new project has now been created. Notice the Project Explorer window contains Lab2. If
the workbench is empty, reset the perspective view by clicking:

Window  Perspective  Reset Perspective…

The project is set “Active” and the output files will be located in the “Debug” folder. At this
point, the project does not include any source files. The next step is to add the source files to
the project.

11. To add the source files to the project, right-click on Lab2 in the Project Explorer window and
select:

Add Files…

or click: Project  Add Files…

and make sure you’re looking in C:\C28x\Labs\Lab2\source. With the “files of type” set
to view all files (*.*) select Lab2.c and Lab2.cmd then click OPEN. A “File Operation”
window will open, choose “Copy files” and click OK. This will add the files to the project.

12. In the Project Explorer window, click the plus sign (+) to the left of Lab2 and notice that the
files are listed.

Project Build Options
13. There are numerous build options in the project. Most default option settings are sufficient for

getting started. We will inspect a couple of the default options at this time. Right-click on
Lab2 in the Project Explorer window and select Properties or click:

Project  Properties

14. A “Properties” window will open and in the section on the left under “Build” be sure that the
“C2000 Compiler” and “C2000 Linker” options are visible. Next, under “C2000 Linker” select
the “Basic Options”. Notice that .out and .map files are being specified. The .out file is
the executable code that will be loaded into the MCU. The .map file will contain a linker
report showing memory usage and section addresses in memory. Also notice the stack size
is set to 0x200.

15. Under “C2000 Compiler” select the “Processor Options”. Notice the large memory model
and unified memory boxes are checked. Next, notice the “Specify CLA support” is set to

Lab 2: Linker Command File

2 - 22 TMS320F2837xD Microcontroller Workshop - Programming Development Environment

cla1, the “Specify floating point support” is set to fpu32, the “Specify TMU support” is set to
TMU0, and the “Specify VCU support” is set to vcu2. Select OK to close the Properties
window.

Linker Command File – Lab2.cmd
16. Open and inspect Lab2.cmd by double clicking on the filename in the Project Explorer

window. Notice that the Memory{} declaration describes the system memory shown on the
“Lab2: Linker Command File” slide in the objective section of this lab exercise. Memory
blocks RAMLS4, RAMLS5 and RAMGS0123 have been placed in program memory on page
0, and the other memory blocks have been placed in data memory on page 1.

17. In the Sections{} area notice that the sections defined on the slide have been “linked” into
the appropriate memories. Also, notice that a section called .reset has been allocated. The
.reset section is part of the rts2800_fpu32.lib and is not needed. By putting the TYPE =
DSECT modifier after its allocation the linker will ignore this section and not allocate it. Close
the inspected file.

Build and Load the Project
18. Two buttons on the horizontal toolbar control code generation. Hover your mouse over each

button as you read the following descriptions:

Button Name Description_____________________________________

 1 Build Full build and link of all source files
 2 Debug Automatically build, link, load and launch debug-session

19. Click the “Build” button and watch the tools run in the Console window. Check for errors in
the Problems window (we have deliberately put an error in Lab2.c). When you get an error,
you will see the error message in the Problems window. Expand the error by clicking on the
plus sign (+) to the left of the “Errors”. Then simply double-click the error message. The
editor will automatically open to the source file containing the error, with the code line
highlighted with a red circle with a white “x” inside of it.

20. Fix the error by adding a semicolon at the end of the “z = x + y” statement. For future
knowledge, realize that a single code error can sometimes generate multiple error messages
at build time. This was not the case here.

21. Build the project again. There should be no errors this time.

22. CCS can automatically save modified source files, build the program, open the debug
perspective view, connect and download it to the target, and then run the program to the
beginning of the main function.

Click on the “Debug” button (green bug) or click RUN  Debug

A Launching Debug Session window will open. Select only CPU1 to load the program on (i.e.
uncheck CPU2), and then click OK.

Notice the “CCS Debug” icon in the upper right-hand corner indicating that we are now in the
CCS Debug perspective view. The program ran through the C-environment initialization
routine in the rts2800_fpu32.lib and stopped at main() in Lab2.c.

 Lab 2: Linker Command File

TMS320F2837xD Microcontroller Workshop - Programming Development Environment 2 - 23

Debug Environment Windows
It is standard debug practice to watch local and global variables while debugging code. There are
various methods for doing this in Code Composer Studio. We will examine two of them here:
memory browser, and expressions.

23. Open a “Memory Browser” to view the global variable “z”.

Click: View  Memory Browser on the menu bar.

Type &z into the address field, select “Data” memory page, and then <enter>. Note that you
must use the ampersand (meaning “address of”) when using a symbol in a memory browser
address box. Also note that CCS is case sensitive.

Set the properties format to “16-Bit Hex – TI Style” in the browser. This will give you more
viewable data in the browser. You can change the contents of any address in the memory
browser by double-clicking on its value. This is useful during debug.

24. Notice the “Variables” window automatically opened and the local variables x and y are
present. The variables window will always contain the local variables for the code function
currently being executed.

(Note that local variables actually live on the stack. You can also view local variables in a
memory browser by setting the address to “SP” after the code function has been entered).

25. We can also add global variables to the “Expressions” window if desired. Let's add the global
variable “z”.

Click the “Expressions” tab at the top of the window. In the empty box in the “Expression”
column (Add new expression), type z and then <enter>. An ampersand is not used here.
The expressions window knows you are specifying a symbol. (Note that the expressions
window can be manually opened by clicking: View  Expressions on the menu bar).

Check that the expressions window and memory browser both report the same value for “z”.
Try changing the value in one window, and notice that the value also changes in the other
window.

Single-stepping the Code
26. Click the “Variables” tab at the top of the window to watch the local variables. Single-step

through main() by using the <F5> key (or you can use the “Step Into” button on the
horizontal toolbar). Check to see if the program is working as expected. What is the value
for “z” when you get to the end of the program?

Terminate Debug Session and Close Project

27. The “Terminate” button will terminate the active debug session, close the debugger and
return Code Composer Studio to the CCS Edit perspective view.

Click: Run  Terminate or use the Terminate icon:

28. Next, close the project by right-clicking on Lab2 in the Project Explorer window and select
Close Project.

End of Exercise

Lab 2: Linker Command File

2 - 24 TMS320F2837xD Microcontroller Workshop - Programming Development Environment

TMS320F2837xD Microcontroller Workshop - Peripherial Registers Header Files 3 - 1

Peripherial Registers Header Files

Introduction
The purpose of the F2837xD C-code header files is to simplify the programming of the many
peripherals on the F28x device. Typically, to program a peripheral the programmer needs to
write the appropriate values to the different fields within a control register. In its simplest form,
the process consists of writing a hex value (or masking a bit field) to the correct address in
memory. But, since this can be a burdensome and repetitive task, the C-code header files were
created to make this a less complicated task.

The F2837xD C-code header files are part of a library consisting of C functions, macros,
peripheral structures, and variable definitions. Together, this set of files is known as the ‘header
files.’

Registers and the bit-fields are represented by structures. C functions and macros are used to
initialize or modify the structures (registers).

In this module, you will learn how to use the header files and C programs to facilitate
programming the peripherals.

Module Objectives

Module Objectives

Review Register Programming Model
Understand the usage of the F2837xD

C-Code Header Files
Be able to program peripheral

registers
Understand how the structures are

mapped with the linker command file

Register Programming Model

3 - 2 TMS320F2837xD Microcontroller Workshop - Peripherial Registers Header Files

Chapter Topics
Peripherial Registers Header Files .. 3-1

Register Programming Model ... 3-3
Traditional and Structure Approach to C Coding .. 3-5
Naming Conventions ... 3-9
F2837xD C-Code Header Files ... 3-11

Peripheral Structure .h File ... 3-11
Global Variable Definitions File ... 3-13
Mapping Structures to Memory ... 3-14
Linker Command File .. 3-14
Peripheral Specific Routines ... 3-15

Summary ... 3-16

 Register Programming Model

TMS320F2837xD Microcontroller Workshop - Peripherial Registers Header Files 3 - 3

Register Programming Model

Register Programming Model
 DriverLib

 C functions automatically set
register bit fields

 Common tasks and
peripheral modes supported

 Reduces learning curve and
simplifies programming

 Bit Field Header Files
 C structures – Peripheral

Register Header Files
 Register access whole or by

bits and bit fields are
manipulated without masking

 Ease-of-use with CCS IDE
 Direct Register Access

 User code (C or assembly)
defines and access register
addresses

Hardware

Software

Registers and Addresses

DriverLib

H
ar

dw
ar

e
A

bs
tra

ct
io

n

Bit Fields

Direct

The various levels of the programming model provide different degrees of abstraction. The
highest level is DriverLib which are C functions that automatically set the bit fields. This gives you
the least amount of flexibility in exchange for a reduced learning curve and simplified
programming. The bit field header files are C structures that allow registers to be access whole
or by bits and bit fields, and modified without masking. This provides a nice balance between
ease of use and flexibility when working with Code Composer Studio. Direct register access is
the lowest level where the user code, in C or assembly, defines and access register addresses.

Register Programming Model

3 - 4 TMS320F2837xD Microcontroller Workshop - Peripherial Registers Header Files

Programming Model Comparison

 The device support package includes documentation and examples showing how to
use the Bit Field Header Files or DriverLib

 Device support packages located at: C:\ti\c2000\C2000Ware\device_support\
 C2000Ware can be downloaded at www.ti.com/tool/c2000ware

EPwm1Regs.CMPA.half.CMPA = EPwm1Regs.TBPRD * duty;

EPWM_setCounterCompareValue(EPWM2_BASE, EPWM_COUNTER_COMPARE_A, duty);

*CMPR1 = 0x1234;

Direct Register Access
 Register addresses # defined individually
 User must compute bit-field masks
 Not easy-to-read

Bit Field Header Files
 Header files define all registers as structures
 Bit-fields directly accessible
 Easy-to-read

DriverLib
 DriverLib performs low-level register manipulation
 Easy-to-read
 Highest abstraction level

The above slide provides a comparison of each programming model, from the lowest level to the
highest level of abstraction. With direct register access, the register addresses are #defined
individually and the user must compute the bit-field mask. The bit field header files define all
registers as structures and the bit fields are directly accessible. DriverLib performs low-level
register manipulation and provides the highest level of abstraction. This workshop makes use of
the bit field header files, which provides a balance between ease of use and flexibility. Device
support packages can be downloaded from www.ti.com.

 Traditional and Structure Approach to C Coding

TMS320F2837xD Microcontroller Workshop - Peripherial Registers Header Files 3 - 5

Traditional and Structure Approach to C Coding

Traditional Approach to C Coding
#define TBCTL (volatile unsigned int *)0x00004000

...

void main(void)

{

*TBCTL = 0x1234; //write entire register

*TBCTL |= 0x0003; //stop time-base counter

}

Disadvantages - Requires individual masks to be generated to
manipulate individual bits

- Cannot easily display bit fields in debugger window
- Will generate less efficient code in many cases

Advantages - Simple, fast and easy to type
- Variable names can match register names (easy

to remember)

In the traditional approach to C coding, we used a #define to assign the address of the register
and referenced it with a pointer. The first line of code on this slide we are writing to the entire
register with a 16-bit value. The second line, we are ORing a bit field.

Advantages? Simple, fast, and easy to type. The variable names can exactly match the register
names, so it's easy to remember. Disadvantages? Requires individual masks to be generated to
manipulate individual bits, it cannot easily display bit fields in the debugger window, and it will
generate less efficient code in many cases.

Traditional and Structure Approach to C Coding

3 - 6 TMS320F2837xD Microcontroller Workshop - Peripherial Registers Header Files

Structure Approach to C Coding
void main(void)

{

EPwm1Regs.TBCTL.all = 0x1234; //write entire register

EPwm1Regs.TBCTL.bit.CTRMODE = 3; //stop time-base counter

}

Disadvantages - Can be difficult to remember the structure names
(Editor Auto Complete feature to the rescue!)

- More to type (again, Editor Auto Complete feature
to the rescue)

Advantages - Easy to manipulate individual bits
- Watch window is amazing! (next slide)
- Generates most efficient code (on C28x)

The structure approach to C coding uses the peripheral register header files. First, a peripheral is
specified, followed by a control register. Then you can modify the complete register or selected
bits. This is almost self-commented code.

The first line of code on this slide we are writing to the entire register. The second line of code we
are modifying a bit field. Advantages? Easy to manipulate individual bits, it works great with our
tools, and will generate the most efficient code. Disadvantages? Can be difficult to remember
the structure names and more to type; however, the edit auto complete feature of Code
Composer Studio will eliminate these disadvantages.

 Traditional and Structure Approach to C Coding

TMS320F2837xD Microcontroller Workshop - Peripherial Registers Header Files 3 - 7

Built-in Register Window

Register values can be viewed using the built-in Register Window. Also, the peripheral can be
added to the expression window. In addition to viewing register values, individual bit fields can be
modified. There is no need to refer to the reference guide to identify the bit field settings.

Expressions Window using Structures

Traditional and Structure Approach to C Coding

3 - 8 TMS320F2837xD Microcontroller Workshop - Peripherial Registers Header Files

Is the Structure Approach Efficient?

You could not have coded this example any more efficiently with hand assembly!

The structure approach enables efficient compiler use of
DP addressing mode and C28x atomic operations

C Source Code
// Stop CPU Timer0
CpuTimer0Regs.TCR.bit.TSS = 1;

// Load new 32-bit period value
CpuTimer0Regs.PRD.all = 0x00010000;

// Start CPU Timer0
CpuTimer0Regs.TCR.bit.TSS = 0;

Generated Assembly Code*
MOVW DP, #0030
OR @4, #0x0010

MOVL XAR4, #0x010000
MOVL @2, XAR4

AND @4, #0xFFEF

5 words, 5 cycles- Easy to read the code w/o comments
- Bit mask built-in to structure

* C28x Compiler v5.0.1 with -g and either -o1, -o2, or -o3 optimization level

Compare with the #define Approach
The #define approach relies heavily on less-efficient pointers for
random memory access, and often does not take advantage of
C28x atomic operations

C Source Code
// Stop CPU Timer0
*TIMER0TCR |= 0x0010;

// Load new 32-bit period value
*TIMER0TPRD32 = 0x00010000;

// Start CPU Timer0
*TIMER0TCR &= 0xFFEF;

Generated Assembly Code*
MOV @AL,*(0:0x0C04)
ORB AL, #0x10
MOV *(0:0x0C04), @AL

MOVL XAR5, #0x010000
MOVL XAR4, #0x000C0A
MOVL *+XAR4[0], XAR5

MOV @AL, *(0:0x0C04)
AND @AL, #0xFFEF
MOV *(0:0x0C04), @AL

9 words, 9 cycles- Hard to read the code w/o comments
- User had to determine the bit mask

* C28x Compiler v5.0.1 with -g and either -o1, -o2, or -o3 optimization level

 Naming Conventions

TMS320F2837xD Microcontroller Workshop - Peripherial Registers Header Files 3 - 9

Naming Conventions
The header files use a familiar set of naming conventions. They are consistent with the Code
Composer Studio configuration tool, and generated file naming conventions.

Structure Naming Conventions
 The F2837xD header files define:

All of the peripheral structures
All of the register names
All of the bit field names
All of the register addresses

PeripheralName.RegisterName.all // Access full 16 or 32-bit register

PeripheralName.RegisterName.bit.FieldName // Access specified bit fields of register

Notes: [1] “PeripheralName” are assigned by TI and found in the F2837xD header files.
They are a combination of capital and small letters (i.e. CpuTimer0Regs).

[2] “RegisterName” are the same names as used in the data sheet.
They are always in capital letters (i.e. TCR, TIM, TPR,..).

[3] “FieldName” are the same names as used in the data sheet.
They are always in capital letters (i.e. POL, TOG, TSS,..).

The header files define all of the peripheral structures, all of the register names, all of the bit field
names, and all of the register addresses. The most common naming conventions used are
PeripheralName.RegisterName.all, which will access the full 16 or 32-bit register; and
PeripheralName.RegisterName.bit.FieldName, which will access the specified bit fields of a
register.

Naming Conventions

3 - 10 TMS320F2837xD Microcontroller Workshop - Peripherial Registers Header Files

Editor Auto Complete to the Rescue!

The editor auto complete feature works as follows. First, you type EPwm1Regs. Then, when you
type a “.” a window opens up, allowing you to select a control register. In this example TBCTL is
selected. Then, when you type the “.” a window opens up, allowing you to select “all” or “bit”. In
this example “bit” is selected. Then, when you type the “.” a window opens up, allowing you to
select a bit field. In this example CTRMODE is selected. And now, the structure is completed.

 F2837xD C-Code Header Files

TMS320F2837xD Microcontroller Workshop - Peripherial Registers Header Files 3 - 11

F2837xD C-Code Header Files
The F2837xD header file package contains everything needed to use the structure approach. It
defines all the peripheral register bits and register addresses. The header file package includes
the header files, linker command files, code examples, and documentation. The header file
package is available from C2000Ware.

F2837xD Header File Package
(http://www.ti.com, C2000Ware)

Contains everything needed to use the
structure approach

Defines all peripheral register bits and
register addresses

Header file package includes:

\F2837xD_headers\include  .h files
\F2837xD_headers\cmd  linker .cmd files
\F2837xD_examples  CCS examples
\doc  documentation

C2000Ware Header File Package located at –
C:\ti\c2000\C2000Ware_<version>\device_support\

A peripheral is programmed by writing values to a set of registers. Sometimes, individual fields
are written to as bits, or as bytes, or as entire words. Unions are used to overlap memory
(register) so the contents can be accessed in different ways. The header files group all the
registers belonging to a specific peripheral.

Peripheral data structures can be added to the watch window by right-clicking on the structure
and selecting the option to add to watch window. This will allow viewing of the individual register
fields.

Peripheral Structure .h File

The F2837xD_Device.h header file is the main include file. By including this file in the .c source
code, all of the peripheral specific .h header files are automatically included. Of course, each
specific .h header file can be included individually in an application that does not use all the
header files, or you can comment out the ones you do not need. (Also includes typedef
statements).

F2837xD C-Code Header Files

3 - 12 TMS320F2837xD Microcontroller Workshop - Peripherial Registers Header Files

Peripheral Structure .h files (1 of 2)

 Contain bits field structure definitions for each peripheral register

F2837xD_epwm.h

#include “F2837xD_device.h"

Void InitAdc(void)
{

/* Stop time-base counter */
EPwm1Regs.TBCTL.bit.CTRMODE = 1;

/* configure the ADC register */
AdcRegs.ADCCTL1.all = 0x00E4;

};

Your C-source file (e.g., EPwm.c)

// EPWM Individual Register Bit Definitions:
struct TBCTL_BITS { // bits description

Uint16 CTRMODE:2; // 1:0 Counter Mode
Uint16 PHSEN:1; // 2 Phase Load Enable
Uint16 PRDLD:1; // 3 Active Period Load
Uint16 SYNCOSEL:2; // 5:4 Sync Output Select
Uint16 SWFSYNC:1; // 6 Software Force Sync Pulse
Uint16 HSPCLKDIV:3; // 9:7 High Speed TBCLK Pre-scaler
Uint16 CLKDIV:3; // 12:10 Time Base Clock Pre-scaler
Uint16 PHSDIR:1; // 13 Phase Direction Bit
Uint16 FREE_SOFT:2; // 15:14 Emulation Mode Bits

};
// Allow access to the bit fields or entire register:
union TBCTL_REG {

Uint16 all;
struct TBCTL_BITS bit;

};
// EPWM External References & Function Declarations:
extern volatile struct EPWM_REGS EPwm1Regs;

Next, we will discuss the steps needed to use the header files with your project. The .h files
contain the bit field structure definitions for each peripheral register.

Peripheral Structure .h files (2 of 2)

 The header file package contains a .h file for
each peripheral in the device

 F2837xD_device.h
Main include file
Will include all other .h files
 Include this file (directly or indirectly)

in each source file:
#include “F2837xD_device.h”

F2837xD_adc.h F2837xD_emif.h F2837xD_mniintrupt.h
F2837xD_analogsubsys.h F2837xD_epwm.h F2837xD_output_xbar.h
F2837xD_can.h F2837xD_epwm_xbar.h F2837xD_piectrl.h
F2837xD_cla.h F2837xD_eqep.h F2837xD_pievect.h
F2837xD_cmpss.h F2837xD_flash.h F2837xD_sci.h
F2837xD_cputimer.h F2837xD_gpio.h F2837xD_sdfm.h
F2837xD_dac.h F2837xD_i2c.h F2837xD_spi.h
F2837xD_dcsm.h F2837xD_input_xbar.h F2837xD_sysctrl.h
F2837xD_device.h F2837xD_ipc.h F2837xD_upp.h
F2837xD_dma.h F2837xD_mcbsp.h F2837xD_xbar.h
F2837xD_ecap.h F2837xD_memconfig.h F2837xD_xint.h

The header file package contains a .h file for each peripheral in the device. The
F2837xD_Device.h file is the main include file. It will include all of the other .h files. There are

 F2837xD C-Code Header Files

TMS320F2837xD Microcontroller Workshop - Peripherial Registers Header Files 3 - 13

three steps needed to use the header files. The first step is to include this file directly or indirectly
in each source files.

Global Variable Definitions File
With F2837xD_GlobalVariableDefs.c included in the project all the needed variable definitions are
globally defined.

Global Variable Definitions File
F2837xD_GlobalVariableDefs.c

 Declares a global instantiation of the structure
for each peripheral

 Each structure is placed in its own section using
a DATA_SECTION pragma to allow linking to the
correct memory (see next slide)

 Add this file to your CCS project:
F2837xD_GlobalVariableDefs.c

#include "F2837xD_device.h"
…
#pragma DATA_SECTION(EPwm1Regs,“EPwm1RegsFile");
volatile struct EPWM_REGS EPwm1Regs;
…

F2837xD_GlobalVariableDefs.c

The global variable definition file declares a global instantiation of the structure for each
peripheral. Each structure is placed in its own section using a DATA_SECTION pragma to allow
linking to the correct memory. The second step for using the header files is to add
F2837xD_GlobalVariableDefs.c file to your project.

F2837xD C-Code Header Files

3 - 14 TMS320F2837xD Microcontroller Workshop - Peripherial Registers Header Files

Mapping Structures to Memory
The data structures describe the register set in detail. And, each instance of the data type (i.e.,
register set) is unique. Each structure is associated with an address in memory. This is done by
(1) creating a new section name via a DATA_SECTION pragma, and (2) linking the new section
name to a specific memory in the linker command file.

Linker Command Files for the Structures
F2837xD_nonBIOS.cmd and F2837xD_BIOS.cmd

 Links each structure to
the address of the
peripheral using the
structures named
section

 non-BIOS and BIOS
versions of the .cmd file

 Add one of these files
to your CCS project:
F2837xD_nonBIOS.cmd

or
F2837xD_BIOS.cmd

MEMORY
{

PAGE1:
...
EPWM1: origin=0x004000, length=0x000100
...

}

SECTIONS
{

...
EPwm1RegsFile: > EPWM1 PAGE = 1
...

}

F2837xD_Headers_nonBIOS.cmd

#include "F2837xD_device.h"
…
#pragma DATA_SECTION(EPwm1Regs,“EPwm1RegsFile");
volatile struct EPWM_REGS EPwm1Regs;
…

F2837xD_GlobalVariableDefs.c

The header file package has two linker command file versions; one for non-BIOS projects and
one for BIOS projects. This linker command file is used to link each structure to the address of
the peripheral using the structures named section. The third and final step for using the header
files is to add the appropriate linker command file to your project.

Linker Command File
When using the header files, the user adds the MEMORY regions that correspond to the
CODE_SECTION and DATA_SECTION pragmas found in the .h and global-definitons.c file.

The user can modify their own linker command file, or use a pre-configured linker command file
such as F28075.cmd. This file has the peripheral memory regions defined and tied to the
individual peripheral.

 F2837xD C-Code Header Files

TMS320F2837xD Microcontroller Workshop - Peripherial Registers Header Files 3 - 15

Peripheral Specific Routines
Peripheral Specific C functions are used to initialize the peripherals. They are used by adding the
appropriate .c file to the project.

Peripheral Specific Examples
 Example projects for each peripheral
 Helpful to get you started

The peripheral register header file package includes example projects for each peripheral. This
can be very helpful to getting you started.

Summary

3 - 16 TMS320F2837xD Microcontroller Workshop - Peripherial Registers Header Files

Summary

Peripheral Register Header Files
Summary

 Easier code development
 Easy to use
Generates most efficient code
 Increases effectiveness of CCS watch window
 TI has already done all the work!

Use the correct header file package for your device:

Go to http://www.ti.com and enter “C2000Ware” in the keyword search box

• F2837xD
• F2837xS
• F2807x
• F2806x
• F2805x
• F2804x

• F280x
• F2801x
• F281x
• F28M35x
• F28M36x

• F2803x
• F2802x
• F2802x0
• F2833x
• F2823x
• F2834x

In summary, the peripheral register header files allow for easier code development, they are easy
to use, generates the most efficient code, works great with Code Composer Studio, and TI has
already done the work for you. Just make sure to use the correct header file package for your
device.

TMS320F2837xD Microcontroller Workshop - Reset and Interrupts 4 - 1

Reset and Interrupts

Introduction
This module covers the interrupt process and explains how the Peripheral Interrupt Expansion
(PIE) is used to service the peripheral interrupts.

Module Objectives

Module Objectives

 Describe the F28x reset process

 List the event sequence during an
interrupt

 Describe the F28x interrupt structure

Reset and Boot Process

4 - 2 TMS320F2837xD Microcontroller Workshop - Reset and Interrupts

Chapter Topics
Reset and Interrupts ... 4-1

Reset and Boot Process ... 4-3
Reset - Bootloader .. 4-5
Emulation Boot Mode .. 4-6
Stand-Alone Boot Mode .. 4-7
Reset Code Flow – Summary ... 4-8
Emulation Boot Mode using Code Composer Studio GEL ... 4-8
Getting to main() ... 4-9
Peripheral Software Reset Registers .. 4-10

Interrupts ... 4-11
Interrupt Processing .. 4-12
Interrupt Flag Register (IFR) ... 4-13
Interrupt Enable Register (IER) ... 4-13
Interrupt Global Mask Bit (INTM) .. 4-14
Peripheral Interrupt Expansion (PIE) .. 4-14
PIE Block Initialization ... 4-17
Interrupt Signal Flow – Summary .. 4-19
F2837xD Dual-Core Interrupt Structure .. 4-20
Interrupt Response and Latency ... 4-21

 Reset and Boot Process

TMS320F2837xD Microcontroller Workshop - Reset and Interrupts 4 - 3

Reset and Boot Process

Reset Sources

POR – Power-on Reset generates a device reset during
power-up conditions

RESC – Reset Cause register contains the cause of the
last reset (sticky bits maintain state with multiple resets)

Note: Only F2807x devices support an on-chip voltage regulator (VREG) to
generate the core voltage.

Watchdog Timer *

XRS pin active
To XRS pin

F28x7x

XRSPower-on Reset

Hibernate Reset

Missing Clock Detect

Logic shown is functional representation, not actual implementation
* = CPU1.WD resets both cores and

CPU2.WD resets CPU2 only

The device has various reset sources, but in general resets on CPU1 will reset the entire device
and resets on CPU2 will reset only the CPU2 subsystem. The reset sources include an external
reset pin, watchdog timer reset, power-on reset which generates a device reset during power-up
conditions, Hibernate reset, as well as a missing clock detect reset. A reset cause register
(RESC) is available for each CPU subsystem which can be read to determine the cause of the
reset. The external reset pin is the main chip-level reset for the device, and it resets both CPU
subsystems to their default state. The power-on reset (POR) circuit is used to create a clean
reset throughout the device during power-up, while suppressing glitches on the input/output pins.
Note, only the F2807x devices support an on-chip voltage regulator to generate the core voltage.

Reset and Boot Process

4 - 4 TMS320F2837xD Microcontroller Workshop - Reset and Interrupts

Dual-Core Boot Process

CPU1 starts execution from CPU1 boot
ROM while CPU2 is held in reset

CPU1 controls the boot process
CPU2 goes through its own boot process

under the control of CPU1 – except when
CPU2 is set to boot-to-flash

 IPC registers are used to communicate
between CPU1 and CPU2 during the boot
process

During the F2837xD dual-core microcontroller booting, CPU1 controls the boot process and starts
execution from the CPU1 boot ROM while CPU2 is held in reset. CPU2 goes through its own
boot process under the control of CPU1, except when CPU2 is set to boot-to-flash. The IPC
registers are used to communicate between CPU1 and CPU2 during the boot process.
Additionally, the boot ROM contains the necessary boot loading routines to support peripheral
boot loading.

 Reset and Boot Process

TMS320F2837xD Microcontroller Workshop - Reset and Interrupts 4 - 5

Reset - Bootloader

Reset – Bootloader

TRST = JTAG Test Reset

EMU_BOOTCTRL register located in PIE RAM at 0x000D00
Z1-BOOTCTRL register located in OTP at 0x07801E
Z2-BOOTCTRL register located in OTP at 0x07821E

Reset vector
fetched from

boot ROM
0x3F FFC0

Emulation Boot
Boot determined by
EMU_BOOTCTRL:

EMU_KEY and EMU_BMODE

Stand-alone Boot
Boot determined by

2 GPIO pins and
Zx-BOOTCTRL:

OTP_KEY and OTP_BMODE

TRST = 1 TRST = 0

Reset
ENPIE = 0
INTM = 1

YES NOEmulator
Connected ?

CPU2

CPU2 held in
reset until

released by
CPU1.

When the device is reset, the peripheral interrupt expansion block, also known as the PIE block,
and the master interrupt switch INTM are disabled. This prevents any interrupts during the boot
process. The program counter is set to 0x3FFFC0, where the reset vector is fetched. In the boot
code the JTAG Test Reset line (TRST line) is checked to determine if the emulator is connected.

If the emulator is connected, then the boot process follows the Emulation Boot mode flow. In
Emulation Boot mode, the boot is determined by the EMU_BOOTCTRL register located in the
PIE RAM. Specific details about the boot flow are then determined by the EMU_KEY and
EMU_BMODE bit fields in the EMU_BOOTCTRL register.

If the emulator is not connected, the boot process follows the Stand-alone Boot mode flow. In
Stand-alone Boot mode, the boot is determined by two GPIO pins and the Z1-BOOTCTRL and
Z2-BOOTCTRL registers located in the OTP. Specific details about the boot flow are then deter-
mined by the OTP_KEY and OTP_BMODE bit fields in the Z1-BOOTCTRL and Z2-BOOTCTRL
registers.

Reset and Boot Process

4 - 6 TMS320F2837xD Microcontroller Workshop - Reset and Interrupts

Emulation Boot Mode

Emulation Boot Mode (TRST = 1) slide 1 of 2

If either EMU_KEY or EMU_BMODE
are invalid, the “wait” boot mode is
used. These values can then be
modified using the debugger and a
reset issued to restart the boot process.

Emulation Boot
Boot determined by
EMU_BOOTCTRL :

EMU_KEY and EMU_BMODE

Emulator Connected

EMU_KEY = 0x5A ? Boot Mode
Wait

NO

YES

EMU_BMODE = 0xFE ?
CPU1 only

YES

NO

EMU_BMODE = 0xFF ? Boot Mode
Emulate CPU1/2

Stand-Alone

YES

NO

Boot Mode
Parallel I/O
SCI-A
Wait
GetMode

GPIO 72 GPIO 84
0 0
0 1
1 0
1 1

Boot pins can be
mapped to any GPIO
pins. GetMode reads
Zx-BOOTCTRL (not
the boot pins).

Reads OTP for boot
pins and boot mode.

EMU_BOOTPIN1 EMU_BOOTPIN0 EMU_BMODE EMU_KEY
7 – 015 – 823 – 1631 – 24

CPU1 EMU_BOOTCTRL Register

reserved reserved EMU_BMODE EMU_KEY
7 – 015 – 823 – 1631 – 24

CPU2 EMU_BOOTCTRL Register

Emulation Boot Mode (TRST = 1) slide 2 of 2

Boot Mode
Parallel I/O
SCI-A
GetMode
SPI-A
I2C-A
CAN-A
M0 RAM
FLASH
Wait
USB-0
SCI-A *
SPI-A *
I2C-A *
CAN-A *

EMU_BMODE =
0x00
0x01
0x03
0x04
0x05
0x07
0x0A
0x0B
other
0x0C
0x81
0x84
0x85
0x87

Boot Mode
FLASH

NO
Continued from
previous slide

YES

OTP_KEY = 0x5A ?

Boot Mode
Parallel I/O
SCI-A
SPI-A
I2C-A
CAN-A
M0 RAM
FLASH
USB-0
Wait
SCI-A *
SPI-A *
I2C-A *
CAN-A *

OTP_BMODE =
0x00
0x01
0x04
0x05
0x07
0x0A
0x0B
0x0C
other
0x81
0x84
0x85
0x87* Alternate RX/TX GPIO

pin mapping for CPU1 only Boot Mode
FLASH
Wait

OTP_BMODE =
0x0B
other

CPU1
GetMode

CPU1
&

CPU2

CPU2
GetMode

CPU1
only

In Emulation Boot mode, first the EMU_KEY bit fields are checked for a value of 0x5A. If either
EMU_KEY or EMU_BMODE bit fields are invalid, the “Wait” boot mode is entered. These bit field
values can then be modified using the debugger and then a reset is issued to restart the boot

 Reset and Boot Process

TMS320F2837xD Microcontroller Workshop - Reset and Interrupts 4 - 7

process. This is the typical sequence followed during device power-up with the emulator con-
nected, allowing the user to control the boot process using the debugger.

Once the EMU_KEY bit fields are set to 0x5A, then the EMU_BMODE bit field values determines
the boot mode. The various Emulation Boot modes supported are Parallel I/O, SCI, SPI, I2C,
CAN, M0 RAM, FLASH, USB, and Wait. The GetMode and when EMU_BMODE bit fields have a
value of 0xFE or 0xFF are used to emulate the Stand-alone Boot mode.

Stand-Alone Boot Mode

Stand-Alone Boot Mode (TRST = 0)

Stand-Alone Boot
Boot determined by

2 GPIO pins and
Zx-BOOTCTRL :

OTP_KEY and OTP_BMODE

Emulator Not Connected

Boot Mode
Parallel I/O
SCI
Wait
GetMode

GPIO GPIO
72 84
0 0
0 1
1 0
1 1

Boot Mode
FLASH

NO

Boot Mode
Parallel I/O
SCI-A
SPI-A
I2C-A
CAN-A
M0 RAM
FLASH
USB-0
Wait
SCI-A *
SPI-A *
I2C-A *
CAN-A *

OTP_BMODE =
0x00
0x01
0x04
0x05
0x07
0x0A
0x0B
0x0C
other
0x81
0x84
0x85
0x87

Boot Mode
FLASH
Wait

OTP_BMODE =
0x0B
other

CPU1
GetMode

CPU2
GetMode

CPU1
only

Z1-BOOTCTRL
OTP_KEY = 0x5A ?

Z2-BOOTCTRL
OTP_KEY = 0x5A ?

NO

Use
Z1-

BOOTCTRL

YES

YESUse
Z2-

BOOTCTRL OTP_BOOTPIN1 OTP_BOOTPIN0 OTP_BMODE OTP_KEY
7 – 015 – 823 – 1631 – 24

CPU1 Zx-BOOTCTRL Register

reserved reserved OTP_BMODE OTP_KEY
7 – 015 – 823 – 1631 – 24

CPU2 Zx-BOOTCTRL Register

In Stand-alone boot mode, first GPIO pins 72 and 84 are checked to determine if the boot mode
is Parallel I/O, SCI, Wait, or GetMode. These pin can be remapped to any GPIO pins, if needed,
and the default “unconnected” pins set the boot mode to GetMode. In GetMode the OTP_KEY bit
fields in the Z1-BOOTCTRL and Z2-BOOTCTRL registers are checked for a value of 0x5A. An
un-programmed device will have these locations set as 1’s, and the flash boot mode is entered,
as expected for the default mode. If the OTP_KEY bit fields in either Z1-BOOTCTRL or Z2-
BOOTCTRL registers has a value of 0x5A, then the OTP_BMODE bit field values in the registers
determines the boot mode. The various Stand-alone Boot modes supported are Parallel I/O, SCI,
SPI, I2C, CAN, M0 RAM, FLASH, USB, and Wait.

Reset and Boot Process

4 - 8 TMS320F2837xD Microcontroller Workshop - Reset and Interrupts

Reset Code Flow – Summary
In summary, the reset code flow is as follows. After reset, the program counter is set to
0x3FFFC0, where the flow is vectored to the Init_Boot code in the Boot ROM. The Init_Boot code
defines the execution entry based on emulation boot mode or stand-alone boot mode. The entry
point can be executing boot-loading routines, entry to the flash, or M0 RAM.

Reset Code Flow - Summary

M0 RAM (1Kw)

FLASH (512Kw)

0x080000

0x000000

0x3F8000

0x3FFFC0

Boot ROM (32Kw)

BROM vector (64w)
* reset vector

Boot Code

•
•

•
•

RESET

Execution Entry
determined by

Emulation Boot Mode or
Stand-Alone Boot Mode

Bootloading
Routines

(SCI, SPI, I2C,
USB, CAN,
Parallel I/O)

InitBoot

0x000000

* reset vector = 0x3FF16A for CPU1; 0x3FEC52 for CPU2

0x080000

Emulation Boot Mode using Code Composer
Studio GEL
The CCS GEL file is used to setup the boot modes for the device during debug. By default the
GEL file provides functions to set the device for “Boot to SARAM” and “Boot to FLASH”. It can be
modified to include other boot mode options, if desired.

/**/
/* EMU Boot Mode - Set Boot Mode During Debug */
/**/
menuitem "EMU Boot Mode Select"
hotmenu EMU_BOOT_SARAM()
{
 *0xD00 = 0x0A5A;
}
hotmenu EMU_BOOT_FLASH()
{
 *0xD00 = 0x0B5A;
}

To access the GEL file use: Tools  GEL Files

 Reset and Boot Process

TMS320F2837xD Microcontroller Workshop - Reset and Interrupts 4 - 9

Getting to main()

After reset how do we get to main() ?
 At the code entry point, branch to _c_int00()

 Part of compiler runtime support library
 Sets up compiler environment
Calls main()

.sect “codestart”

LB _c_int00
CodeStartBranch.asm

MEMORY
{
PAGE 0:

BEGIN_M0 : origin = 0x000000, length = 0x000002
}

SECTIONS
{

codestart : > BEGIN_M0, PAGE = 0
}

Linker .cmd

Note: the above example is for boot mode set to RAMM0; to run out of Flash, the
“codestart” section would be linked to the entry point of the Flash memory block

After reset how do we get to main? When the bootloader process is completed, a branch to the
compiler runtime support library is located at the code entry point. This branch to _c_int00 is
executed, then the compiler environment is set up, and finally main is called.

Reset and Boot Process

4 - 10 TMS320F2837xD Microcontroller Workshop - Reset and Interrupts

Peripheral Software Reset Registers

Peripheral Software Reset Registers

Register PeripheralName

SOFTPRES0 CPU1_CLA1, CPU2_CLA1

SOFTPRES1 EMIF1, EMIF2

SOFTPRES2 EPWM1, EPWM2, EPWM3, EPWM4, EPWM5, EPWM6, EPWM7, EPWM8, EPWM9, EPWM10, EPWM11, EPWM12

SOFTPRES3 ECAP1, ECAP2, ECAP3, ECAP4, ECAP5, ECAP6

SOFTPRES4 EQEP1, EQEP2, EQEP3

SOFTPRES6 SD1, SD2

SOFTPRES7 SCI_A, SCI_B, SCI_C, SCI_D

SOFTPRES8 SPI_A, SPI_B, SPI_C

SOFTPRES9 I2C_A, I2C_B

SOFTPRES11 McBSP_A, McBSP_B, USB_A

SOFTPRES13 ADC_A, ADC_B, ADC_C, ADC_D

SOFTPRES14 CMPSS1, CMPSS2, CMPSS3, CMPSS4, CMPSS5, CMPSS6, CMPSS7, CMPSS8

SOFTPRES16 DAC_A, DAC_B, DAC_C

DevCfgRegs.SOFTPRESx.bit.PeripheralName = 1

0 = controlled by normal CPU reset (default) 1 = reset peripheral

Peripheral Software
Reset Signal Peripheral

The peripheral software reset register contains the reset bit for each peripheral.

 Interrupts

TMS320F2837xD Microcontroller Workshop - Reset and Interrupts 4 - 11

Interrupts

Interrupt Sources

ePWM, eCAP, eQEP,
ADC, SCI, SPI, I2C,

CAN, McBSP,
DMA, CLA, WD

Internal Sources

External Sources

XINT1 – XINT5

TZx

XRS

NMI

F28x CORE

INT1

INT13

INT2
INT3

INT12

INT14

XRS

•••

TINT2
TINT1
TINT0

PIE
(Peripheral

Interrupt
Expansion)

The internal interrupt sources include the general purpose timers 0, 1, and 2, and all of the
peripherals on the device. External interrupt sources include the three external interrupt lines, the
trip zones, and the external reset pin. The core has 14 interrupt lines. The Peripheral Interrupt
Expansion block, known as the PIE block, is connected to the core interrupt lines 1 through 12
and is used to expand the core interrupt capability, allowing up to 192 possible interrupt sources.

Interrupts

4 - 12 TMS320F2837xD Microcontroller Workshop - Reset and Interrupts

Interrupt Processing

Maskable Interrupt Processing
Conceptual Core Overview

 A valid signal on a specific interrupt line causes the latch
to display a “1” in the appropriate bit

1

0

1

(IFR)
“Latch”

INT14

INT1

INT2

Core
Interrupt

F28x
Core

(INTM)
“Global Switch”

(IER)
“Switch”

 If the individual and global switches are turned “on” the
interrupt reaches the core

By using a series of flag and enable registers, the CPU can be configured to service one interrupt
while others remain pending, or perhaps disabled when servicing certain critical tasks. When an
interrupt signal occurs on a core line, the interrupt flag register (IFR) for that core line is set. If the
appropriate interrupt enable register (IER) is enabled for that core line, and the interrupt global
mask (INTM) is enabled, the interrupt signal will propagate to the core. Once the interrupt service
routine (ISR) starts processing the interrupt, the INTM bit is disabled to prevent nested interrupts.
The IFR is then cleared and ready for the next interrupt signal. When the interrupt servicing is
completed, the INTM bit is automatically enabled, allowing the next interrupt to be serviced.
Notice that when the INTM bit is ‘0’, the “switch” is closed and enabled. When the bit is ‘1’, the
“switch” is open and disabled. The IER is managed by ORing and ANDing mask values. The
INTM bit in the status register is managed by using in-line assembly instructions.

 Interrupts

TMS320F2837xD Microcontroller Workshop - Reset and Interrupts 4 - 13

Interrupt Flag Register (IFR)

Interrupt Flag Register (IFR)
RTOSINT DLOGINT INT14 INT13 INT12 INT11 INT10 INT9

89101112131415

INT8 INT7 INT6 INT5 INT4 INT3 INT2 INT1
01234567

Pending : IFR Bit = 1
Absent : IFR Bit = 0

 Compiler generates atomic instructions (non-interruptible) for setting/clearing IFR
 If interrupt occurs when writing IFR, interrupt has priority
 IFR(bit) cleared when interrupt is acknowledged by CPU
 Register cleared on reset

/*** Manual setting/clearing IFR ***/
extern cregister volatile unsigned int IFR;

IFR |= 0x0008; //set INT4 in IFR
IFR &= 0xFFF7; //clear INT4 in IFR

Interrupt Enable Register (IER)

Interrupt Enable Register (IER)
RTOSINT DLOGINT INT14 INT13 INT12 INT11 INT10 INT9

89101112131415

INT8 INT7 INT6 INT5 INT4 INT3 INT2 INT1
01234567

Enable: Set IER Bit = 1
Disable: Clear IER Bit = 0

 Compiler generates atomic instructions (non-interruptible)
for setting/clearing IER

 Register cleared on reset

/*** Interrupt Enable Register ***/
extern cregister volatile unsigned int IER;

IER |= 0x0008; //enable INT4 in IER
IER &= 0xFFF7; //disable INT4 in IER

Interrupts

4 - 14 TMS320F2837xD Microcontroller Workshop - Reset and Interrupts

Interrupt Global Mask Bit (INTM)

Interrupt Global Mask Bit

 INTM used to globally enable/disable interrupts:
 Enable: INTM = 0
 Disable: INTM = 1 (reset value)

 INTM modified from assembly code only:

INTMST1
Bit 0

/*** Global Interrupts ***/
asm(“ CLRC INTM”); //enable global interrupts
asm(“ SETC INTM”); //disable global interrupts

Peripheral Interrupt Expansion (PIE)

Peripheral Interrupt Expansion - PIE

IF
R

IE
R

IN
TM 28x

Core

Core Interrupt logic

PIE module for 192 Interrupts

INT1.y interrupt group
INT2.y interrupt group
INT3.y interrupt group
INT4.y interrupt group
INT5.y interrupt group
INT6.y interrupt group
INT7.y interrupt group
INT8.y interrupt group
INT9.y interrupt group
INT10.y interrupt group
INT11.y interrupt group
INT12.y interrupt group

INT1 – INT12

12 Interrupts

192

INT1.1

INT1.2

INT1.16

1

0

1

•
•
•

•
•
•

INT1

PIEIFR1 PIEIER1
Interrupt Group 1

(TINT1)
(TINT2)

INT13
INT14
NMI

Pe
rip

he
ra

l I
nt

er
ru

pt
s

12

 x
 1

6
=

19
2

The C28x CPU core has a total of fourteen interrupt lines, of which two interrupt lines are directly
connected to CPU Timers 1 and 2 (on INT13 and INT14, respectively) and the remaining twelve

 Interrupts

TMS320F2837xD Microcontroller Workshop - Reset and Interrupts 4 - 15

interrupt lines (INT1 through INT12) are used to service the peripheral interrupts. A Peripheral
Interrupt Expansion (PIE) module multiplexes up to sixteen peripheral interrupts into each of the
twelve CPU interrupt lines, further expanding support for up to 192 peripheral interrupt signals.
The PIE module also expands the interrupt vector table, allowing each unique interrupt signal to
have its own interrupt service routine (ISR), permitting the CPU to support a large number of
peripherals.

The PIE module has an individual flag and enable bit for each peripheral interrupt signal. Each of
the sixteen peripheral interrupt signals that are multiplexed into a single CPU interrupt line is
referred to as a “group”, so the PIE module consists of 12 groups. Each PIE group has a 16-bit
flag register (PIEIFRx), a 16-bit enable register (PIEIERx), and a bit field in the PIE acknowledge
register (PIEACK) which acts as a common interrupt mask for the entire group. For a peripheral
interrupt to propagate to the CPU, the appropriate PIEIFR must be set, the PIEIER enabled, the
CPU IFR set, the IER enabled, and the INTM enabled. Note that some peripherals can have
multiple events trigger the same interrupt signal, and the cause of the interrupt can be determined
by reading the peripheral’s status register.

We have already discussed the interrupt process in the core. Now we need to look at the
peripheral interrupt expansion block. This block is connected to the core interrupt lines 1 through
12. The PIE block consists of 12 groups. Within each group, there are sixteen interrupt sources.
Each group has a PIE interrupt enable register and a PIE interrupt flag register. Note that
interrupt lines 13, 14, and NMI bypass the PIE block.

F2837xD PIE Assignment Table - Lower
INTx.8 INTx.7 INTx.6 INTx.5 INTx.4 INTx.3 INTx.2 INTx.1

INT1 WAKE TINT0 ADCD1 XINT2 XINT1 ADCC1 ADCB1 ADCA1

INT2 PWM8_
TZ

PWM7_
TZ

PWM6_
TZ

PWM5_
TZ

PWM4_
TZ

PWM3_
TZ

PWM2_
TZ

PWM1_
TZ

INT3 PWM8 PWM7 PWM6 PWM5 PWM4 PWM3 PWM2 PWM1

INT4 ECAP6 ECAP5 ECAP4 ECAP3 ECAP2 ECAP1

INT5 EQEP3 EQEP2 EQEP1

INT6 MCBSP
B_TX

MCBSP
B_RX

MCBSP
A_TX

MCBSP
A_RX SPIB_TX SPIB_RX SPIA_TX SPIA_RX

INT7 DMA_CH6 DMA_CH5 DMA_CH4 DMA_CH3 DMA_CH2 DMA_CH1

INT8 SCID_TX SCID_RX SCIC_TX SCIC_RX I2CB_
FIFO I2CB I2CA_

FIFO I2CA

INT9 CANB_2 CANB_1 CANA_2 CANA_1 SCIB_TX SCIB_RX SCIA_TX SCIA_RX

INT10 ADCB4 ADCB3 ADCB2 ADCB_
EVT ADCA4 ADCA3 ADCA2 ADCA_

EVT

INT11 CLA1_8 CLA1_7 CLA1_6 CLA1_5 CLA1_4 CLA1_3 CLA1_2 CLA1_1

INT12 FPU_UF FPU_OF VCU XINT5 XINT4 XINT3

The PIE assignment table maps each peripheral interrupt to the unique vector location for that
interrupt service routine. Notice the interrupt numbers on the left represent the twelve core group
interrupt lines and the interrupt numbers across the top represent the lower eight of the sixteen
peripheral interrupts within the core group interrupt line. The next figure shows the upper eight of
the sixteen peripheral interrupts within the core group interrupt line.

Interrupts

4 - 16 TMS320F2837xD Microcontroller Workshop - Reset and Interrupts

F2837xD PIE Assignment Table - Upper
INTx.16 INTx.15 INTx.14 INTx.13 INTx.12 INTx.11 INTx.10 INTx.9

INT1 IPC3 IPC2 IPC1 IPC0

INT2 PWM12_
TZ

PWM11_
TZ

PWM10_
TZ

PWM9_
TZ

INT3 EPWM12 EPWM11 EPWM10 EPWM9

INT4

INT5 SD2 SD1

INT6 SPIC_TX SPIC_RX

INT7

INT8 UPPA

INT9 USBA

INT10 ADCD4 ADCD3 ADCD2 ADCD_
EVT ADCC4 ADCC3 ADCC2 ADCC_

EVT

INT11

INT12 CLA_UF CLA_OF AUX_PLL
_SLIP

SYS_PLL
_SLIP

RAM_ACC
_VIOLAT

FLASH_C
_ERROR

RAM_C_
ERROR

EMIF_
ERROR

Similar to the core interrupt process, the PIE module has an individual flag and enable bit for
each peripheral interrupt signal. Each PIE group has a 16-bit flag register, a 16-bit enable
register, and a bit field in the PIE acknowledge register which acts as a common interrupt mask
for the entire group. The enable PIE bit in the PIECTRL register is used to activate the PIE
module.

PIE Registers

PIEVECT ENPIE

PIECTRL register 015 - 1

#include “F2837x_Device.h”
PieCtrlRegs.PIEIFR1.bit.INTx4 = 1; //manually set IFR for XINT1 in PIE group 1
PieCtrlRegs.PIEIER3.bit.INTx2 = 1; //enable PWM2 interrupt in PIE group 3
PieCtrlRegs.PIEACK.all = 0x0004; //acknowledge the PIE group 3
PieCtrlRegs.PIECTRL.bit.ENPIE = 1; //enable the PIE

PIEIFRx register (x = 1 to 12)

INTx.16 INTx.15 INTx.14 INTx.13 INTx.12 INTx.11 INTx.10 INTx.9 INTx.8 INTx.7 INTx.6 INTx.5 INTx.4 INTx.3 INTx.2 INTx.1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PIEIERx register (x = 1 to 12)

INTx.16 INTx.15 INTx.14 INTx.13 INTx.12 INTx.11 INTx.10 INTx.9 INTx.8 INTx.7 INTx.6 INTx.5 INTx.4 INTx.3 INTx.2 INTx.1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved PIEACKx

PIE Interrupt Acknowledge Register (PIEACK)
15 - 12 11 10 9 8 7 6 5 4 3 2 1 0

 Interrupts

TMS320F2837xD Microcontroller Workshop - Reset and Interrupts 4 - 17

PIE Block Initialization

PIE Block Initialization

•
•
•

// CPU Initialization

InitPieCtrl();
•
•
•

Main.c

•
•
•

// Initialize PIE_RAM

memcpy();
•
•
•

PieCtrl.c

// Enable PIE Block
PieCtrlRegs.
PIECTRL.bit.
ENPIE=1;

• • ••
•
•

// Base Vectors

PieVect.c

PIE_VECT_TABLE

•
•
•

// Core INT1 re-map

// Core INT12 re-map

PIE RAM
Vectors

512w
(ENPIE = 1)

Boot ROM
Reset Vector

1

2
2

3

Memory Map

The interrupt vector table, as mapped in the PIE interrupt assignment table, is located in the
PieVect.c file. During processor initialization a function call to PieCtrl.c file is used to copy the
interrupt vector table to the PIE RAM and then the PIE module is enabled by setting ENPIE to ‘1’.
When the CPU receives an interrupt, the vector address of the ISR is fetched from the PIE RAM,
and the interrupt with the highest priority that is both flagged and enabled is executed. Priority is
determined by the location within the interrupt vector table. The lowest numbered interrupt has
the highest priority when multiple interrupts are pending.

Interrupts

4 - 18 TMS320F2837xD Microcontroller Workshop - Reset and Interrupts

PIE Initialization Code Flow - Summary
RESET

<0x3F FFC0>
Reset Vector

<reset vector> = Boot Code

Flash Entry Point
<0x08 0000> = LB _c_int00

M0 RAM Entry Point
<0x00 0000> = LB _c_int00

_c_int00:

CALL main()

•
•
•

OR

main()
{ initialization();

}

Initialization()
{
Load PIE Vectors
Enable the PIE
Enable PIEIER
Enable Core IER
Enable INTM

}

PIE Vector Table
512 Word RAM

0x00 0D00 – 0EFF

•
•
•

Main.c

CodeStartBranch.asm

rts2800_fpu32.lib

Boot option determines
code execution entry point

interrupt void name(void)
{

}

•
•
•

DefaultIsr.c

Interrupt

.sect “codestart”

In summary, the PIE initialization code flow is as follows. After the device is reset and execution
of the boot code is completed, the selected boot option determines the code entry point. In this
figure, two different entry points are shown. The one on the left is for memory block M0 RAM,
and the one on the right is for flash.

In either case, the CodeStartBranch.asm file has a Long Branch instruction to the entry point of
the runtime support library. After the runtime support library completes execution, main is called.
In main, a function is called to initialize the interrupt process and enable the PIE module. When
the CPU receives an interrupt, the vector address of the ISR is fetched from the PIE RAM, and
the interrupt with the highest priority that is both flagged and enabled is executed. Priority is
determined by the location within the interrupt vector table.

 Interrupts

TMS320F2837xD Microcontroller Workshop - Reset and Interrupts 4 - 19

Interrupt Signal Flow – Summary

Interrupt Signal Flow – Summary

Peripheral
Interrupt

PIEIFRx PIEIERx
INTx.y

PieCtrlRegs.PIEIERx.bit.INTxy = 1;

IER INTMIFR

asm(“ CLRC INTM”);IER |= 0x0001;
 0x0FFF;

1

1

Peripheral Interrupt Expansion (PIE) – Interrupt Group x

Core Interrupt Logic

PIE Vector Table

INTx.y name

interrupt void name(void)

{

}

•
•
•

DefaultIsr.c

Core
INTx

(For peripheral interrupts where x = 1 to 12, and y = 1 to 16)

In summary, the following steps occur during an interrupt process. First, a peripheral interrupt is
generated and the PIE interrupt flag register is set. If the PIE interrupt enable register is enabled,
then the core interrupt flag register will be set. Next, if the core interrupt enable register and
global interrupt mask is enabled, the PIE vector table will redirect the code to the interrupt service
routine.

Interrupts

4 - 20 TMS320F2837xD Microcontroller Workshop - Reset and Interrupts

F2837xD Dual-Core Interrupt Structure

F2837xD Dual-Core Interrupt Structure

ePWM, eCAP, eQEP,
ADC, SCI, SPI, I2C,
CAN, McBSP, WD

Internal Sources

External Sources

TZx XRS

NMI
CPU1 CORE

INT1

INT13

INT2
INT3

INT12

INT14

•••ePIE.1

TINT2.1
TINT1.1
TINT0.1

XINT1 – XINT5

DMA1.1 CLA1.1

TINT0.2
TINT1.2
TINT2.2

Internal Sources

NMI
CPU2 CORE

INT1

INT13

INT2
INT3

INT12

INT14

•••

IPC

ePIE.2

DMA1.2 CLA1.2

Each C28x CPU core in the F2837xD device has its own PIE module, and each PIE module is
configured independently. Some interrupt signals are sourced from shared peripherals that can
be owned by either CPU, and these interrupt signals are sent to both CPU PIE modules
regardless of which CPU owns the peripheral. Therefore, if enabled a peripheral owned by one
CPU can cause an interrupt on the other CPU.

 Interrupts

TMS320F2837xD Microcontroller Workshop - Reset and Interrupts 4 - 21

Interrupt Response and Latency

Interrupt Response - Hardware Sequence

Note: some actions occur simultaneously, none are interruptible

CPU Action Description

T ST0
AH AL
PH PL
AR1 AR0
DP ST1
DBSTAT IER
PC(msw) PC(lsw)

Registers → stack 14 Register words auto saved
0 → IFR (bit) Clear corresponding IFR bit
0 → IER (bit) Clear corresponding IER bit
1 → INTM/DBGM Disable global ints/debug events
Vector → PC Loads PC with int vector address
Clear other status bits Clear LOOP, EALLOW, IDLESTAT

Interrupt Latency

Latency

Depends on wait states, INTM, etc. Maximum latency:

Recognition
delay (3), SP
alignment (1),

interrupt
placed in
pipeline

4

 Minimum latency (to when real work occurs in the ISR):
 Internal interrupts: 14 cycles
 External interrupts: 16 cycles

Get vector
and place

in PC
(3 reg.
pairs

saved)

3
F1/F2/D1 of

ISR
instruction

(3 reg. pairs
saved)

3
Save
return

address

1
D2/R1/R2 of

ISR
instruction

3
Sync ext.

signal
(ext.

interrupt
only)

2
cycles

Assumes ISR in
internal RAM

Internal
interrupt
occurs
here

ext.
interrupt
occurs
here

ISR
instruction
executed
on next
cycle

Interrupts

4 - 22 TMS320F2837xD Microcontroller Workshop - Reset and Interrupts

TMS320F2837xD Microcontroller Workshop - System Initialization 5 - 1

System Initialization

Introduction
This module covers the operation of the OSC/PLL-based clock module and watchdog timer.
Also, the general-purpose digital I/O, external interrups, low power modes and the register
protection will be covered.

Module Objectives

Module Objectives

OSC/PLL Clock Module

Watchdog Timer

General Purpose Digital I/O

External Interrupts

Low Power Modes

Register Protection

Oscillator/PLL Clock Module

5 - 2 TMS320F2837xD Microcontroller Workshop - System Initialization

Chapter Topics
System Initialization .. 5-1

Oscillator/PLL Clock Module ... 5-3
F2837xD Dual-Core System Clock ... 5-5

Watchdog Timer .. 5-7
General Purpose Digital I/O .. 5-12

GPIO Input X-Bar .. 5-15
GPIO Output X-Bar ... 5-16

External Interrupts ... 5-18
Low Power Modes ... 5-19
Register Protection .. 5-21
Lab 5: System Initialization ... 5-23

 Oscillator/PLL Clock Module

TMS320F2837xD Microcontroller Workshop - System Initialization 5 - 3

Oscillator/PLL Clock Module

F28x7x Oscillator / PLL Clock Module

* default

X2 XT
A

L
O

SC

X1

XT
A

L

XCLKIN
(X2 n.c.)

Internal
OSC 1

(10 MHz)

Internal
OSC 2

(10 MHz)

OSCCLKSRCSEL

110
101
101
011
010
001
000*

PLL PLLCLK

OSCCLK

PLLSYSCLK
(PLL bypass)

SYSPLLMULT

M
U

X

1/n

SYSCLKDIV

OSC1CLK

OSC2CLK

EXTCLK

WDCLK

XCLKOUT
(GPIO 73)

1x
00*
01

1/n
AUXPLLCLK

XCLKOUTDIV

XCLKOUTSEL

CPU2.SYSCLK
CPU1.SYSCLK

PLLCLK
PLLSYSCLK

AUX
PLL

1/n AUXPLLCLK

AUXOSCCLKSRCSEL
AUXPLLDIV

00*
01
10AUXCLKIN (from GPIO)

AUXCLK

0*

1
SYSPLLCTL1

The device clock signals are derived from one of four clock sources: Internal Oscillator 1
(INTOSC1), Internal Oscillator 2 (INTOSC2), External Oscillator (XTAL), and Auxiliary Clock Input
(AUXCLKIN). At power-up, the device is clocked from the on-chip 10 MHz oscillator INTOSC2.
INTSOC2 is the primary internal clock source, and is the default system clock at reset. The
device also includes a redundant on-chip 10 MHz oscillator INTOSC1. INTOSC1 is a backup
clock source, which normally only clocks the watchdog timers and missing clock detection circuit.

Additionally, the device includes dedicated X1 and X2 pins for supporting an external clock
source such as an external oscillator, crystal, or resonator. The AUXCLKIN is used as the bit
clock source for the USB and CAN to generate the precise frequency requirements.

Oscillator/PLL Clock Module

5 - 4 TMS320F2837xD Microcontroller Workshop - System Initialization

F28x7x PLL and LOSPCP

IMULT CLKIN
0 0 0 0 0 0 0 OSCCLK / n * (PLL bypass)
0 0 0 0 0 0 1 OSCCLK x 1 / n
0 0 0 0 0 1 0 OSCCLK x 2 / n
0 0 0 0 0 1 1 OSCCLK x 3 / n

1 1 1 1 1 0 1 OSCCLK x 125/ n
1 1 1 1 1 1 0 OSCCLK x 126 / n
1 1 1 1 1 1 1 OSCCLK x 127 / n

PLL PLLCLK

OSCCLK

CPUx PLLSYSCLK CPUx.SYSCLK

LOSPCP

(PLL bypass)

CPUx.LSPCLK

M
U

X

1/n

ClkCfgRegs.SYSPLLMULT.bit.IMULT

ClkCfgRegs.SYSCLKDIVSEL.bit.PLLSYSCLKDIV

ClkCfgRegs.LOSPCP.bit.LSPCLK

LSPCLK Peripheral Clk Freq
0 0 0 CPUx.SYSCLK / 1
0 0 1 CPUx.SYSCLK / 2
0 1 0 CPUx.SYSCLK / 4 *
0 1 1 CPUx.SYSCLK / 6
1 0 0 CPUx.SYSCLK / 8
1 0 1 CPUx.SYSCLK / 10
1 1 0 CPUx.SYSCLK / 12
1 1 1 CPUx.SYSCLK / 14

LSBs in reg. – others reserved

* default

SYSPLL
DIVSEL n

111111 /126

000010 /4 *
000001 /2
000000 /1

• • • • • •

FMULT CLKIN
0 0 Fractional x 0 *
0 1 Fractional x 0.25
1 0 Fractional x 0.5
1 1 Fractional x 0.75

• • • • • •

ClkCfgRegs.SYSPLLMULT.bit.FMULT

0*

1
ClkCfgRegs.SYSPLLCTL1.bit.PLLCLKEN

The clock sources can be multiplied using the PLL and divided down to produce the desired clock
frequencies for a specific application. By default, the CPU1 subsystem owns the PLL clock
configuration, however a clock control semaphore is available for the CPU2 subsystem to access
the clock configuration registers.

A clock source can be fed directly into the core or multiplied using the PLL. The PLL gives us the
capability to use the internal 10 MHz oscillator and run the device at the full clock frequency. If
the input clock is removed after the PLL is locked, the input clock failed detect circuitry will issue a
limp mode clock of 1 to 4 MHz. Additionally, an internal device reset will be issued. The low-
speed peripheral clock prescaler is used to clock some of the communication peripherals.

The PLL has a 7-bit integer and 2-bit fractional ratio control to select different CPU clock rates.
The C28x CPU provides a SYSCLK clock signal. This signal is prescaled to provide a clock
source for some of the on-chip communication peripherals through the low-speed peripheral clock
prescaler. Other peripherals are clocked by SYSCLK and use their own clock prescalers for
operation.

 Oscillator/PLL Clock Module

TMS320F2837xD Microcontroller Workshop - System Initialization 5 - 5

F2837xD Dual-Core System Clock

F2837xD Dual-Core System Clock

WDCLK

WD.2

WD.1

PLLSYSCLK

CPUSELy

CPU2.SYSCLK

CPU1.SYSCLK

PERxPERx

CPU2

CPU1

LOSPCP

LOSPCP

CPU2.LSPCLK

CPU1.LSPCLK

PERCLKDIVSEL

/1, /2

EPWM

EPWMCLK

CPUTIMER2.2

CPUTIMER2.1CPU1.SYSCLK
INTOSC1
INTOSC2
EXTCLK

AUXPLLCLK

CPU2.SYSCLK
INTOSC1
INTOSC2
EXTCLK

AUXPLLCLK

CPU2.TMR2CLKCTL

CPU1.TMR2CLKCTL

LSPCLKDIV

PERx

EPWMCLKDIV

PERx.SYSCLK PERx.LSPCLK

PERx.SYSCLK
EXTCLK

AUXCLKIN
CANxBCLKSEL

CANx Bit CLK

SCIx
SPIx
McBSPxPeripherals

The PLL system clock is fed to both the CPU1 and CPU2 subsystems. By default, all peripherals
are assigned to the CPU1 subsystem. Using the CPU selection register, each individual
peripheral can be assigned to either the CPU1 or CPU2 subsystem. The clock for the EPWM
modules are limited to 100 MHz, and by using the peripheral clock divider selection register, this
clock can be divided down to meet this specification.

Clock Source Control Register
ClkCfgRegs.CLKSRCCTLx (lab file: SysCtrl.c)

0 = default

31 - 6 4 3 2 1 - 05

XTALOFF INTOSC2OFF reserved OSCCLKSRCSELWDHALTIreserved

31 - 6 3 - 2 1 - 05 - 4

CANBBCLKSEL CANABCLKSEL AUXOSCCLKSRCSELreserved

31 - 3 2 - 0

XCLKOUTSELreserved

XCLK Out Select
000 = PLLSYSCLK 100 = AUXCLK
001 = PLLCLK 101 = INTOSC1
010 = CPU1.SYSCLK 110 = INTOSC2
011 = CPU2.SYSCLK 111 = reserved

Oscillator Clock Source Select
00 = INTOSC2 10 = INTOSC1
01 = EXTCLK 11 = reserved

WD HALT Mode Ignore
0 = automatic turn on/off
1 = ignores HALT Mode

XTAL Oscillator Off
0 = on 1 = off

Internal OSC2 Off
0 = on 1 = off

CAN A/B Bit Clock Select
00 = PERx.SYSCLK 10 = AUXCLKIN
01 = EXTCLK 11 = reserved

AUX Osc. Clock Source Select
00 = INTOSC2 10 = AUXCLKIN
01 = EXTCLK 11 = reserved

x = 1

x = 2

x = 3

Note: register lock protected

Oscillator/PLL Clock Module

5 - 6 TMS320F2837xD Microcontroller Workshop - System Initialization

Dual-Core CPU Select Registers

Register PeripheralName

CPUSEL0 EPWM1, EPWM2, EPWM3, EPWM4, EPWM5, EPWM6, EPWM7, EPWM8, EPWM9, EPWM10, EPWM11, EPWM12

CPUSEL1 ECAP1, ECAP2, ECAP3, ECAP4, ECAP5, ECAP6

CPUSEL2 EQEP1, EQEP2, EQEP3

CPUSEL4 SD1, SD2

CPUSEL5 SCI_A, SCI_B, SCI_C, SCI_D

CPUSEL6 SPI_A, SPI_B, SPI_C

CPUSEL7 I2C_A, I2C_B

CPUSEL8 CAN_A, CAN_B

CPUSEL9 McBSP_A, McBSP_B

CPUSEL11 ADC_A, ADC_B, ADC_C, ADC_D

CPUSEL12 CMPSS1, CMPSS2, CMPSS3, CMPSS4, CMPSS5, CMPSS6, CMPSS7, CMPSS8

CPUSEL14 DAC_A, DAC_B, DAC_C

DevCfgRegs.CPUSELx.bit.PeripheralName = 0

0 = connected to CPU1 (default) 1 = connected to CPU2

CPU1.SYSCLK
Peripheral0

1CPU2.SYSCLK

Note: DEVCFGLOCK1 register can be used to lock above registers (lock bit for each register)

Note: CPUSELx must be configured before PCLKCRx

The dual-core CPU select register selects either CPU1 or CPU2 as the clock source for each
peripheral. The peripheral clock control register allows individual peripheral clock signals to be
enabled or disabled. If a peripheral is not being used, its clock signal could be disabled, thus
reducing power consumption.

Peripheral Clock Control Registers

Register PeripheralName

PCLKCR0 CLA1, DMA, CPUTIMER0, CPUTIMER1, CPUTIMER2, HRPWM, TBCLKSYNC, GTBCLKSYNC

PCLKCR1 EMIF1, EMIF2

PCLKCR2 EPWM1, EPWM2, EPWM3, EPWM4, EPWM5, EPWM6, EPWM7, EPWM8, EPWM9, EPWM10, EPWM11, EPWM12

PCLKCR3 ECAP1, ECAP2, ECAP3, ECAP4, ECAP5, ECAP6

PCLKCR4 EQEP1, EQEP2, EQEP3

PCLKCR6 SD1, SD2

PCLKCR7 SCI_A, SCI_B, SCI_C, SCI_D

PCLKCR8 SPI_A, SPI_B, SPI_C

PCLKCR9 I2C_A, I2C_B

PCLKCR10 CAN_A, CAN_B

PCLKCR11 McBSP_A, McBSP_B, USB_A

PCLKCR12 uPP_A

PCLKCR13 ADC_A, ADC_B, ADC_C, ADC_D

PCLKCR14 CMPSS1, CMPSS2, CMPSS3, CMPSS4, CMPSS5, CMPSS6, CMPSS7, CMPSS8

PCLKCR16 DAC_A, DAC_B, DAC_C

Note: CPUSYSLOCK1 register can be used to lock above registers (lock bit for each register)

CpuSysRegs.PCLKCRx.bit.PeripheralName = 1

CPUx.SYSCLK Peripheral Clock

Module Enable Clock Bit 0 = disable (default) 1 = enable

 Watchdog Timer

TMS320F2837xD Microcontroller Workshop - System Initialization 5 - 7

Watchdog Timer
The watchdog timer is a safety feature, which resets the device if the program runs away or gets
trapped in an unintended infinite loop. The watchdog counter runs independent of the CPU. If
the counter overflows, a user-selectable reset or interrupt is triggered. During runtime the correct
key values in the proper sequence must be written to the watchdog key register in order to reset
the counter before it overflows.

Watchdog Timer

Resets the C28x if the CPU crashes
Watchdog counter runs independent of CPU
If counter overflows, a reset or interrupt is

triggered (user selectable)
CPU must write correct data key sequence

to reset the counter before overflow
Watchdog must be serviced or disabled

within 131,072 WDCLK cycles after reset
This translates to 13.11 ms with a 10 MHz

WDCLK

The watchdog timer provides a safeguard against CPU crashes by automatically initiating a reset
if it is not serviced by the CPU at regular intervals. In motor control applications, this helps
protect the motor and drive electronics when control is lost due to a CPU lockup. Any CPU reset
will set the PWM outputs to a high-impedance state, which should turn off the power converters in
a properly designed system.

The watchdog timer starts running immediately after system power-up/reset, and must be dealt
with by software soon after. Specifically, the watchdog must be serviced or disabled within 13.11
milliseconds (using a 10 MHz watchdog clock) after any reset before a watchdog initiated reset
will occur. This translates into 131,072 watchdog clock cycles, which is a seemingly tremendous
amount! Indeed, this is plenty of time to get the watchdog configured as desired and serviced. A
failure of your software to properly handle the watchdog after reset could cause an endless cycle
of watchdog initiated resets to occur.

Watchdog Timer

5 - 8 TMS320F2837xD Microcontroller Workshop - System Initialization

WDCLK

System
Reset

8-bit Watchdog
Counter

CLR

Watchdog
Reset Key
Register

55 + AA
Detector

1 0 1
/
/3

3

WDDIS

WDCHK

Bad WDCHK Key

/512

Output
Pulse

WDRST

WDINT

WDOVERRIDE

Good Key

Watchdog
Prescaler

WDPS

WDCNTR

window
minimum

WDWCR WDCNTR
less than
WDWCR

CNT

WDKEY

Watchdog Timer Module

The watchdog clock is divided by 512 and prescaled, if desired for slower watchdog time periods.
A watchdog disable switch allows the watchdog to be enabled and disabled. Also a watchdog
override switch provides an additional safety mechanism to insure the watchdog cannot be
disabled. Once set, the only means to disable the watchdog is by a system reset.

During initialization, a value ‘101’ is written into the watchdog check bit fields. Any other values
will cause a reset or interrupt. During run time, the correct keys must be written into the
watchdog key register before the watchdog counter overflows and issues a reset or interrupt.
Issuing a reset or interrupt is user-selectable. The watchdog also contains an optional
“windowing” feature that requires a minimum delay between counter resets.

 Watchdog Timer

TMS320F2837xD Microcontroller Workshop - System Initialization 5 - 9

WDPS FRC WD timeout period
Bits rollover @ 10 MHz WDCLK

00x: 1 13.11 ms *
010: 2 26.22 ms
011: 4 52.44 ms
100: 8 104.88 ms
101: 16 209.76 ms
110: 32 419.52 ms
111: 64 839.04 ms

Watchdog Period Selection

 Remember: Watchdog starts counting immediately after
reset is released!

 Reset default with WDCLK = 10 MHz computed as
(1/10 MHz) * 512 * 256 = 13.11 ms

* reset default

Watchdog Timer Control Register
SysCtrlRegs.WDCR (lab file: Watchdog.c)

WDDIS

6 5 - 3 2 - 0

WDPSWDCHK

Logic Check Bits
Write as 101 or reset
immediately triggered

WD Prescale
Selection Bits

Watchdog Disable Bit
Write 1 to disable

(Functions only if WD OVERRIDE
bit in SCSR is equal to 1)

reserved

15 - 7

WDPS WDCLK =
0 0 x OSCCLK / 512 / 1
0 1 0 OSCCLK / 512 / 2
0 1 1 OSCCLK / 512 / 4
1 0 0 OSCCLK / 512 / 8
1 0 1 OSCCLK / 512 / 16
1 1 0 OSCCLK / 512 / 32
1 1 1 OSCCLK / 512 / 64

Watchdog Timer

5 - 10 TMS320F2837xD Microcontroller Workshop - System Initialization

Resetting the Watchdog
SysCtrlRegs.WDKEY (lab file: Watchdog.c)

WDKEY write values:
55h - counter enabled for reset on next AAh write
AAh - counter set to zero if reset enabled

Writing any other value has no effect
Watchdog should not be serviced solely in an ISR

 If main code crashes, but interrupt continues to
execute, the watchdog will not catch the crash

Could put the 55h WDKEY in the main code, and the
AAh WDKEY in an ISR; this catches main code crashes
and also ISR crashes

reserved
7 - 015 - 8

WDKEY

WDKEY Write Results
Sequential

Step

1
2
3
4
5
6
7
8
9
10
11
12
13
14

Value Written
to WDKEY

AAh
AAh
55h
55h
55h
AAh
AAh
55h
AAh
55h
23h
AAh
55h
AAh

Result

No action
No action
WD counter enabled for reset on next AAh write
WD counter enabled for reset on next AAh write
WD counter enabled for reset on next AAh write
WD counter is reset
No action
WD counter enabled for reset on next AAh write
WD counter is reset
WD counter enabled for reset on next AAh write
No effect; WD counter not reset on next AAh write
No action due to previous invalid value
WD counter enabled for reset on next AAh write
WD counter is reset

 Watchdog Timer

TMS320F2837xD Microcontroller Workshop - System Initialization 5 - 11

System Control and Status Register
SysCtrlRegs.SCSR (lab file: Watchdog.c)

WD Override (protect bit)
Protects WD from being disabled

0 = WDDIS bit in WDCR has no effect (WD cannot be disabled)
1 = WDDIS bit in WDCR can disable the watchdog

• This bit is a clear-only bit (write 1 to clear)
• The reset default of this bit is a 1

01215 - 3

WDOVERRIDEWDENINTWDINTSreserved

WD Enable InterruptWD Interrupt Status
(read only)

0 = active
1 = not active

0 = WD generates a MCU reset
1 = WD generates a WDINT interrupt

General Purpose Digital I/O

5 - 12 TMS320F2837xD Microcontroller Workshop - System Initialization

General Purpose Digital I/O

F28x7x GPIO Grouping Overview

Internal B
us

GPIO Port A Group
Mux1 Register
(GPAGMUX1)
[GPIO 0 to 15] GPIO Port A

Direction Register
(GPADIR)

[GPIO 0 to 31]

GPIO Port A Mux1
Register

(GPAMUX1)
[GPIO 0 to 15]

GPIO Port A Group
Mux2 Register
(GPAGMUX2)

[GPIO 16 to 31]

GPIO Port A Mux2
Register

(GPAMUX2)
[GPIO 16 to 31]

GPIO Port A

Input
Qual

GPIO Port F Group
Mux1 Register
(GPFGMUX1)

[GPIO 160 to 175] GPIO Port F
Direction Register

(GPFDIR)
[GPIO 160 to 191]

GPIO Port F Mux1
Register

(GPFMUX1)
[GPIO 160 to 175]

GPIO Port F Group
Mux2 Register
(GPFGMUX2)

[GPIO 176 to 191]

GPIO Port F Mux2
Register

(GPFMUX2)
[GPIO 176 to 191]

GPIO Port F

Input
Qual

The F2837xD device incorporates a multiplexing scheme to enable each I/O pin to be configured
as a GPIO pin or one of several peripheral I/O signals. Sharing a pin across multiple functions
maximizes application flexibility while minimizing package size and cost. A GPIO Group
multiplexer and four GPIO Index multiplexers provide a double layer of multiplexing to allow up to
twelve independent peripheral signals and a digital I/O function to share a single pin. Each output
pin can be controlled by either a peripheral or CPU1, CPU1 CLA, CPU2, or CPU2 CLA.
However, the peripheral multiplexing and pin assignment can only be configured by CPU1. By
default, all of the pins are configured as GPIO, and when configured as a signal input pin, a
qualification sampling period can be specified to remove unwanted noise. Optionally, each pin
has an internal pullup resistor that can be enabled in order to keep the input pin in a known state
when no external signal is driving the pin. The I/O pins are grouped into six ports, and each port
has 32 pins except for the sixth port which has nine pins (i.e. the remaining I/O pins). For a
GPIO, each port has a series of registers that are used to control the value on the pins, and within
these registers each bit corresponds to one GPIO pin.

If the pin is configured as GPIO, a direction (DIR) register is used to specify the pin as either an
input or output. By default, all GPIO pins are inputs. The current state of a GPIO pin
corresponds to a bit value in a data (DAT) register, regardless if the pin is configured as GPIO or
a peripheral function. Writing to the DAT register bit field clears or sets the corresponding output
latch, and if the pin is configured as an output the pin will be driven either low or high. The state
of various GPIO output pins on the same port can be easily modified using the SET, CLEAR, and
TOGGLE registers. The advantage of using these registers is a single instruction can be used to
modify only the pins specified without disturbing the other pins. This also eliminates any timing
issues that may occur when writing directly to the data registers.

 General Purpose Digital I/O

TMS320F2837xD Microcontroller Workshop - System Initialization 5 - 13

F2837xD GPIO Pin Block Diagram

GPxDAT(W)
GPxSET

GPxCLEAR
GPxTOGGLE

GPxDAT(W)
GPxSET

GPxCLEAR
GPxTOGGLE

GPxDAT(W)
GPxSET

GPxCLEAR
GPxTOGGLE

00:00
00:01
00:10
00:11

01:00
01:01
01:10
01:11

10:xx

11:xx

Peripheral 1
Peripheral 2
Peripheral 3

GPIO

GPIO & Peripherals 9-11

Peripheral 5
Peripheral 6
Peripheral 7

GPIO

GPIO & Peripherals 13-15

00:00
00:01
00:10
00:11

01:00
01:01
01:10
01:11

10:xx

11:xx

Peripheral 1
Peripheral 2
Peripheral 3

unused

Peripherals 9-11

Peripheral 5
Peripheral 6
Peripheral 7

Peripherals 13-15

unused

GPxGMUX1/2
GPxMUX1/2

GPxG:GPx

00
01
10
11

GPxDAT(W)
GPxSET

GPxCLEAR
GPxTOGGLE

CPU1
CPU1.CLA

CPU2
CPU2.CLA

Input
X-BAR

GPxCSEL1-4

Pin

Internal Pull-Up
0 = enable
1 = disable

(default GPIO 0-xx)

GPxPUD

0 = Input
1 = Output

GPxDIR

Input
Qualification

GPxINV

GPxQSEL1/2
GPxCTRL

0 1

GPxDAT(R)
CPU1

GPxDAT(R)
CPU1.CLA

GPxDAT(R)
CPU2

GPxDAT(R)
CPU2.CLA

x = A, B, C, D, E, or F

CPU1

CPU1

CPU1

CPU1

CPU1

CPU1

GPxODR
CPU1

0 = Normal
1 = Open Drain

The input qualification scheme is very flexible, and the type of input qualification can be
configured for each GPIO pin individually. In the case of a GPIO input pin, the qualification can
be specified as only synchronize to SYSCLKOUT or qualification by a sampling window. For pins
that are configured as peripheral inputs, the input can also be asynchronous in addition to
synchronized to SYSCLKOUT or qualified by a sampling window.

F28x7x GPIO Input Qualification

 Qualification available on ports A - F
 Individually selectable per pin

 no qualification (peripherals only)
 sync to CPUx.SYSCLK only
 qualify 3 samples
 qualify 6 samples

Input
Qualificationpin

to GPIO and
peripheral
modules

CPUx.SYSCLK

T T T

samples taken

T = qual period

General Purpose Digital I/O

5 - 14 TMS320F2837xD Microcontroller Workshop - System Initialization

00 = sync to SYSCLKOUT only *
01 = qual to 3 samples
10 = qual to 6 samples
11 = no sync or qual (for peripheral only; GPIO same as 00)

00h no qualification (SYNC to SYSCLKOUT) *
01h QUALPRD = SYSCLKOUT/2
02h QUALPRD = SYSCLKOUT/4
… … …
FFh QUALPRD = SYSCLKOUT/510

F28x7x GPIO Input Qual Registers
GpioCtrlRegs.register (lab file: Gpio.c)

GPxQSEL1 / GPxQSEL2 where x = A, B, C, D, E or F

16 pins configured per register
031

QUALPRD0QUALPRD1QUALPRD2QUALPRD3

GPxCTRL where x = A, B, C, D, E or F
31 24 16 8 0

A: GPIO31-24 GPIO23-16 GPIO15-8 GPIO7-0
B: GPIO63-56 GPIO55-48 GPIO47-40 GPIO39-32
C: GPIO95-88 GPIO87-80 GPIO79-72 GPIO71-64
D: GPIO127-120 GPIO119-112 GPIO111-104 GPIO103-96
E: GPIO159-152 GPIO151-144 GPIO143-136 GPIO135-128
F: GPIO191-184 GPIO183-176 GPIO175-168 GPIO167-160

* reset default

F28x7xD Dual-Core GPIO Core Select
GpioCtrlRegs.register (lab file: Gpio.c)

 Selects which core’s GPIODAT/SET/CLEAR/TOGGLE
registers are used to control a pin

 Each pin individually controlled

xx00 pin controlled by CPU1 *
xx01 pin controlled by CPU1.CLA1
xx10 pin controlled by CPU2
xx11 pin controlled by CPU2.CLA1

A: GPIO31-24 GPIO23-16 GPIO15-8 GPIO7-0
B: GPIO63-56 GPIO55-48 GPIO47-40 GPIO39-32
C: GPIO95-88 GPIO87-80 GPIO79-72 GPIO71-64
D: GPIO127-120 GPIO119-112 GPIO111-104 GPIO103-96
E: GPIO159-152 GPIO151-144 GPIO143-136 GPIO135-128
F: GPIO191-184 GPIO183-176 GPIO175-168 GPIO167-160

* reset default

GPxCSEL1

031

GPxCSEL3

031

GPxCSEL4

031

GPxCSEL2

031

Note: GPxLOCK register can be used to lock above registers (lock bit for each pin)

 General Purpose Digital I/O

TMS320F2837xD Microcontroller Workshop - System Initialization 5 - 15

F28x7x GPIO Control & Data Registers
GpioCtrlRegs.register / GpioDataRegs.register (lab file: Gpio.c)

Register Description
GPxCTRL GPIO x Control Register
GPxQSEL1 GPIO x Qualifier Select 1 Register
GPxQSEL2 GPIO x Qualifier Select 2 Register
GPxMUX1 GPIO x Mux1 Register
GPxMUX2 GPIO x Mux2 Register
GPxDIR GPIO x Direction Register
GPxPUD GPIO x Pull-Up Disable Register
GPxINV GPIO x Input Polarity Invert Registers
GPxGSEL1 GPIO x Peripheral Group Mux
GPxGSEL2 GPIO x Peripheral Group Mux
GPxCSEL1 GPIO x Core Select Register
GPxCSEL2 GPIO x Core Select Register
GPxCSEL3 GPIO x Core Select Register
GPxCSEL4 GPIO x Core Select Register
GPxDAT GPIO x Data Register
GPxSET GPIO x Data Set Register
GPxCLEAR GPIO x Data Clear Register
GPxTOGGLE GPIO x Data Toggle Register

Where x = A, B, C, D, E, or F

C
ontrol

D
ata

GPIO Input X-Bar

F28x7x GPIO Input X-Bar

Input X-Bar

ePWM
X-Bar

Output X-Bar

ePWM and eCAP
Sync Chain

ePWM
Modules

CPU.PIE
CLA

Asynchronous
Synchronous
Sync. + Qual.

ADC

GPIO0

GPIOx

INPUT7
INPUT8
INPUT9
INPUT10
INPUT11
INPUT12

IN
PU

T1
4

IN
PU

T1
3

IN
PU

T6
IN

PU
T5

IN
PU

T4
IN

PU
T3

IN
PU

T2
IN

PU
T1

TRIP6

TRIP4
TRIP5
TRIP7
TRIP8
TRIP9
TRIP10
TRIP11
TRIP12

EXTSYNCIN1
EXTSYNCIN2

ADCEXTSOC

●●●
●●●

XINT5
XINT4
XINT3
XINT2
XINT1

eCAP1
eCAP2
eCAP3
eCAP4
eCAP5
eCAP6

TZ1, TRIP1
TZ2, TRIP2
TZ3, TRIP3

The Input X-BAR is used to route external GPIO signals into the device. It has access to every
GPIO pin, where each signal can be routed to any or multiple destinations which include the
ADCs, eCAPs, ePWMs, Output X-BAR, and external interrupts. This provides additional flexibility

General Purpose Digital I/O

5 - 16 TMS320F2837xD Microcontroller Workshop - System Initialization

above the multiplexing scheme used by the GPIO structure. Since the GPIO does not affect the
Input X-BAR, it is possible to route the output of one peripheral to another, such as measuring the
output of an ePWM with an eCAP for frequency testing.

F28x7x GPIO Input X-Bar Architecture

INPUTx

InputXbarRegs.INPUTxSELECT = GPIO Pin #

GPIO 0

GPIO n

This block diagram is replicated 14 times

Input Destinations

INPUT1 ePWM[TZ1, TRIP1], ePWM X-Bar, Output X-Bar

INPUT2 ePWM[TZ2, TRIP2], ePWM X-Bar, Output X-Bar

INPUT3 ePWM[TZ3, TRIP3], ePWM X-Bar, Output X-Bar

INPUT4 XINT1, ePWM X-Bar, Output X-Bar

INPUT5 XINT2, ADCEXTSOC, EXTSYNCIN1, ePWM X-Bar, Output X-Bar

INPUT6 XINT3, ePWM[TRIP6], EXTSYNCIN2, ePWM X-Bar, Output X-Bar

INPUT7 eCAP1

INPUT8 eCAP2

INPUT9 eCAP3

INPUT10 eCAP4

INPUT11 eCAP5

INPUT12 eCAP6

INPUT13 XINT4

INPUT14 XINT5

Note: INPUTSELECTLOCK register can be used to lock above registers (lock bit for each register)

GPIO Output X-Bar

F28x7x GPIO Output X-Bar

EPWM/ECAP sync

ADCSOCAO

ADCSOCBO

ECAP1
ECAP2
ECAP3
ECAP4
ECAP5
ECAP6

ADCA
ADCB
ADCC
ADCD

GPIO
Module

CMPSS1

CMPSS8

INPUT X-Bar

OUTPUT
X-Bar

SD1

SD2

OUTPUT1
OUTPUT2
OUTPUT3
OUTPUT4
OUTPUT5
OUTPUT6
OUTPUT7
OUTPUT8

INPUT1
INPUT2
INPUT3
INPUT4
INPUT5
INPUT6

EVT1 to EVT4
EVT1 to EVT4
EVT1 to EVT4
EVT1 to EVT4

ECAP1.OUT
ECAP2.OUT
ECAP3.OUT
ECAP4.OUT
ECAP5.OUT
ECAP6.OUT

ADCSOCAO

ADCSOCBO

EXTSYNCOUT

CTRIPOUTH
CTRIPOUTL

CTRIPOUTL
CTRIPOUTH

FLT1.COMPH
FLT1.COMPL

FLT4.COMPH
FLT4.COMPL

FLT1.COMPH
FLT1.COMPL

FLT4.COMPH
FLT4.COMPL

 General Purpose Digital I/O

TMS320F2837xD Microcontroller Workshop - System Initialization 5 - 17

The Output X-BAR is used to route various internal signals out of the device. It contains eight
outputs that are routed to the GPIO structure, where each output has one or multiple assigned pin
positions, which are labeled as OUTPUTXBARx. Additionally, the Output X-BAR can select a
single signal or logically OR up to 32 signals.

F28x7x GPIO Output X-Bar Architecture

MUX 0 1 2 3
16 SD1FLT1.COMPH SD1FLT1.COMPH_OR_COMPL
17 SD1FLT1.COMPL
18 SD1FLT2.COMPH SD1FLT2.COMPH_OR_COMPL
19 SD1FLT2.COMPL
20 SD1FLT3.COMPH SD1FLT3.COMPH_OR_COMPL
21 SD1FLT3.COMPL
22 SD1FLT4.COMPH SD1FLT4.COMPH_OR_COMPL
23 SD1FLT4.COMPL
24 SD2FLT1.COMPH SD2FLT1.COMPH_OR_COMPL
25 SD2FLT1.COMPL
26 SD2FLT2.COMPH SD2FLT2.COMPH_OR_COMPL
27 SD2FLT2.COMPL
28 SD2FLT3.COMPH SD2FLT3.COMPH_OR_COMPL
29 SD2FLT3.COMPL
30 SD2FLT4.COMPH SD2FLT4.COMPH_OR_COMPL
31 SD2FLT4.COMPL

MUX 0 1 2 3
0 CMPSS1.CTRIPOUTH CMPSS1.CTRIPOUTH_OR_CTRIPOUTL ADCAEVT1 ECAP1.OUT
1 CMPSS1.CTRIPOUTL INPUTXBAR1 ADCCEVT1
2 CMPSS2.CTRIPOUTH CMPSS2.CTRIPOUTH_OR_CTRIPOUTL ADCAEVT2 ECAP2.OUT
3 CMPSS2.CTRIPOUTL INPUTXBAR2 ADCCEVT2
4 CMPSS3.CTRIPOUTH CMPSS3.CTRIPOUTH_OR_CTRIPOUTL ADCAEVT3 ECAP3.OUT
5 CMPSS3.CTRIPOUTL INPUTXBAR3 ADCCEVT3
6 CMPSS4.CTRIPOUTH CMPSS4.CTRIPOUTH_OR_CTRIPOUTL ADCAEVT4 ECAP4.OUT
7 CMPSS4.CTRIPOUTL INPUTXBAR4 ADCCEVT4
8 CMPSS5.CTRIPOUTH CMPSS5.CTRIPOUTH_OR_CTRIPOUTL ADCBEVT1 ECAP5.OUT
9 CMPSS5.CTRIPOUTL INPUTXBAR5 ADCDEVT1
10 CMPSS6.CTRIPOUTH CMPSS6.CTRIPOUTH_OR_CTRIPOUTL ADCBEVT2 ECAP6.OUT
11 CMPSS6.CTRIPOUTL INPUTXBAR6 ADCDEVT2
12 CMPSS7.CTRIPOUTH CMPSS7.CTRIPOUTH_OR_CTRIPOUTL ADCBEVT3
13 CMPSS7.CTRIPOUTL ADCSOCAO ADCDEVT3
14 CMPSS8.CTRIPOUTH CMPSS8.CTRIPOUTH_OR_CTRIPOUTL ADCBEVT4 EXTSYNCOUT
15 CMPSS8.CTRIPOUTL ADCSOCBO ADCDEVT4

0
0.0
0.1
0.2
0.3

1
1.0
1.1
1.2
1.3

31
31.0
31.1
31.2
31.3

Latch
OUTPUTx

OUTPUTINV

OUTPUTLATCHENABLE

OUTPUTxMUXENABLE

OUTPUTxMUX0TO15CFG.MUX0

OUTPUTxMUX0TO15CFG.MUX1

OUTPUTxMUX16TO31CFG.MUX31

This block diagram is replicated 8 times

Muxed with
Peripheral
GPIO Pins

OutputXbarRegs.register

Note: OUTPUTLOCK register locks
the configuration for the Output X-Bar

External Interrupts

5 - 18 TMS320F2837xD Microcontroller Workshop - System Initialization

External Interrupts

External Interrupts

 5 external interrupt signals: XINT1, XINT2,
XINT3, XINT4 and XINT5

 Each can be mapped to any of GPIO pins via
the X-Bar Input architecture

 XINT1, XINT2 and XINT3 also each have a
free-running 16-bit counter that measures
the elapsed time between interrupts
 The counter resets to zero each time the

interrupt occurs

Configuring External Interrupts

 Input X-Bar selects GPIO pins as sources for XINT1-5
 XINT1-5 are sources for Input X-Bar signals 4, 5, 6, 13, and 14

respectively
 Configuration Register controls the enable/disable and polarity
 Counter Register holds the interrupt counter

Interrupt Pin Selection Configuration Register Counter Register
(Input X-Bar) (XintRegs.register) (XintRegs.register)

XINT1 X-Bar INPUT4 XINT1CR XINT1CTR
XINT2 X-Bar INPUT5 XINT2CR XINT2CTR
XINT3 X-Bar INPUT6 XINT3CR XINT3CTR
XINT4 X-Bar INPUT13 XINT4CR
XINT5 X-Bar INPUT14 XINT5CR

 Configuring external interrupts is a two-step process:
 Enable interrupt and set polarity
 Select XINT1-5 GPIO pins via Input X-Bar

 Low Power Modes

TMS320F2837xD Microcontroller Workshop - System Initialization 5 - 19

Low Power Modes

Low Power Modes

Low Power
Mode

CPU Logic
Clock

Peripheral
Logic Clock

Watchdog
Clock

PLL /
OSC

Normal Run

IDLE

STANDBY

HALT

HIB *

on

off

off

off

off

on

on

off

off

off

on

on

on

off

off

on

on

on

off

off

See device datasheet for power consumption in each mode

* Hibernate - low power data retention via M0 and M1 memories

Low Power Mode Control Register
SysCtrlRegs.LPMCR (lab file: SysCtrl.c)

1 - 07 - 214 - 8

LPM0WDINTE QUALSTDBYreserved

Low Power
Mode Selection

00 = IDLE (default)
01 = STANDBY
10 = HALT
11 = HIB (Hibernate)

Wake from STANDBY
GPIO signal qualification *
000000 = 2 OSCCLKs
000001 = 3 OSCCLKs

111111 = 65 OSCCLKs (default)

...

15

Watchdog Interrupt
wake device from

STANDBY
0 = disable (default)
1 = enable

Low Power Mode Entering
1. Set LPM bits
2. Enable desired exit interrupt(s)
3. Execute IDLE instruction
4. The power down sequence of the hardware

depends on LP mode

* QUALSTDBY will qualify the GPIO wakeup signal in series with the GPIO port qualification.
This is useful when GPIO port qualification is not available or insufficient for wake-up purposes.

M0M1MODEIOISODIS reserved
17 - 1630 - 1831

State of CPUx M0
& M1 memories in

HIB mode
00 = on (default)
01 = off

IO ISOLATION in
HIB mode set by
H/W (CPU1 only)

0 = off (default)
1 = on

Low Power Modes

5 - 20 TMS320F2837xD Microcontroller Workshop - System Initialization

Low Power Mode Exit

IDLE

STANDBY

HALT

HIB

RESET

yes

yes

yes

yes

Any
Enabled
Interrupt

yes

no

no

no

yes

yes

no

no

Exit
Interrupt

Low Power
Mode

Watchdog
Interrupt

GPIO
Port A
Signal

yes

yes

yes

no*
* Hibernate - GPIO41 becomes HIBWAKE reset signal; boot ROM avoids
clearing M0 and M1 memories and calls a user-specified IO restore function

GPIO Low Power Wakeup Select
SysCtrlRegs.GPIOLPMSELx

Wake device from
STANDBY and HALT mode

(GPIO Port A & B)
0 = disable (default)
1 = enable

0
GPIO2GPIO5

1234567
GPIO0GPIO1GPIO4 GPIO3GPIO6GPIO7

GPIO14 GPIO8GPIO11
89101112131415

GPIO9GPIO10GPIO12GPIO13GPIO15

16
GPIO18GPIO21

17181920212223
GPIO16GPIO17GPIO20 GPIO19GPIO22GPIO23

GPIO30 GPIO24GPIO27
2425262728293031

GPIO25GPIO26GPIO28GPIO29GPIO31

0
GPIO34GPIO37

1234567
GPIO32GPIO33GPIO36 GPIO35GPIO38GPIO39

GPIO46 GPIO40GPIO43
89101112131415

GPIO41GPIO42GPIO44GPIO45GPIO47

16
GPIO50GPIO53

17181920212223
GPIO48GPIO49GPIO52 GPIO51GPIO54GPIO55

GPIO62 GPIO56GPIO59
2425262728293031

GPIO57GPIO58GPIO60GPIO61GPIO63

x = 0

x = 1

Note: CPUSYSLOCK1 register can
be used to lock above registers
(lock bit for each register)

 Register Protection

TMS320F2837xD Microcontroller Workshop - System Initialization 5 - 21

Register Protection

LOCK Protection Registers
 “LOCK” registers protects several system

configuration registers from spurious CPU writes
Once LOCK register bits are set the respective

locked registers can no longer be modified by
software

CLA1TASKSRCSELLOCK Z2_OTPSECLOCK GPELOCK
DMACHSRCSELLOCK DxLOCK GPFLOCK
DEVCFGLOCK1 LSxLOCK LOCK
CLKCFGLOCK1 GSxLOCK DACLOCK
CPUSYSLOCK1 INPUTSELECTLOCK COMPLOCK
Z1OTP_PSWDLOCK OUTPUTLOCK TRIPLOCK
Z1OTP_CRCLOCK GPALOCK SYNCSOCLOCK
Z2OTP_PSWDLOCK GPBLOCK EMIF1LOCK
Z2OTP_CRCLOCK GPCLOCK EMIF2LOCK
Z1_OTPSECLOCK GPDLOCK

A series of “lock” registers can be used to protect several system configuration settings from
spurious CPU writes. After the lock registers bits are set, the respective locked registers can no
longer be modified by software.

EALLOW Protection (1 of 2)

 EALLOW stands for Emulation Allow
 Code access to protected registers allowed

only when EALLOW = 1 in the ST1 register
 The emulator can always access protected

registers
 EALLOW bit controlled by assembly level

instructions
‘EALLOW’ sets the bit (register access enabled)
‘EDIS’ clears the bit (register access disabled)

 EALLOW bit cleared upon ISR entry, restored
upon exit

Register Protection

5 - 22 TMS320F2837xD Microcontroller Workshop - System Initialization

EALLOW Protection (2 of 2)

asm(" EALLOW"); // enable protected register access

SysCtrlRegs.WDKEY=0x55; // write to the register

asm(" EDIS"); // disable protected register access

EALLOW register access C-code example:

Device Configuration & Emulation
Flash
Code Security Module
PIE Vector Table
DMA, CLA, SD, EMIF, X-Bar (some registers)
CANA/B (control registers only; mailbox RAM not protected)
ePWM, CMPSS, ADC, DAC (some registers)
GPIO (control registers only)
System Control

See device datasheet and Technical Reference Manual for detailed listings

The following registers are protected:

 Lab 5: System Initialization

TMS320F2837xD Microcontroller Workshop - System Initialization 5 - 23

Lab 5: System Initialization
 Objective

The objective of this lab exercise is to perform the processor system initialization. Additionally,
the peripheral interrupt expansion (PIE) vectors will be initialized and tested using the information
discussed in the previous module. This initialization process will be used again in all of the lab
exercises throughout this workshop. The system initialization for this lab will consist of the
following:

• Setup the clock module – PLL, LOSPCP = /4, low-power modes to default values, enable all
module clocks

• Disable the watchdog – clear WD flag, disable watchdog, WD prescale = 1

• Setup the watchdog and system control registers – DO NOT clear WD OVERRIDE bit,
configure WD to generate a CPU reset

• Setup the shared I/O pins – set all GPIO pins to GPIO function (e.g. a "0” setting for GPIO
group multiplexer “GPxGMUX1/2” and a “0” setting for GPIO multiplexer “GPxMUX1/2”)

The first part of the lab exercise will setup the system initialization and test the watchdog
operation by having the watchdog cause a reset. In the second part of the lab exercise the PIE
vectors will be added and tested by using the watchdog to generate an interrupt. This lab will
make use of the F2837xD C-code header files to simplify the programming of the device, as well
as take care of the register definitions and addresses. Please review these files, and make use
of them in the future, as needed.

 Procedure

Create a New Project
1. Create a new project (File  New  CCS Project) for this lab exercise. The top

section should default to the options previously selected (setting the “Target” to
“TMS320F28379D”, and leaving the “Connection” box blank). Name the project Lab5.
Uncheck the “Use default location” box. Using the “Browse…” button navigate to:
C:\C28x\Labs\Lab5\cpu01 then click OK. Set the “Linker Command File” to <none>,
and be sure to set the “Project templetes and examples” to “Empty Project”. Then click
Finish.

2. Right-click on Lab5 in the Project Explorer window and add (copy) the following files to
the project (Add Files…) from C:\C28x\Labs\Lab5\source:

CodeStartBranch.asm Lab_5_6_7.cmd
DelayUs.asm Main_5.c
F2837xD_GlobalVariableDefs.c SysCtrl.c
F2837xD_Headers_nonBIOS_cpu1.cmd Watchdog.c
Gpio.c Xbar.c

Do not add DefaultIsr_5.c, PieCtrl.c, and PieVect.c. These files will be added
and used with the interrupts in the second part of this lab exercise.

Lab 5: System Initialization

5 - 24 TMS320F2837xD Microcontroller Workshop - System Initialization

Project Build Options
3. Setup the build options by right-clicking on Lab5 in the Project Explorer window and

select “Properties”. We need to setup the include search path to include the peripheral
register header files and common lab header files. Under “C2000 Compiler” select
“Include Options”. In the include search path box that opens (“Add dir to #include
search path”) click the Add icon (first icon with green plus sign). Then in the “Add
directory path” window type (one at a time):

${PROJECT_ROOT}/../../F2837xD_headers/include

${PROJECT_ROOT}/../../Lab_common/include

Click OK to include each search path.

4. Next, we need to setup the predefined symbols. Under “C2000 Compiler” select
“Predefined Symbols”. In the predefined name box that opens (“Pre-define NAME”)
click the Add icon (first icon with green plus sign). Then in the “Enter Value” window type
CPU1. This name is used in the project to conditionally include the peripheral register
header files code specific to CPU1. Click OK to include the name. Finally, click OK to
save and close the Properties window.

Modify Memory Configuration
5. Open and inspect the linker command file Lab_5_6_7.cmd. Notice that the user defined

section “codestart” is being linked to a memory block named BEGIN_M0. The
codestart section contains code that branches to the code entry point of the project. The
bootloader must branch to the codestart section at the end of the boot process. Recall
that the emulation boot mode "SARAM" branches to address 0x000000 upon bootloader
completion.

Notice that the linker command file Lab_5_6_7.cmd has a memory block named
BEGIN_M0: origin = 0x000000, length = 0x0002, in program memory. The
existing parts of memory blocks BOOT_RSVD and RAMM0 in data memory has been
modified to avoid any overlaps with this memory block.

6. In the linker command file, notice that RESET in the MEMORY section has been defined
using the “(R)” qualifier. This qualifier indicates read-only memory, and is optional. It will
cause the linker to flag a warning if any uninitialized sections are linked to this memory.
The (R) qualifier can be used with all non-volatile memories (e.g., flash, ROM, OTP), as
you will see in later lab exercises. Close the Lab_5_6_7.cmd linker command file.

Setup System Initialization
7. Open and inspect SysCtrl.c. Notice that the clock sources, PLL, peripheral clocks,

and low-power modes have been initialized.

8. Modify Watchdog.c to implement the system initialization as described in the objective
for this lab exercise.

9. Open and inspect Gpio.c. Notice that the shared I/O pins have been set to the GPIO
function. Also, in Xbar.c the crossbar switches have been set to their default values.
Save your work.

 Lab 5: System Initialization

TMS320F2837xD Microcontroller Workshop - System Initialization 5 - 25

Build and Load
10. Click the “Build” button and watch the tools run in the Console window. Check for

errors in the Problems window.

11. Click the “Debug” button (green bug). A Launching Debug Session window will open.
Select only CPU1 to load the program on (i.e. uncheck CPU2), and then click OK. Then
the CCS Debug perspective view should open, the program will load automatically, and
you should now be at the start of main().

12. After CCS loaded the program in the previous step, it set the program counter (PC) to
point to _c_int00. It then ran through the C-environment initialization routine in the
rts2800_fpu32.lib and stopped at the start of main(). CCS did not do a device reset, and
as a result the bootloader was bypassed.

In the remaining parts of this lab exercise, the device will be undergoing a reset due to
the watchdog timer. Therefore, we must configure the device by loading values into
EMU_KEY and EMU BMODE so the bootloader will jump to “RAMM0” at address
0x000000. Set the bootloader mode using the menu bar by clicking:

Scripts  EMU Boot Mode Select  EMU_BOOT_SARAM

If the device is power cycled between lab exercises, or within a lab exercise, be sure to
re-configure the boot mode to EMU_BOOT_SARAM.

Run the Code – Watchdog Reset Disabled
13. Place the cursor in the “main loop” section (on the asm(“ NOP”); instruction line) and

right click the mouse key and select Run To Line. This is the same as setting a
breakpoint on the selected line, running to that breakpoint, and then removing the
breakpoint.

14. Place the cursor on the first line of code in main() and set a breakpoint by double clicking
in the line number field to the left of the code line. Notice that line is highlighted with a
blue dot indicating that the breakpoint has been set. (Alternatively, you can set a
breakpoint on the line by right-clicking the mouse and selecting Breakpoint (Code
Composer Studio)  Breakpoint). The breakpoint is set to prove that the
watchdog is disabled. If the watchdog causes a reset, code execution will stop at this
breakpoint (or become trapped as explained in the watchdog hardware reset below).

15. Run your code for a few seconds by using the “Resume” button on the toolbar, or by
using Run  Resume on the menu bar (or F8 key). After a few seconds halt your code
by using the “Suspend” button on the toolbar, or by using Run  Suspend on the
menu bar (or Alt-F8 key). Where did your code stop? Are the results as expected? If
things went as expected, your code should be in the “main loop”.

Run the Code – CCS Issued CPU Reset

16. Perform a CCS CPU reset (soft reset) by clicking on the CPU Reset icon (or by
selecting Run  Reset  CPU Reset). The program counter should now be at the
entry point of the boot ROM code at 0x3FF16A. To view the boot ROM code click on
View Disassembly…

17. Run your code. Where did your code stop? Are the results as expected? If things went
as expected, your code should have stopped at the breakpoint. What happened is as
follows. The ROM bootloader began execution and since the device is in emulation boot
mode (i.e. the emulator is connected) the bootloader read the EMU_KEY and

Lab 5: System Initialization

5 - 26 TMS320F2837xD Microcontroller Workshop - System Initialization

EMU_BMODE values from the PIE RAM. These values were previously set for boot to
RAMM0 boot mode by CCS. Since these values did not change and are not affected by
reset, the bootloader transferred execution to the beginning of our code at address
0x000000 in the RAMM0, and execution continued until the breakpoint was hit in main().

Run the Code – Watchdog Reset Enabled (Hardware Reset)
18. Open the Project Explorer window in the CCS Debug perspective view by selecting View

 Project Explorer. Modify the InitWatchdog() function to enable the
watchdog (WDCR). This will enable the watchdog to function and cause a reset. Save
the file.

19. Build the project by clicking Project  Build Project. Select Yes to “Reload the
program automatically”.

Alternatively, you add the “Build” button to the tool bar in the CCS Debug perspective (if
it is not already there) so that it will available for future use. Click Window 
Perspective  Customize Perspective… and then select the Tool Bar Visibility
tab. Check the Code Composer Studio Project Build box. This will automatically select
the “Build” button in the Tool Bar Visibility tab. Click OK.

20. Again, place the cursor in the “main loop” section (on the asm(“ NOP”); instruction line)
and right click the mouse key and select Run To Line.

21. This time we will have the watchdog issue a reset that will toggle the XRSn pin (i.e.
perform a hard reset). Now run your code. Where did your code stop? Why did your
code stop at an assembly ESTOP0 instruction in the boot ROM at 0x3FE493 and not as
we expected at the breakpoint in main()? Here is what happened. While the code was
running, the watchdog timed out and reset the processor. The reset vector was then
fetched and the ROM bootloader began execution. Since the device is in emulation boot
mode, it read the EMU_KEY and EMU_BMODE values from the PIE RAM which was
previously set to RAMM0 boot mode. Again, note that these values do not change and
are not affected by reset. When the F28x7x devices undergo a hardware reset (e.g.
watchdog reset), the boot ROM code clears the RAM memory blocks. As a result, after
the bootloader transferred execution to the beginning of our code at address 0x000000 in
RAMM0, the memory block was cleared. The processor was then issued an illegal
instruction which trapped us back in the boot ROM.

This only happened because we are executing out of RAM. In a typical application, the
Flash memory contains the program and the reset process would run as we would
expect. This should explain why we did not see this behavior with the CCS CPU reset
(soft reset where the RAM was not cleared). So what is the advantage of clearing
memory during a hardware reset? This ensures that after the reset the original program
code and data values will be in a known good state to provide a safer operation. It is
important to understand that the watchdog did not behave differently depending on which
type of reset was issued. It is the reset process that behaved differently from the different
type of resets.

22. Since the watchdog reset in the previous step cleared the RAM blocks, we will now need
to reload the program for the second part of this lab exercise. Reload the program by
selecting:

Run  Load  Reload Program

 Lab 5: System Initialization

TMS320F2837xD Microcontroller Workshop - System Initialization 5 - 27

Setup PIE Vector for Watchdog Interrupt
The first part of this lab exercise used the watchdog to generate a CPU reset. This was
tested using a breakpoint set at the beginning of main(). Next, we are going to use the
watchdog to generate an interrupt. This part will demonstrate the interrupt concepts learned
in the previous module.

23. Add (copy) the following files to the project from C:\C28x\Labs\Lab5\source:

DefaultIsr_5.c
PieCtrl.c
PieVect.c

Check your files list to make sure the files are there.

24. In Main_5.c, add code to call the InitPieCtrl() function. There are no passed
parameters or return values, so the call code is simply:

 InitPieCtrl();

25. Using the “PIE Interrupt Assignment Table” shown in the previous module find the
location for the watchdog interrupt, “WAKE”. This will be used in the next step.

PIE group #: # within group:

26. Modify main() to do the following:
- Enable global interrupts (INTM bit)

Then modify InitWatchdog() to do the following:
- Enable the “WAKE” interrupt in the PIE (Hint: use the PieCtrlRegs structure)
- Enable the appropriate core interrupt in the IER register

27. In Watchdog.c modify the system control and status register (SCSR) to cause the
watchdog to generate a WAKE interrupt rather than a reset. Save all changes to the
files.

28. Open and inspect DefaultIsr_5.c. This file contains interrupt service routines. The
ISR for WAKE interrupt has been trapped by an emulation breakpoint contained in an
inline assembly statement using “ESTOP0”. This gives the same results as placing a
breakpoint in the ISR. We will run the lab exercise as before, except this time the
watchdog will generate an interrupt. If the registers have been configured properly, the
code will be trapped in the ISR.

29. Open and inspect PieCtrl.c. This file is used to initialize the PIE RAM and enable the
PIE. The interrupt vector table located in PieVect.c is copied to the PIE RAM to setup
the vectors for the interrupts.

Build and Load
30. Build the project by clicking Project  Build Project, or by clicking on the

“Build” button (if it has been added to the tool bar). Select Yes to “Reload the program
automatically”.

Lab 5: System Initialization

5 - 28 TMS320F2837xD Microcontroller Workshop - System Initialization

Run the Code – Watchdog Interrupt
31. Place the cursor in the “main loop” section, right click the mouse key and select Run To

Line.

32. Run your code. Where did your code stop? Are the results as expected? If things went
as expected, your code should stop at the “ESTOP0” instruction in the WAKE interrupt
ISR.

Terminate Debug Session and Close Project
33. Terminate the active debug session using the Terminate button. This will close the

debugger and return Code Composer Studio to the CCS Edit perspective view.

34. Next, close the project by right-clicking on Lab5 in the Project Explorer window and
select Close Project.

End of Exercise

Note: By default, the watchdog timer is enabled out of reset. Code in the file
CodeStartBranch.asm has been configured to disable the watchdog. This can be
important for large C code projects. During this lab exercise, the watchdog was actually
re-enabled (or disabled again) in the file Watchdog.c.

TMS320F2837xD Microcontroller Workshop - Analog Subsystem 6 - 1

Analog Subsystem

Introduction
The Analog Subsystem consists of the Analog-to-Digital Converter (ADC), Comparator
Subsystem (CMPSS), Digital-to-Analog Converter (DAC), and the Sigma Delta Filter Module
(SDFM). This module will explain the operation of each subsystem. Even though the SDFM is a
digital peripheral, it will be covered in this module.

Module Objectives

Module Objectives

Understand the operation of the:

Analog-to-Digital Converter (ADC)

Comparator Subsystem (CMPSS)

Digital-to-Analog Converter (DAC)

Sigma Delta Filter Module (SDFM)

Use the ADC to perform data acquisition

Note: Even though the SDFM is a digital peripheral, it will be covered in this module
Analog Subsystem:

• Up to Four dual-mode ADCs
o 16-bit mode

 1 MSPS each (up to 4 MSPS system)
 Differential inputs
 External reference

o 12-bit mode
 3.5 MSPS each (up to 14 MSPS system)
 Single-ended
 External reference

• Up to Eight comparator subsystems
o Each contains:

 Two 12-bit reference DACs
 Two comparators
 Digital glitch filter

• Three 12-bit buffered DAC outputs
• Sigma-Delta Filter Module (SDFM)

Analog-to-Digital Converter (ADC)

6 - 2 TMS320F2837xD Microcontroller Workshop - Analog Subsystem

 Analog-to-Digital Converter (ADC)

TMS320F2837xD Microcontroller Workshop - Analog Subsystem 6 - 3

Chapter Topics
Analog Subsystem .. 6-1

Analog-to-Digital Converter (ADC) .. 6-4
ADC Block and Functional Diagrams .. 6-5
ADC Triggering ... 6-7
ADC Conversion Priority ... 6-8
Post Processing Block .. 6-11
ADC Clocking Flow ... 6-14
ADC Registers .. 6-14
Signed Input Voltages ... 6-19
ADC Calibration and Reference .. 6-20

Comparator Subsystem (CMPSS) .. 6-22
Comparator Subsystem Block Diagram .. 6-23

Digital-to-Analog Converter (DAC) .. 6-24
Buffered DAC Block Diagram.. 6-25

Sigma Delta Filter Module (SDFM) ... 6-26
SDFM Block Diagram .. 6-27

Lab 6: Analog-to-Digital Converter .. 6-28

Analog-to-Digital Converter (ADC)

6 - 4 TMS320F2837xD Microcontroller Workshop - Analog Subsystem

Analog-to-Digital Converter (ADC)

ADC Subsystem

ADC-A
16/12-bit

16 channel

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

ADC-B
16/12-bit

16 channel

ADC-C
16/12-bit

16 channel

ADC-D
16/12-bit

16 channel

DACOUTA/ADCINA0
DACOUTB/ADCINA1
CMPIN1P/ADCINA2
CMPIN1N/ADCINA3

CMPIN4N/ADCIN15

Reserved

TEMP SENSOR

VDAC/ADCINB0
DACOUTC/ADCINB1
CMPIN3P/ADCINB2
CMPIN3N/ADCINB3

CMPIN5P/ADCINC4
CMPIN5N/ADCINC5

CMPIN6P/ADCINC2
CMPIN6N/ADCINC3

CMPIN7P/ADCIND0
CMPIN7N/ADCIND1
CMPIN8P/ADCIND2
CMPIN8N/ADCIND3

Reserved

CMPIN2P/ADCINA4
CMPIN2N/ADCINA5

ADCINB4
ADCINB5

ADCIND4
ADCIND5

DACOUTA

DACOUTA

DACOUTA

DACOUTA

VREFD

VREFC

VREFB

VREFA

Reserved
Reserved

Reserved
Reserved

Reserved
Reserved

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

VREFLOD
VREFLOD
Reserved
Reserved

VREFLOC
VREFLOC
Reserved
Reserved

VREFLOA
VREFLOA
Reserved
Reserved

VREFLOB
VREFLOB

Reserved

Reserved

CMPIN4P/ADCIN14
Reserved

Reserved
Reserved

Reserved
Reserved

*** Multiple ADC modules allow simultaneous sampling or independent operation ***

The F2837xD includes four independent high-performance ADC modules which can be accessed
by both CPU subsystems, allowing the device to efficiently manage multiple analog signals for
enhanced overall system throughput. Each ADC module has a single sample-and-hold (S/H)
circuit and using multiple ADC modules enables simultaneous sampling or independent operation
(sequential sampling). The ADC module is implemented using a successive approximation
(SAR) type ADC with a configurable resolution of either 16-bits or 12-bits. For 16-bit resolution,
the ADC performs differential signal conversions with a performance of 1.1 MSPS, yielding 4.4
MSPS for the device. In differential signal mode, a pair of pins (positive input ADCINxP and
negative input ADCINxN) is sampled and the input applied to the converter is the difference
between the two pins (ADCINxP – ADCINxN). A benefit of differential signaling mode is the
ability to cancel noise that may be introduced common to both inputs. For 12-bit resolution, the
ADC performs single-ended signal conversions with a performance of 3.5 MSPS, yielding 14
MSPS for the device. In single-ended mode, a single pin (ADCINx) is sampled and applied to the
input of the converter.

 Analog-to-Digital Converter (ADC)

TMS320F2837xD Microcontroller Workshop - Analog Subsystem 6 - 5

ADC Block and Functional Diagrams

ADC Module Block Diagram

12/16-bit
A/D

Converter
SOCx

EOCx

S/HMUX

ADCRESULT0
ADCRESULT1
ADCRESULT2

ADCRESULT15

Result
MUX

ADC
Generation

Logic

ADC full-scale
input range is

VREFLO to VREFHI

CHSEL ADC
Interrupt

Logic
ADCINT1-4

Software

External Pin(GPIO/ADCEXTSOC)

EPWMxSOCA/C (x = 1 to 12)

EPWMxSOCB/D (x = 1 to 12)

CPU1 Timer (0,1,2)

SOCx Signal ADCINT1
ADCINT2

SOC0 TRIGSEL CHSEL ACQPS
SOC1 TRIGSEL CHSEL ACQPS
SOC2 TRIGSEL CHSEL ACQPS
SOC3 TRIGSEL CHSEL ACQPS

SOC15 TRIGSEL CHSEL ACQPS

SO
C

x
Tr

ig
ge

rs

SOCx Configuration Registers

ADCIN1
ADCIN0

ADCIN2
ADCIN3

ADCIN14
ADCIN15

CPU2 Timer (0,1,2)

Po
st

 P
ro

ce
ss

in
g

B
lo

ck
s

The ADC triggering and conversion sequencing is managed by a series of start-of-conversion
(SOCx) configuration registers. Each SOCx register configures a single channel conversion,
where the SOCx register specifies the trigger source that starts the conversion, the channel to
convert, and the acquisition sample window duration. Multiple SOCx registers can be configured
for the same trigger, channel, and/or acquisition window. Configuring multiple SOCx registers to
use the same trigger will cause that trigger to perform a sequence of conversions, and configuring
multiple SOCx registers for the same trigger and channel can be used to oversample the signal.

The various trigger sources that can be used to start an ADC conversion include the General-
Purpose Timers from each CPU subsystem, the ePWM modules, an external pin, and by
software. Also, the flag setting of either ADCINT1 or ADCINT2 can be configured as a trigger
source which can be used for continuous conversion operation. The ADC interrupt logic can
generate up to four interrupts. The results for SOC 0 through 15 appear in result registers 0
through 15, respectively.

Analog-to-Digital Converter (ADC)

6 - 6 TMS320F2837xD Microcontroller Workshop - Analog Subsystem

ADC SOCx Functional Diagram

This block diagram is replicated 16 times

ADCINT1
ADCINT2

Re-Trigger

ADCINT1
ADCINT2
ADCINT3
ADCINT4

Channel
Select

Sample
Window

Result
RegisterS

O
C
x

E
O
C
x

ADCSOCxCTL

ADCINTSOCSEL1
ADCINTSOCSEL2

INTSELxNy

ADCRESULTx

Software Trigger

TINT0 (CPU1 Timer 0)
TINT1 (CPU1 Timer 1)
TINT2 (CPU1 Timer 2)
ADCEXTSOC (GPIO)

SOCA/C (ePWM1)
SOCB/D (ePWM1)

SOCA/C (ePWM12)
SOCB/D (ePWM12)

TINT0 (CPU2 Timer 0)
TINT1 (CPU2 Timer 1)
TINT2 (CPU2 Timer 2)

T
r
i
g
g
e
r

ADCSOCFRC1

The figure above is a conceptual view highlighting a single ADC start-of-conversion functional
flow from triggering to interrupt generation. This figure is replicated 16 times and the red text
indicates the register names.

 Analog-to-Digital Converter (ADC)

TMS320F2837xD Microcontroller Workshop - Analog Subsystem 6 - 7

ADC Triggering

Example – ADC Triggering

Sample A1  A3  A5 when ePWM1 SOCB/D is generated and then generate ADCINT1:

Channel
A1

Sample
20 cycles Result0

Channel
A3

Sample
26 cycles Result1

Channel
A5

Sample
22 cycles Result2

SOC0

SOC1

SOC2

no interrupt

no interrupt

ADCINT1

SOCB/D (ETPWM1)

Sample A2  A4  A6 continuously and generate ADCINT2:

Channel
A2

Sample
22 cycles Result3

Channel
A4

Sample
28 cycles Result4

Channel
A6

Sample
24 cycles Result5

SOC3

SOC4

SOC5

no interrupt

no interrupt

ADCINT2

ADCINT2

Software Trigger

Note: setting ADCINT2 flag does not need to generate an interrupt

The top example in the figure above shows channels A1, A3, and A5 being converted with a
trigger from EPWM1. After A5 is converted, ADCINT1 is generated. The bottom example shows
channels A2, A4, and A6 being converted initially by a software trigger. Then, after A6 is
converted, ADCINT2 is generated and also fed back as a trigger to start the process again.

Example – ADC Ping-Pong Triggering

Sample all channels continuously and provide Ping-Pong interrupts to CPU/system:

Channel
B0

Sample
20 cycles

SOC0 no interrupt
ADCINT2

Software Trigger
Result0

Channel
B1

Sample
20 cycles

SOC1 no interruptResult1

Channel
B2

Sample
20 cycles

SOC2

no interrupt

Result2

Channel
B3

Sample
20 cycles

SOC3 Result3

Channel
B4

Sample
20 cycles

SOC4 no interruptResult4

Channel
B5

Sample
20 cycles

SOC5 Result5

ADCINT1

ADCINT2

ADCINT1

Analog-to-Digital Converter (ADC)

6 - 8 TMS320F2837xD Microcontroller Workshop - Analog Subsystem

The ADC ping-pong triggering example in the figure above shows channels B0 through B5 being
converted, triggered initially by software. After channel B2 is converted, ADCINT1 is generated,
which also triggers channel B3. After channel B5 is converted, ADCINT2 is generated and is also
fed back to start the process again from the beginning. Additionally, ADCINT1 and ADCINT2 are
being used to manage the ping-pong interrupts for the interrupt service routines.

ADC Conversion Priority

ADC Conversion Priority
 When multiple SOC flags are set at the same time –

priority determines the order in which they are converted

 High Priority
 High priority SOC will interrupt the round robin wheel

after current conversion completes and insert itself as
the next conversion

 After its conversion completes, the round robin wheel
will continue where it was interrupted

 Round Robin Burst Mode
 Allows a single trigger to convert one or more SOCs in

the round robin wheel
 Uses BURSTTRIG instead of TRIGSEL for all round

robin SOCs (not high priority)

 Round Robin Priority (default)
 No SOC has an inherent higher priority than another
 Priority depends on the round robin pointer

When multiple triggers are received at the same time, the ADC conversion priority determines the
order in which they are converted. Three different priority modes are supported. The default
priority mode is round robin, where no start-of-conversion has an inherently higher priority over
another, and the priority depends upon a round robin pointer. The round robin pointer operates in
a circular fashion, constantly wrapping around to the beginning. In high priority mode, one or
more than one start-of-conversion is assigned as high priority. The high priority start-of-
conversion can then interrupt the round robin wheel, and after it has been converted the wheel
will continue where it was interrupted. High priority mode is assigned first to the lower number
start-of-conversion and then in increasing numerical order. If two high priority start-of-conversion
triggers occur at the same time, the lower number will take precedence. Burst mode allows a
single trigger to convert one or more than one start-of-conversion sequentially at a time. This
mode uses a separate Burst Control register to select the burst size and trigger source.

 Analog-to-Digital Converter (ADC)

TMS320F2837xD Microcontroller Workshop - Analog Subsystem 6 - 9

Conversion Priority Functional Diagram

Round Robin Pointer
Points to the last converted

round robin SOCx and
determines order
of conversions

SOC Priority
Determines cutoff point

for high priority and
round robin mode

SOC0
SOC1
SOC2
SOC3
SOC4
SOC5
SOC6
SOC7
SOC8
SOC9
SOC10
SOC11
SOC12
SOC13
SOC14
SOC15

R
ou

nd
 R

ob
in

H
ig

h
Pr

io
rit

y

SOCPRIORITY

RRPOINTER

AdcRegs.SOCPRICTL

In this conversion priority functional diagram, the Start-of-Conversion Priority Control Register
contains two bit fields. The Start-of-Conversion Priority bit fields determine the cutoff point
between high priority and round robin mode, whereas the Round-Robin Pointer bit fields contains
the last converted round robin start-of-conversion which determines the order of conversions.

Round Robin Priority Example

SOC
0 SOC

1
SOC

2

SOC
3

SOC
4

SOC
5

SOC
6

SOC
7SOC

8

SOC
9

SOC
10

SOC
11

SOC
12

SOC
13

SOC
14

SOC
15

RRPOINTER

SOC7 trigger received

SOC7 is converted;
RRPOINTER now points to SOC7;
SOC8 is now highest RR priority

SOC2 & SOC12 triggers received
simultaneously

SOC12 is converted;
RRPOINTER points to SOC12;
SOC13 is now highest RR priority

SOC2 is converted;
RRPOINTER points to SOC2;
SOC3 is now highest RR priority

SOCPRIORITY configured as 0;
RRPOINTER configured as 15;
SOC0 is highest RR priority

Analog-to-Digital Converter (ADC)

6 - 10 TMS320F2837xD Microcontroller Workshop - Analog Subsystem

High Priority Example

SOC
4 SOC

5

SOC
0 SOC

6

SOC
7

SOC
8

SOC
9SOC

10

SOC
11

SOC
12

SOC
13

SOC
14

SOC
15

RRPOINTER

SOC
1

SOC
2

SOC
3

High PrioritySOC7 trigger received

SOC7 is converted;
RRPOINTER points to SOC7;
SOC8 is now highest RR priority

SOC2 is converted;
RRPOINTER stays pointing to SOC7

SOC12 is converted;
RRPOINTER points to SOC12;
SOC13 is now highest RR priority

SOCPRIORITY configured as 4;
RRPOINTER configured as 15;
SOC4 is highest RR priority

SOC2 & SOC12 triggers received
simultaneously

Round Robin Burst Mode Diagram

Burst Enable
Disables/enables burst modeBURSTEN

AdcxRegs.ADCBURSTCTL

BURSTSIZE

BURSTTRIGSEL

SOC Burst Size
Determines how many

SOCs are converted per
burst trigger

SOC Burst Trigger
Source Select

Determines which trigger
starts a burst conversion

sequence

Software, CPU1 Timer0-2
ePWM1 ADCSOCA/C – B/D 
ePWM12 ADCSOCA/C – B/D

CPU2 Timer0-2

The Round-Robin Burst mode utilizes an ADC Burst Control Register to enable the burst mode,
determine the burst size, and select the burst trigger source.

 Analog-to-Digital Converter (ADC)

TMS320F2837xD Microcontroller Workshop - Analog Subsystem 6 - 11

Round Robin Burst Mode with High
Priority Example

SOC
4 SOC

5

SOC
0 SOC

6

SOC
7

SOC
8

SOC
9SOC

10

SOC
11

SOC
12

SOC
13

SOC
14

SOC
15

RRPOINTER

SOC
1

SOC
2

SOC
3

High PriorityBURSTTRIG trigger received

SOC4 & SOC5 is converted;
RRPOINTER points to SOC5;
SOC6 is now highest RR priority

SOC1 is converted;
RRPOINTER stays pointing to SOC5

SOC6 & SOC7 is converted;
RRPOINTER points to SOC7;
SOC8 is now highest RR priority

SOCPRIORITY configured as 4;
RRPOINTER configured as 15;
SOC4 is highest RR priority

BURSTTRIG & SOC1 triggers
received simultaneously

Note: BURSTEN = 1, BURSTSIZE = 1

Post Processing Block

Purpose of the Post Processing Block
 Offset Correction

 Remove an offset associated with an ADCIN channel possibly
caused by external sensors and signal sources
 Zero-overhead; saving cycles

 Error from Setpoint Calculation
 Subtract out a reference value which can be used to automatically

calculate an error from a set-point or expected value
 Reduces the sample to output latency and software overhead

 Limit and Zero-Crossing Detection
 Automatically perform a check against a high/low limit or zero-

crossing and can generate a trip to the ePWM and/or an interrupt
 Decreases the sample to ePWM latency and reduces software overhead;

trip the ePWM based on an out of range ADC conversion without CPU
intervention

 Trigger-to-Sample Delay Capture
 Capable of recording the delay between when the SOC is

triggered and when it begins to be sampled
 Allows software techniques to reduce the delay error

Analog-to-Digital Converter (ADC)

6 - 12 TMS320F2837xD Microcontroller Workshop - Analog Subsystem

Post Processing Block - Diagram

Delay Capture

latch

Threshold Compare

Error/Bipolar Calculation

Offset Correction
w/ Saturation

ADCPPBxTRIPHI

ADCPPBxTRIPLO

Σ
ADC Output

ADCPPBxOFFCAL

ADCRESULTy

ADCPPBxOFFREF

saturate

Σ ADCPPBxRESULT

EVENTx

-
+

-
+ Twos

Comp
Inv

Enable

INTx

ADCEVTSTAT.PPBxZERO

Zero
Crossing
Detect

ADCPPBxCONFIG.TWOSCOMPEN

ADCEVTSTAT.PPBxTRIPHI

ADCEVTSTAT.PPBxTRIPLO

ADCEVTSEL.PPBxZERO

ADCEVTSEL.PPBxTRIPHI

ADCEVTSEL.PPBxTRIPLO

ADCEVTINTSEL.PPBxZERO

ADCEVTINTSEL.PPBxTRIPLO

ADCEVTINTSEL.PPBxTRIPHI

FREECOUNT

REQSTAMPx DLYSTAMPx

SOC
Trigger
Detect

SOC
Start

Detect

SOC Control Signals

Σ

-

+

latch

+

-

+

To further enhance the capabilities of the ADC, each ADC module incorporates four post-
processing blocks (PPB), and each PPB can be linked to any of the ADC result registers. The
PPBs can be used for offset correction, calculating an error from a set-point, detecting a limit and
zero-crossing, and capturing a trigger-to-sample delay. Offset correction can simultaneously
remove an offset associated with an ADCIN channel that was possibly caused by external
sensors or signal sources with zero-overhead, thereby saving processor cycles. Error calculation
can automatically subtract out a computed error from a set-point or expected result register value,
reducing the sample to output latency and software overhead. Limit and zero-crossing detection
automatically performs a check against a high/low limit or zero-crossing and can generate a trip
to the ePWM and/or generate an interrupt. This lowers the sample to ePWM latency and reduces
software overhead. Also, it can trip the ePWM based on an out-of-range ADC conversion without
any CPU intervention which is useful for safety conscious applications. Sample delay capture
records the delay between when the SOCx is triggered and when it begins to be sampled. This
can enable software techniques to be used for reducing the delay error.

 Analog-to-Digital Converter (ADC)

TMS320F2837xD Microcontroller Workshop - Analog Subsystem 6 - 13

Post Processing Block Interrupt Event
 Each ADC module contains four (4) Post Processing

Blocks
 Each Post Processing Block can be associated with

any of the 16 ADCRESULTx registers
Post Processing Block 1

EVENTx

INTx

Post Processing Block 2
EVENTx

INTx

Post Processing Block 3
EVENTx

INTx

Post Processing Block 4
EVENTx

INTx

ADCEVT1

ADCEVT2

ADCEVT3

ADCEVT4

ADCEVTINT

Analog-to-Digital Converter (ADC)

6 - 14 TMS320F2837xD Microcontroller Workshop - Analog Subsystem

ADC Clocking Flow

ADC Clocking Flow
Internal

OSC
(10 MHz)

ADCCLK (50 MHz) To ADC core

sampling
windowACQPS

bits

ADCSOCxCTL

0110b

SYSCLK
(200 MHz)

SYSCLKDIVSEL

PLLSYSCLKDIV
bits

10b (/2)

To CPU

sampling window = (ACQPS + 1)*(1/SYSCLK)

PCLKCR13.ADC_A = 1

SYSPLLMULT

FMULT/IMULT
bits

00|0|101000b (x40)

ADCCTL2

PRESCALE
bits

0110b (/4)

PLL out
(400 MHz)

ADC Registers
Analog-to-Digital Converter Registers

AdczRegs.register where z = a, b, c, or d (lab file: Adc.c)

ADCCTL1 Control 1 Register
ADCCTL2 Control 2 Register
ADCSOCxCTL SOC0 to SOC15 Control Registers
ADCINTSOCSELx Interrupt SOC Selection 1 and 2 Registers
INTSELxNy Interrupt x and y Selection Registers
SOCPRICTL SOC Priority Control Register
ADCBURSTCTL SOC Burst Control Register
ADCOFFTRIM Offset Trim Register
ADCRESULTx ADC Result 0 to 15 Registers

Register Description

Note: ADCRESULTx header file coding is AdczResultRegs.ADCRESULTx (not in AdczRegs)

Refer to the Technical Reference Manual for a complete listing of registers

 Analog-to-Digital Converter (ADC)

TMS320F2837xD Microcontroller Workshop - Analog Subsystem 6 - 15

ADC Control Register 1
AdczRegs.ADCCTL1 (z = a, b, c, or d)

ADCBSY ADCBSYCHNreserved

11 - 815 - 14 13 12

ADC Busy
0 = ADC available
1 = ADC busy

ADC Busy Channel
When ADCBSY =
0: last channel converted
1: channel currently processing

00h = ADCIN0 08h = ADCIN9
01h = ADCIN1 09h = ADCIN10
02h = ADCIN2 0Ah = ADCIN11
03h = ADCIN3 0Bh = ADCIN12
04h = ADCIN4 0Ch = ADCIN13
05h = ADCIN5 0Dh = ADCIN14
06h = ADCIN6 0Eh = ADCIN15
07h = ADCIN7 0Fh = ADCIN16

reserved ADCPWDNZ reserved reservedINTPULSEPOS

1 - 026 - 37

ADC Power Down
Analog circuitry is:
0 = powered down
1 = powered up

INT Pulse
Generation Control
0 = beginning of

conversion
1 = one cycle prior

to result

ADC Control Register 2
AdczRegs.ADCCTL2 (z = a, b, c, or d)

SIGNALMODE RESOLUTION reserved
15 - 8 7 6 5 - 4 3 - 0

PRESCALEreserved

0000 = Input Clock / 1.0
0001 = Invalid
0010 = Input Clock / 2.0
0011 = Input Clock / 2.5
0100 = Input Clock / 3.0
0101 = Input Clock / 3.5
0110 = Input Clock / 4.0
1000 = Input Clock / 4.5
1001 = Input Clock / 5.0
1010 = Input Clock / 5.5
1011 = Input Clock / 6.0
1100 = Input Clock / 6.5
1101 = Input Clock / 7.0
1110 = Input Clock / 7.5
1111 = Input Clock / 8.0

ADC Clock Prescale
ADCCLK equals:

ADC Resolution
0 = 12-bit resolution
1 = 16-bit resolution

Signaling Mode
0 = single-ended
1 = differential

Configured by AdcSetMode() function in source code
Adc.c

F2837xD_Adc.c

Definitions for selecting ADC signaling mode and resolution defined in F2837xD_Adc_defines.h

Analog-to-Digital Converter (ADC)

6 - 16 TMS320F2837xD Microcontroller Workshop - Analog Subsystem

ADC SOC0 – SOC15 Control Registers
AdczRegs.ADCSOCxCTL (z = a, b, c, or d)

TRIGSEL reserved
24 - 20 19 18 - 15 8 - 0

ACQPS

SOCx Trigger
Source Select

SOCx Channel
Select

SOCx Acquisition
Prescale (S/H window)

0h = ADCIN0 0/1h = ADCIN0&1
1h = ADCIN1 2/3h = ADCIN2&3
2h = ADCIN2 4/5h = ADCIN4&5
3h = ADCIN3 6/7h = ADCIN6&7
4h = ADCIN4 8/9h = ADCIN8&9
5h = ADCIN5 A/Bh = ADCIN10&11
6h = ADCIN6 C/Dh = ADCIN12&13
7h = ADCIN7 E/Fh = ADCIN14&15
8h = ADCIN8 (non-inverting/inverting)
9h = ADCIN9
Ah = ADCIN10
Bh = ADCIN11
Ch = ADCIN12
Dh = ADCIN13
Eh = ADCIN14
Fh = ADCIN15

Single-Ended
(SIGNALMODE=0)

Differential
(SIGNALMODE=1)

000h = 1 SYSCLK
cycles wide

001h = 2 SYSCLK
cycles wide

002h = 3 SYSCLK
cycles wide

1FFh = 512 SYSCLK
cycles wide

Sampling Window

CHSEL reservedreserved
14 - 931 - 25

00h = software
01h = CPU1 Timer 0
02h = CPU1 Timer 1
03h = CPU1 Timer 2
04h = ADCEXTSOC
05h = ePWM1SOCA/C
06h = ePWM1SOCB/D
07h = ePWM2SOCA/C
08h = ePWM2SOCB/D
09h = ePWM3SOCA/C
0Ah = ePWM3SOCB/D
0Bh = ePWM4SOCA/C
0Ch = ePWM4SOCB/D
0Dh = ePWM5SOCA/C
0Eh = ePWM5SOCB/D
0Fh = ePWM6SOCA/C

10h = ePWM6SOCB/D
11h = ePWM7SOCA/C
12h = ePWM7SOCB/D
13h = ePWM8SOCA/C
14h = ePWM8SOCB/D
15h = ePWM9SOCA/C
16h = ePWM9SOCB/D
17h = ePWM10SOCA/C
18h = ePWM10SOCB/D
19h = ePWM11SOCA/C
1Ah = ePWM11SOCB/D
1Bh = ePWM12SOCA/C
1Ch = ePWM12SOCB/D
1Dh = CPU2 Timer 0
1Eh = CPU2 Timer 1
1Fh = CPU2 Timer 2

ADC Interrupt Trigger SOC Select
Registers 1 & 2

AdczRegs.ADCINTSOCSELx (z = a, b, c, or d)

15 - 14
SOC15 SOC14 SOC13 SOC12 SOC11 SOC10 SOC9 SOC8

13 - 12 11 - 10 9 - 8 7 - 6 5 - 4 3 - 2 1 - 0

15 - 14
SOC7 SOC6 SOC5 SOC4 SOC3 SOC2 SOC1 SOC0

13 - 12 11 - 10 9 - 8 7 - 6 5 - 4 3 - 2 1 - 0

ADCINTSOCSEL2

ADCINTSOCSEL1

SOCx ADC Interrupt Select
Selects which, if any, ADCINT triggers SOCx
00 = no ADCINT will trigger SOCx (TRIGSEL field determines SOCx trigger)
01 = ADCINT1 will trigger SOCx (TRIGSEL field ignored)
10 = ADCINT2 will trigger SOCx (TRIGSEL field ignored)
11 = invalid selection

 Analog-to-Digital Converter (ADC)

TMS320F2837xD Microcontroller Workshop - Analog Subsystem 6 - 17

SOC Priority Control Register
AdczRegs.SOCPRICTL (z = a, b, c, or d)

reserved
15 - 10 9 - 5 4 - 0

RRPOINTER SOCPRIORITY

Round Robin Pointer
Points to the last converted

round robin SOCx and
determines order
of conversions

SOC Priority
Determines cutoff point

for high priority and
round robin mode

00h = round robin mode for all channels
01h = SOC0 high priority, SOC1-15 round robin
02h = SOC0-1 high priority, SOC2-15 round robin
03h = SOC0-2 high priority, SOC3-15 round robin
04h = SOC0-3 high priority, SOC4-15 round robin
05h = SOC0-4 high priority, SOC5-15 round robin
06h = SOC0-5 high priority, SOC6-15 round robin
07h = SOC0-6 high priority, SOC7-15 round robin
08h = SOC0-7 high priority, SOC8-15 round robin
09h = SOC0-8 high priority, SOC9-15 round robin
0Ah = SOC0-9 high priority, SOC10-15 round robin
0Bh = SOC0-10 high priority, SOC11-15 round robin
0Ch = SOC0-11 high priority, SOC12-15 round robin
0Dh = SOC0-12 high priority, SOC13-15 round robin
0Eh = SOC0-13 high priority, SOC14-15 round robin
0Fh = SOC0-14 high priority, SOC15 round robin
10h = all SOCs high priority (arbitrated by SOC #)
1xh = invalid selection

00h = SOC0 last converted, SOC1 highest priority
01h = SOC1 last converted, SOC2 highest priority
02h = SOC2 last converted, SOC3 highest priority
03h = SOC3 last converted, SOC4 highest priority
04h = SOC4 last converted, SOC5 highest priority
05h = SOC5 last converted, SOC6 highest priority
06h = SOC6 last converted, SOC7 highest priority
07h = SOC7 last converted, SOC8 highest priority
08h = SOC8 last converted, SOC9 highest priority
09h = SOC9 last converted, SOC10 highest priority
0Ah = SOC10 last converted, SOC11 highest priority
0Bh = SOC11 last converted, SOC12 highest priority
0Ch = SOC12 last converted, SOC13 highest priority
0Dh = SOC13 last converted, SOC14 highest priority
0Eh = SOC14 last converted, SOC15 highest priority
0Fh = SOC15 last converted, SOC0 highest priority
10h = reset value (no SOC has been converted)
1xh = invalid selection

ADC Burst Control Register
AdczRegs.ADCBURSTCTL (z = a, b, c, or d)

BURSTEN reserved
14 - 1215 11 - 8 5 - 0

BURSTTRIGSELBURSTSIZE reserved
7 - 6

0h = 1 SOCs converted
1h = 2 SOCs converted
2h = 3 SOCs converted
3h = 4 SOCs converted
4h = 5 SOCs converted
5h = 6 SOCs converted
6h = 7 SOCs converted
7h = 8 SOCs converted
8h = 9 SOCs converted
9h = 10 SOCs converted
Ah = 11 SOCs converted
Bh = 12 SOCs converted
Ch = 13 SOCs converted
Dh = 14 SOCs converted
Eh = 15 SOCs converted
Fh = 16 SOCs converted

SOC Burst Size Select
Determines how many

SOCs are converted when
sequence is started

SOC Burst
Mode Enable
0 = disable
1 = enable 00h = software

01h = CPU1 Timer 0
02h = CPU1 Timer 1
03h = CPU1 Timer 2
04h = ADCEXTSOC
05h = ePWM1SOCA/C
06h = ePWM1SOCB/D
07h = ePWM2SOCA/C
08h = ePWM2SOCB/D
09h = ePWM3SOCA/C
0Ah = ePWM3SOCB/D
0Bh = ePWM4SOCA/C
0Ch = ePWM4SOCB/D
0Dh = ePWM5SOCA/C
0Eh = ePWM5SOCB/D
0Fh = ePWM6SOCA/C

10h = ePWM6SOCB/D
11h = ePWM7SOCA/C
12h = ePWM7SOCB/D
13h = ePWM8SOCA/C
14h = ePWM8SOCB/D
15h = ePWM9SOCA/C
16h = ePWM9SOCB/D
17h = ePWM10SOCA/C
18h = ePWM10SOCB/D
19h = ePWM11SOCA/C
1Ah = ePWM11SOCB/D
1Bh = ePWM12SOCA/C
1Ch = ePWM12SOCB/D
1Dh = CPU2 Timer 0
1Eh = CPU2 Timer 1
1Fh = CPU2 Timer 2

SOC Burst Trigger
Source Select

Configures trigger to start a
burst conversion sequence

Analog-to-Digital Converter (ADC)

6 - 18 TMS320F2837xD Microcontroller Workshop - Analog Subsystem

Interrupt Select x and y Register
AdczRegs.INTSELxNy (z = a, b, c, or d)

INTyE INTySELINTyCONTreserved

15 11 - 81314
Where x/y = 1/2, 3/4

00h = EOC0 is trigger for ADCINTx/y
01h = EOC1 is trigger for ADCINTx/y
02h = EOC2 is trigger for ADCINTx/y
03h = EOC3 is trigger for ADCINTx/y
04h = EOC4 is trigger for ADCINTx/y
05h = EOC5 is trigger for ADCINTx/y
06h = EOC6 is trigger for ADCINTx/y
07h = EOC7 is trigger for ADCINTx/y
08h = EOC8 is trigger for ADCINTx/y
09h = EOC9 is trigger for ADCINTx/y
0Ah = EOC10 is trigger for ADCINTx/y
0Bh = EOC11 is trigger for ADCINTx/y
0Ch = EOC12 is trigger for ADCINTx/y
0Dh = EOC13 is trigger for ADCINTx/y
0Eh = EOC14 is trigger for ADCINTx/y
0Fh = EOC15 is trigger for ADCINTx/y

ADCINTx/y EOC Source Select

ADCINTx/y
Interrupt Enable
0 = disable
1 = enable

ADCINTx/y
Continuous
Mode Enable
0 = one-shot pulse

generated (until flag
cleared by user)

1 = pulse generated for
each EOC

reserved

12

INTxE INTxSELINTxCONTreserved

7 3 - 056

reserved

4

ADC Conversion Result Registers
12-Bit Mode

 Single-ended – one input pin (ADCINx)
 External reference (VREFHI and VREFLO)

LSBMSB
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AdcnResultRegs.ADCRESULTx n = a - d x = 0 - 15

ADCINx
Voltage

Digital
Results

AdcnResultRegs.
ADCRESULTx

3.0V FFFh 0000|1111|1111|1111
1.5V 7FFh 0000|0111|1111|1111

0.00073V 1h 0000|0000|0000|0001
0V 0h 0000|0000|0000|0000

 Analog-to-Digital Converter (ADC)

TMS320F2837xD Microcontroller Workshop - Analog Subsystem 6 - 19

ADC Conversion Result Registers
16-Bit Mode

 Differential – two input pins (ADCINxP & ADCINxN)
 Input voltage is the difference between the two pins
 External reference (VREFHI and VREFLO)

LSBMSB
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AdcnResultRegs.ADCRESULTx n = a - d x = 0 - 15

ADCINxP
Voltage

ADCINxN
Voltage

Digital
Results

AdcnResultRegs.
ADCRESULTx

3.0V 0V FFFFh 1111|1111|1111|1111
1.5V 1.5V 7FFFh 0111|1111|1111|1111
45µV 3.0V - 45µV 1h 0000|0000|0000|0001

0V 3.0V 0h 0000|0000|0000|0000

Signed Input Voltages

How Can We Handle Signed Input Voltages?
Example: -1.5 V ≤ Vin ≤ +1.5 V

1) Add 1.5 volts to the
analog input

Vin

1.5V ADCIN0

GND

VREFLO

-
+

R

R

R
-
+

R

R
ADCA

#include “F2837xD_Device.h”
#define offset 0x07FF
void main(void)
{

int16 value; // signed

value = AdcaResultRegs.ADCRESULT0 – offset;
}

2) Subtract “1. 5” from the digital result

Analog-to-Digital Converter (ADC)

6 - 20 TMS320F2837xD Microcontroller Workshop - Analog Subsystem

ADC Calibration and Reference

Built-In ADC Calibration
 TI reserved OTP contains device specific calibration

data for the ADC, internal oscillators and buffered DAC
 The Boot ROM contains a Device_cal() routine that

copies the calibration data to their respective registers
 Device_cal() must be run to meet the specifications in

the datasheet
 The Bootloader automatically calls Device_cal() such that no

action is normally required by the user
 If the Bootloader is bypassed (e.g. during development)

Device_cal() should be called by the application:

 AdcSetMode() function is called in the source code to
trim the ADC

#define Device_cal (void (*)(void))0x70282

void main(void)

{

(*Device_cal)(); // call Device_cal()

}

Manual ADC Calibration
 If the offset and gain errors in the datasheet are unacceptable for

your application, or you want to also compensate for board level
errors (e.g. sensor or amplifier offset), you can manually calibrate

 Offset error (12-bit mode)
 Compensated in analog with

the ADCOFFTRIM register
 No reduction in full-scale range
 Configure input to VREFLO,

set ADCOFFTRIM to maximum
offset error, and take a reading

 Re-adjust ADCOFFTRIM to
make result zero

 Gain error
 Compensated in software
 Some loss in full-scale range
 Requires use of a second ADC input pin and an upper-range reference

voltage on that pin; see “TMS320x280x and TMS320x2801x ADC
Calibration” appnote #SPRAAD8A for more information

CH

VREFLO

ADCOFFTRIM

ADC

 Analog-to-Digital Converter (ADC)

TMS320F2837xD Microcontroller Workshop - Analog Subsystem 6 - 21

Analog Subsystem External Reference

Voltage
Reference

REF3230
REF3225
REF3030
REF3025
(or similar)

ADC

VREFHIA

VREFLOA

VREFHIB

VREFLOB

VREFHIC

VREFLOC

VREFHID

VREFLOD

CA

CB

CC

CD

Reference Generation
Non-Inverting

Buffers

Comparator Subsystem (CMPSS)

6 - 22 TMS320F2837xD Microcontroller Workshop - Analog Subsystem

Comparator Subsystem (CMPSS)

Comparator Subsystem
 Eight Comparator

Subsystems (CMPSS)
 Each CMPSS has:

 Two analog comparators
 Two programmable 12-bit

DACs
 Two digital filters
 Ramp generator

 Digital filter used to
remove spurious trip
signals (majority vote)

 Ramp generator used for
peak current mode control

 Ability to synchronize
with PWMSYNC event

CMPIN3P/ADCINB2
CMPIN3N/ADCINB3

ADC-A

2
3
4
5

14
15

CMPIN1P/ADCINA2
CMPIN1N/ADCINA3
CMPIN2P/ADCINA4
CMPIN2N/ADCINA5

ADC-B2
3

ADC-C
2
3
4
5

CMPIN6P/ADCINC2
CMPIN6N/ADCINC3
CMPIN5P/ADCINC4
CMPIN5N/ADCINC5

ADC-D
0
1
2
3

CMPIN7P/ADCIND0
CMPIN7N/ADCIND1
CMPIN8P/ADCIND2
CMPIN8N/ADCIND3

CMPIN4P/ADCIN14
CMPIN4N/ADCIN15

The F2837xD includes eight independent Comparator Subsystem (CMPSS) modules that are
useful for supporting applications such as peak current mode control, switched-mode power,
power factor correction, and voltage trip monitoring. The Comparator Subsystem modules have
the ability to synchronize with a PWMSYNC event.

 Comparator Subsystem (CMPSS)

TMS320F2837xD Microcontroller Workshop - Analog Subsystem 6 - 23

Comparator Subsystem Block Diagram

Comparator Subsystem Block Diagram

DACxVALA * DACREF
4096

VDACx =

DAC Reference Comparator Truth Table
Voltages Output
Voltage A < Voltage B 0
Voltage A > Voltage B 1

+

COMPH

-
Digital
Filter

12-bit
DAC

1

0

CTRIPH
to EPwm

X-Bar

0

1
CTRIPOUTH

to Output
X-Bar

DACH
VALA

0

1

DACH
VALS

+

COMPL

-
Digital
Filter

12-bit
DAC

1

0

0

1
DACL
VALA

DACL
VALS

ePWM
Event

Trigger
&

GPIO
MUX

CMPINxP

CMPINxN

COMPHINV

COMPLINV

COMPDACE

COMPHSOURCE

COMPLSOURCE

DACSOURCE CTRIPL
to EPwm

X-Bar

CTRIPOUTL
to Output

X-Bar

Note: registers lock protected

Each CMPSS module is designed around a pair of analog comparators which generates a digital
output indicating if the voltage on the positive input is greater than the voltage on the negative
input. The positive input to the comparator is always driven from an external pin. The negative
input can be driven by either an external pin or an internal programmable 12-bit digital-to-analog
(DAC) as a reference voltage. Values written to the DAC can take effect immediately or be
synchronized with ePWM events. A falling-ramp generator is optionally available to the control
the internal DAC reference value for one comparator in the module. Each comparator output is
feed through a programmable digital filter that can remove spurious trip signals. The output of the
CMPSS generates trip signals to the ePWM event trigger submodule and GPIO structure.

Digital-to-Analog Converter (DAC)

6 - 24 TMS320F2837xD Microcontroller Workshop - Analog Subsystem

Digital-to-Analog Converter (DAC)

Digital-to-Analog Converter

 Three buffered 12-bit DACs

 Provides a programmable
reference output voltage

 Capable of driving an
external load

 Ability to be synchronized
with PWMSYNC events

 Selectable reference voltage

ADC-A

0
1

12

DACOUTA/ADCINA0
DACOUTB/ADCINA1

DACOUTA

ADC-B
1

12

DACOUTC/ADCINB1

DACOUTA

ADC-C
12DACOUTA

ADC-D
12DACOUTA

The F2837xD includes three buffered 12-bit DAC modules that can provide a programmable
reference output voltage capable of driving an external load. Values written to the DAC can take
effect immediately or be synchronized with ePWM events.

 Digital-to-Analog Converter (DAC)

TMS320F2837xD Microcontroller Workshop - Analog Subsystem 6 - 25

Buffered DAC Block Diagram

Buffered DAC Block Diagram

DACVALA * DACREF
4096

VDACOUT =

Ideal Output
VREFHIA can supply reference
for DAC A and DAC B; VREFHIB
can supply reference for DAC C

0

1

AMP12-bit
DAC

DACV
ALS

DACREFSEL

VDAC

VREFHI

VSSA

VDDA DACOUTEN

VDACOUTDACV
ALA

VSSA

Note: registers lock protected

Two sets of DACVAL registers are present in the buffered DAC module: DACVALA and
DACVALS. DACVALA is a read-only register that actively controls the DAC value. DACVALS is a
writable shadow register that loads into DACVALA either immediately or synchronized with the
next PWMSYNC event. The ideal output of the internal DAC can be calculated as shown in the
equation below.

Sigma Delta Filter Module (SDFM)

6 - 26 TMS320F2837xD Microcontroller Workshop - Analog Subsystem

Sigma Delta Filter Module (SDFM)

Sigma Delta Filter Module (SDFM)

 SDFM is a four-channel digital filter designed
specifically for current measurement and resolver
position decoding in motor control applications

 Each channel can receive an independent modulator
bit stream

 Bit streams are processed by four individually
programmable digital decimation filters

 Filters include a fast comparator for immediate
digital threshold comparisons for over-current
monitoring

 Filter-bypass mode available to enable data logging,
analysis, and customized filtering

The SDFM is a four-channel digital filter designed specifically for current measurement and
resolver position decoding in motor control applications. Each channel can receive an
independent delta-sigma modulator bit stream which is processed by four individually
programmable digital decimation filters. The filters include a fast comparator for immediate digital
threshold comparisons for over-current and under-current monitoring. Also, a filter-bypass mode
is available to enable data logging, analysis, and customized filtering. The SDFM pins are
configured using the GPIO multiplexer. A key benefit of the SDFM is it enables a simple, cost-
effective, and safe high-voltage isolation boundary.

 Sigma Delta Filter Module (SDFM)

TMS320F2837xD Microcontroller Workshop - Analog Subsystem 6 - 27

SDFM Block Diagram

SDFM Block Diagram

Filter Module 1
Direct

SDFM- Sigma Delta Filter Module

IN3
CLK3

Input
Ctrl

IN1

CLK1

ΣΔ
Streams

IN4
CLK4

VBUS32Register
Map

SDINT

Interrupt
Unit

PIE

SDFILRESn

R

R

IN2
CLK2

Comparator
Filter

Sinc Filter

PWMPWM

CMPC/D

FILRES

Clk_out

Sync

Filter Module 4

Filter Module 3

Filter Module 2
Sync

Sync

Sync

Lab 6: Analog-to-Digital Converter

6 - 28 TMS320F2837xD Microcontroller Workshop - Analog Subsystem

Lab 6: Analog-to-Digital Converter
 Objective

The objective of this lab exercise is to become familiar with the programming and operation of the
on-chip analog-to-digital converter (ADC). The microcontroller (MCU) will be setup to sample a
single ADC input channel at a prescribed sampling rate and store the conversion result in a
circular memory buffer. In the second part of this lab exercise, the digital-to-analog converter
(DAC) will be explored.

Lab 6: ADC Sampling

ADC-A

ADCINA0

RESULT0

...

data
memory

CPU copies result
to buffer during
ADC ISR

ePWM2

ePWM2 triggering
ADC on period match
using SOCA trigger every
20 µs (50 kHz)

GND
+3.3 V

(GPIO19)
Toggle

(GPIO18)

jumper
wire

View ADC
buffer PWM
samples

Code Composer
Studio

DAC-B

Sine
Table

Recall that there are three basic ways to initiate an ADC start of conversion (SOC):
1. Using software

a. SOCx bit (where x = 0 to 15) in the ADC SOC Force 1 Register (ADCSOCFRC1)
causes a software initiated conversion

2. Automatically triggered on user selectable conditions
a. CPU Timer 0/1/2 interrupt
b. ePWMxSOCA / ePWMxSOCB (where x = 1 to 12)

- ePWM underflow (CTR = 0)
- ePWM period match (CTR = PRD)
- ePWM underflow or period match (CTR = 0 or PRD)

 - ePWM compare match (CTRU/D = CMPA/B/C/D)
c. ADC interrupt ADCINT1 or ADCINT2

- triggers SOCx (where x = 0 to 15) selected by the ADC Interrupt Trigger SOC
Select1/2 Register (ADCINTSOCSEL1/2)

3. Externally triggered using a pin
a. ADCSOC pin (GPIO/ADCEXTSOC)

One or more of these methods may be applicable to a particular application. In this lab exercise,
we will be using the ADC for data acquisition. Therefore, one of the ePWMs (ePWM2) will be
configured to automatically trigger the SOCA signal at the desired sampling rate (ePWM period
match CTR = PRD SOC method 2b above). The ADC end-of-conversion interrupt will be used to

 Lab 6: Analog-to-Digital Converter

TMS320F2837xD Microcontroller Workshop - Analog Subsystem 6 - 29

prompt the CPU to copy the results of the ADC conversion into a results buffer in memory. This
buffer pointer will be managed in a circular fashion, such that new conversion results will
continuously overwrite older conversion results in the buffer. In order to generate an interesting
input signal, the code also alternately toggles a GPIO pin (GPIO18) high and low in the ADC
interrupt service routine. The ADC ISR will also toggle LED D9 on the LaunchPad as a visual
indication that the ISR is running. This pin will be connected to the ADC input pin, and sampled.
After taking some data, Code Composer Studio will be used to plot the results. A flow chart of the
code is shown in the following slide.

Lab 6: Code Flow Diagram

Start General Initialization
• PLL and clocks
• Watchdog configure
• GPIO setup
• PIE initialization

ADC Initialization
• convert channel A0 on

ePWM2 period match
• send interrupt on EOC

to trigger ADC ISR
• setup a results buffer

in memory

ePWM2 Initialization
• clear counter
• set period register
• set to trigger ADC on

period match
• set the clock prescaler
• enable the timer

Main Loop
while(1)
{
}

ADC ISR
• read the ADC result
• write to result buffer
• adjust the buffer pointer
• toggle the GPIO pin
• return from interrupt

ADC interrupt

return

Notes
• Program performs conversion on ADC channel A0 (ADCINA0 pin)

• ADC conversion is set at a 50 kHz sampling rate

• ePWM2 is triggering the ADC on period match using SOCA trigger

• Data is continuously stored in a circular buffer

• GPIO18 pin is also toggled in the ADC ISR

• ADC ISR will also toggle the LaunchPad LED D9 as a visual indication that it is running

Lab 6: Analog-to-Digital Converter

6 - 30 TMS320F2837xD Microcontroller Workshop - Analog Subsystem

 Procedure

Open the Project
1. A project named Lab6 has been created for this lab exercise. Open the project by

clicking on Project  Import CCS Projects. The “Import CCS Eclipse Projects”
window will open then click Browse… next to the “Select search-directory” box. Navigate
to: C:\C28x\Labs\Lab6\cpu01 and click OK. Then click Finish to import the project.
All build options have been configured the same as the previous lab exercise. The files
used in this lab exercise are:

Adc.c Gpio.c
CodeStartBranch.asm Lab_5_6_7.cmd
Dac.c Main_6.c
DefaultIsr_6.c PieCtrl.c
DelayUs.asm PieVect.c
EPwm_6.c Sinetable.c
F28x7xD_Adc.c SysCtrl.c
F2837xD_GlobalVariableDefs.c Watchdog.c
F2837xD_Headers_nonBIOS_cpu1.cmd Xbar.c

Note: The Dac.c and SineTable.c files are used to generate a sine waveform in the
second part of this lab exercise.

Setup ADC Initialization and Enable Core/PIE Interrupts
2. In Main_6.c add code to call the InitAdca(), InitEPwm() and InitDacb()

functions. The InitEPwm() function is used to configure ePWM2 to trigger the ADC at
a 50 kHz rate. Details about the ePWM and control peripherals will be discussed in the
next module. The InitDacb() function will be used in the second part of this lab
exercise.

3. Edit Adc.c to configure SOC0 in the ADC as follows:
• SOC0 converts input ADCINA0 in single-sample mode
• SOC0 has a 20 SYSCLK cycle acquisition window
• SOC0 is triggered by the ePWM2 SOCA
• SOC0 triggers ADCINT1 on end-of-conversion
• All SOCs run round-robin

Be sure to modify Adc.c and not F2837xD_Adc.c which is used for the ADC calibration.

4. Using the “PIE Interrupt Assignment Table” find the location for the ADC interrupt
“ADCA1” and fill in the following information:

PIE group #: # within group:

This information will be used in the next step.

5. Modify the end of Adc.c to do the following:
- Enable the “ADCA1” interrupt in the PIE (Hint: use the PieCtrlRegs structure)
- Enable the appropriate core interrupt in the IER register

6. Open and inspect DefaultIsr_6.c. This file contains the ADC interrupt service
routine. Save your work.

 Lab 6: Analog-to-Digital Converter

TMS320F2837xD Microcontroller Workshop - Analog Subsystem 6 - 31

Build and Load
7. Click the “Build” button and watch the tools run in the Console window. Check for

errors in the Problems window.

8. Click the “Debug” button (green bug). A Launching Debug Session window will open.
Select only CPU1 to load the program on (i.e. uncheck CPU2), and then click OK. Then
the CCS Debug perspective view should open, the program will load automatically, and
you should now be at the start of main(). If the device has been power cycled since the
last lab exercise, be sure to configure the boot mode to EMU_BOOT_SARAM using the
Scripts menu.

Run the Code
9. In Main_6.c place the cursor in the “main loop” section, right click on the mouse key

and select Run To Line.

Open a memory browser to view some of the contents of the ADC results buffer. The
address label for the ADC results buffer is AdcBuf (type &AdcBuf) in the “Data” memory
page. Then <enter> to view the contents of the ADC result buffer.

Note: Exercise care when connecting any jumper wires to the LaunchPad header pins
since the power to the USB connector is on!

Refer to the following diagram for the location of the pins that will need to be connected:

10. Using a jumper wire, connect the ADCINA0 (header J3, pin #30) to “GND” (header J2,
pin #20) on the LaunchPad. Then run the code again, and halt it after a few seconds.
Verify that the ADC results buffer contains the expected value of ~0x0000. Note that you
may not get exactly 0x0000 if the device you are using has positive offset error.

11. Adjust the jumper wire to connect the ADCINA0 (header J3, pin #30) to “+3.3V”
(header J1, pin #3; GPIO-19) on the LaunchPad. (Note: pin # GPIO-19 has been set
to “1” in Gpio.c). Then run the code again, and halt it after a few seconds. Verify that
the ADC results buffer contains the expected value of ~0x0FFF. Note that you may
not get exactly 0x0FFF if the device you are using has negative offset error.

12. Adjust the jumper wire to connect the ADCINA0 (header J3, pin #30) to GPIO18 (header
J1, pin #4) on the LaunchPad. Then run the code again, and halt it after a few seconds.
Examine the contents of the ADC results buffer (the contents should be alternating
~0x0000 and ~0x0FFF values). Are the contents what you expected?

13. Open and setup a graph to plot a 50-point window of the ADC results buffer.
Click: Tools  Graph  Single Time and set the following values:

Lab 6: Analog-to-Digital Converter

6 - 32 TMS320F2837xD Microcontroller Workshop - Analog Subsystem

Acquisition Buffer Size 50

DSP Data Type 16-bit unsigned integer

Sampling Rate (Hz) 50000

Start Address AdcBuf

Display Data Size 50

Time Display Unit µs

 Select OK to save the graph options.

14. Recall that the code toggled the GPIO18 pin alternately high and low. (Also, the ADC
ISR is toggling the LED D9 on the LaunchPad as a visual indication that the ISR is
running). If you had an oscilloscope available to display GPIO18, you would expect to
see a square-wave. Why does Code Composer Studio plot resemble a triangle wave?
What is the signal processing term for what is happening here?

15. Recall that the program toggled the GPIO18 pin at a 50 kHz rate. Therefore, a complete
cycle (toggle high, then toggle low) occurs at half this rate, or 25 kHz. We therefore
expect the period of the waveform to be 40 µs. Confirm this by measuring the period of
the triangle wave using the “measurement marker mode” graph feature. In the graph
window toolbar, left-click on the ruler icon with the red arrow. Note when you hover your
mouse over the icon, it will show “Toggle Measurement Marker Mode”. Move
the mouse to the first measurement position and left-click. Again, left-click on the
Toggle Measurement Marker Mode icon. Move the mouse to the second
measurement position and left-click. The graph will automatically calculate the difference
between the two values taken over a complete waveform period. When done, clear the
measurement points by right-clicking on the graph and select Remove All
Measurement Marks (or Ctrl+Alt+M).

Using Real-time Emulation
Real-time emulation is a special emulation feature that offers two valuable capabilities:

A. Windows within Code Composer Studio can be updated at up to a 10 Hz rate while the
MCU is running. This not only allows graphs and watch windows to update, but also
allows the user to change values in watch or memory windows, and have those
changes affect the MCU behavior. This is very useful when tuning control law
parameters on-the-fly, for example.

B. It allows the user to halt the MCU and step through foreground tasks, while specified
interrupts continue to get serviced in the background. This is useful when debugging
portions of a real-time system (e.g., serial port receive code) while keeping critical
parts of your system operating (e.g., commutation and current loops in motor control).

We will only be utilizing capability “A” above during the workshop. Capability “B” is a
particularly advanced feature, and will not be covered in the workshop.

16. The memory and graph windows displaying AdcBuf should still be open. The jumper wire
between ADCINA0 (header J3, pin #30) and GPIO18 (header J1, pin #4) should still be
connected. In real-time mode, we will have our window continuously refresh at the
default rate. To view the refresh rate click:

 Lab 6: Analog-to-Digital Converter

TMS320F2837xD Microcontroller Workshop - Analog Subsystem 6 - 33

Window  Preferences…

and in the section on the left select the “Code Composer Studio” category. Click the plus
sign (+) to the left of “Code Composer Studio” and select “Debug”. In the section on the
right notice the default setting:

• “Continuous refresh interval (milliseconds)” = 500

Click OK.

Note: Decreasing the “Continuous refresh interval” causes all enabled continuous refresh
windows to refresh at a faster rate. This can be problematic when a large number of
windows are enabled, as bandwidth over the emulation link is limited. Updating too many
windows can cause the refresh frequency to bog down. In this case you can just
selectively enable continuous refresh for the individual windows of interest.

17. Next we need to enable the graph window for continuous refresh. Select the “Single
Time” graph. In the graph window toolbar, left-click on the yellow icon with the arrows
rotating in a circle over a pause sign. Note when you hover your mouse over the icon, it
will show “Enable Continuous Refresh”. This will allow the graph to continuously refresh
in real-time while the program is running.

18. Enable the Memory Browser for continuous refresh using the same procedure as the
previous step.

19. Code Composer Studio includes Scripts that are functions which automate entering and
exiting real-time mode. Four functions are available:

• Run_Realtime_with_Reset (reset CPU, enter real-time mode, run CPU)

• Run_Realtime_with_Restart (restart CPU, enter real-time mode, run CPU)

• Full_Halt (exit real-time mode, halt CPU)

• Full_Halt_with_Reset (exit real-time mode, halt CPU, reset CPU)

These Script functions are executed by clicking:

Scripts  Realtime Emulation Control  Function

In the remaining lab exercises we will be using the first and third above Script functions to
run and halt the code in real-time mode. Alternatively, the CPU Reset, Real-time mode,
Resume, and Suspend buttons on the Code Composer Studio tool bar can be used.

20. Run the code and watch the windows update in real-time mode. Click:

Scripts  Realtime Emulation Control  Run_Realtime_with_Reset

21. Carefully remove and replace the jumper wire from GPIO18 (header J1, pin #4). Are the
values updating in the Memory Browser and Single Time graph as expected?

22. Fully halt the CPU in real-time mode. Click:

Scripts  Realtime Emulation Control  Full_Halt

23. So far, we have seen data flowing from the MCU to the debugger in realtime. In this
step, we will flow data from the debugger to the MCU.
• Open and inspect Main_6.c. Notice that the global variable DEBUG_TOGGLE is

used to control the toggling of the GPIO18 pin. This is the pin being read with the
ADC.

Lab 6: Analog-to-Digital Converter

6 - 34 TMS320F2837xD Microcontroller Workshop - Analog Subsystem

• Highlight DEBUG_TOGGLE with the mouse, right click and select “Add Watch
Expression…” and then select OK. The global variable DEBUG_TOGGLE should
now be in the Expressions window with a value of “1”.

• Enable the Expressions window for continuous refresh
• Run the code in real-time mode and change the value to “0”. Are the results shown

in the memory and graph window as expected? Change the value back to “1”. As
you can see, we are modifying data memory contents while the processor is running
in real-time (i.e., we are not halting the MCU nor interfering with its operation in any
way)! When done, fully halt the CPU.

Setup DAC to Generate a Sine Waveform
Next, we will configure DACB to generate a fixed frequency sine wave. This signal will
appear on an analog output pin of the device (ADC-A1). Then using the jumper wire we will
connect the DACB output to the ADCA input (ADC-A0) and display the sine wave in a graph
window.

24. Notice the following code lines in the ADCA1 ISR in DefaultIsr_6.c:
 //--- Write to DAC-B to create input to ADC-A0
 if(SINE_ENABLE == 1)
 {
 DacOutput = DacOffset + ((QuadratureTable[iQuadratureTable++] ^ 0x8000) >> 5);
 }
 else
 {
 DacOutput = DacOffset;
 }
 if(iQuadratureTable > (SINE_PTS – 1)) // Wrap the index
 {
 iQuadratureTable = 0;
 }
 DacbRegs.DACVALS.all = DacOutput;

The variable DacOffset allows the user to adjust the DC output of DACB from the
Expressions window in CCS. The variable Sine_Enable is a switch which adds a fixed
frequency sine wave to the DAC offset. The sine wave is generated using a 25-point
look-up table contained in the SineTable.c file. We will plot the sine wave in a graph
window while manually adjusting the offset.

25. Open and inspect SineTable.c. (If needed, open the Project Explorer window in the
CCS Debug perspective view by clicking View  Project Explorer). The file
consists of an array of 25 signed integer points which represent four quadrants of
sinusoidal data. The 25 points are a complete cycle. In the source code we need to
sequentially access each of the 25 points in the array, converting each one from signed
16-bit to un-signed 12-bit format before writing it to the DACVALS register of DACB.

26. Add the following variables to the Expressions window:

• Sine_Enable

• DacOffset

27. Adjust the jumper wire to connect the ADCINA0 (header J3, pin #30) to DACB (header
J7, pin #70) on the LaunchPad. Refer to the following diagram for the pins that need to
be connected.

 Lab 6: Analog-to-Digital Converter

TMS320F2837xD Microcontroller Workshop - Analog Subsystem 6 - 35

28. Run the code (real-time mode) using the Script function: Scripts  Realtime
Emulation Control  Run_Realtime_with_Reset

29. At this point, the graph should be displaying a DC signal near zero. Click on the
dacOffset variable in the Expressions window and change the value to 800. This
changes the DC output of the DAC which is applied to the ADC input. The level of the
graph display should be about 800 and this should be reflected in the value shown in the
memory buffer (note: 800 decimal = 0x320 hex).

30. Enable the sine generator by changing the variable Sine_Enable in the Expressions
window to 1.

31. You should now see sinusoidal data in the graph window.

32. Try removing and re-connecting the jumper wire to show this is real data is running in
real-time emulation mode. Also, you can try changing the DC offset variable to move the
input waveform to a different average value (the maximum distortion free offset is about
2000).

33. Fully halt the code (real-time mode) by using the Script function: Scripts 
Realtime Emulation Control  Full_Halt

Terminate Debug Session and Close Project
34. Terminate the active debug session using the Terminate button. This will close the

debugger and return Code Composer Studio to the CCS Edit perspective view.

35. Next, close the project by right-clicking on Lab6 in the Project Explorer window and
select Close Project.

Optional Exercise
If you finish early, you might want to experiment with the code by observing the effects of
changing the OFFTRIM value. Open a watch window to the AdcaRegs.ADCOFFTRIM register
and change the OFFTRIM value. If you did not get 0x0000 in step 11, you can calibrate out the
offset of your device. If you did get 0x0000, you can determine if you actually had zero offset, or

Lab 6: Analog-to-Digital Converter

6 - 36 TMS320F2837xD Microcontroller Workshop - Analog Subsystem

if the offset error of your device was negative. (If you do not have time to work on this optional
exercise, you may want to try this later).

End of Exercise

TMS320F2837xD Microcontroller Workshop - Control Peripherals 7 - 1

Control Peripherals

Introduction
The C2000 high-performance control peripherals are an integral component for all digital control
systems, and within the F2837xD these peripherals are common between the two CPU
subsystems. After reset they are connected to the CPU1 subsystem, and a series of CPU Select
registers are used to configure each peripheral individually to be either controlled CPU1
subsystem or CPU2 subsystem. This module starts with a review of pulse width modulation
(PWM) and then explains how the ePWM is used for generating PWM waveforms. Also, the use
of the eCAP and the eQEP will be discussed.

Module Objectives

Module Objectives

Pulse Width Modulation (PWM) review
Generate a PWM waveform with the

Pulse Width Modulator Module (ePWM)
Use the Capture Module (eCAP) to

measure the width of a waveform
Explain the function of Quadrature

Encoder Pulse Module (eQEP)

Note: Different numbers of ePWM, eCAP, and eQEP modules are available on F28x7x
devices. See the device datasheet for more information.

PWM Review

7 - 2 TMS320F2837xD Microcontroller Workshop - Control Peripherals

Chapter Topics
Control Peripherals ... 7-1

PWM Review ... 7-3
ePWM.. 7-5

ePWM Time-Base Sub-Module .. 7-7
ePWM Compare Sub-Module ... 7-11
ePWM Action Qualifier Sub-Module ... 7-14
Asymmetric and Symmetric Waveform Generation using the ePWM 7-22
PWM Computation Example ... 7-23
ePWM Dead-Band Sub-Module .. 7-24
ePWM Chopper Sub-Module .. 7-27
ePWM Trip-Zone and Digital Compare Sub-Modules .. 7-30
ePWM Event-Trigger Sub-Module .. 7-38
High Resolution PWM (HRPWM).. 7-40

eCAP ... 7-41
eQEP ... 7-47
Lab 7: Control Peripherals .. 7-50

 PWM Review

TMS320F2837xD Microcontroller Workshop - Control Peripherals 7 - 3

PWM Review

What is Pulse Width Modulation?

PWM is a scheme to represent a
signal as a sequence of pulses
fixed carrier frequency
fixed pulse amplitude
pulse width proportional to

instantaneous signal amplitude
PWM energy ≈ original signal energy

t

Original Signal
T

t

PWM representation

Pulse width modulation (PWM) is a method for representing an analog signal with a digital
approximation. The PWM signal consists of a sequence of variable width, constant amplitude
pulses which contain the same total energy as the original analog signal. This property is
valuable in digital motor control as sinusoidal current (energy) can be delivered to the motor using
PWM signals applied to the power converter. Although energy is input to the motor in discrete
packets, the mechanical inertia of the rotor acts as a smoothing filter. Dynamic motor motion is
therefore similar to having applied the sinusoidal currents directly.

PWM Review

7 - 4 TMS320F2837xD Microcontroller Workshop - Control Peripherals

 Desired output currents or voltages are known
 Power switching devices are transistors

Difficult to control in proportional region
 Easy to control in saturated region

 PWM is a digital signal ⇒ easy for MCU to output

PWM approx.
of desired
signal

DC Supply

Desired
signal to
system

?
DC Supply

Unknown Gate Signal Gate Signal Known with PWM

PWM

Why use PWM with Power
Switching Devices?

Power switching devices can be difficult to control when operating in the proportional region, but
are easy to control in the saturation and cutoff regions. Since PWM is a digital signal by nature
and easy for an MCU to generate, it is ideal for use with power switching devices. Essentially,
PWM performs a DAC function, where the duty cycle is equivalent to the DAC analog amplitude
value.

 ePWM

TMS320F2837xD Microcontroller Workshop - Control Peripherals 7 - 5

ePWM

ePWM Module Signals and Connections

ePWMx

ePWMx+1

EPWMxSYNCI

EPWMxSYNCO

PIE
CLAEPWMxINT

EPWMxTZINT

ePWMx-1

EPWMxSOCB

EPWMxSOCA

ADCePWM
X-Bar

EMUSTOP – TZ6

CLOCKFAIL – TZ5

EQEPERR – TZ4

CPU

SYSCTRL

eQEP
EPWMxA

EPWMxB
GPIO
MUX

INPUT
X-Bar

Note: the order in which the ePWM modules are connected is determined by the device synchronization scheme

The ePWM modules are highly programmable, extremely flexible, and easy to use, while being
capable of generating complex pulse width waveforms with minimal CPU overhead or
intervention. Each ePWM module is identical with two PWM outputs, EPWMxA and EPWMxB,
and multiple modules can synchronized to operate together as required by the system application
design. The generated PWM waveforms are available as outputs on the GPIO pins. Additionally,
the EPWM module can generate ADC starter conversion signals and generate interrupts to the
PIE block. External trip zone signals can trip the output, as well as generate interrupts. The
outputs of the comparators are used as inputs to the ePWM X-Bar. Next, the internal details of
the ePWM module will be covered.

ePWM

7 - 6 TMS320F2837xD Microcontroller Workshop - Control Peripherals

ePWM Synchronization Scheme
SyncSocRegs.SYNCSELECT

ePWM1

ePWM2

ePWM3 ePWM4

ePWM5

ePWM6

ePWM7

ePWM8

ePWM9

ePWM10

ePWM11

ePWM12

eCAP1

eCAP2

eCAP3

eCAP4

eCAP5

eCAP6

EXTSYNCIN1 EXTSYNCIN2

EPWM1
SYNCOUT

EPWM4
SYNCOUT

EPWM7
SYNCOUT
EPWM10

SYNCOUT
ECAP1

SYNCOUT

EXT
SYNCOUT

EPWM4SYNCIN

EPWM7SYNCIN

EPWM10SYNCIN

ECAP1SYNCIN

ECAP4SYNCIN

SYNCOUT

Various ePWM modules (and eCAP units) can be grouped together for synchronization.

ePWM Block Diagram

16-Bit
Time-Base

Counter

Compare
Logic

Action
Qualifier

Dead
Band

PWM
Chopper

Trip
Zone

Period
Register

Clock
Prescaler

EPWMxA

EPWMxB

TZy

EPWMxSYNCI EPWMxSYNCO

TBCLK

Digital
Compare

TZ1-TZ3

INPUT X-Bar
ePWM X-Bar

EPWMCLK

Compare
Registers

Event Trigger

Compare
Registers

The ePWM module consists of eight submodules: time-base, counter-compare, action-qualifier,
dead-band generator, PWM chopper, trip-zone, digital-compare, and event-trigger.

 ePWM

TMS320F2837xD Microcontroller Workshop - Control Peripherals 7 - 7

ePWM Time-Base Sub-Module

ePWM Time-Base Sub-Module

16-Bit
Time-Base

Counter

Compare
Logic

Action
Qualifier

Dead
Band

PWM
Chopper

Trip
Zone

Compare
Registers

Period
Register

Clock
Prescaler

EPWMxA

EPWMxB

TZy

EPWMxSYNCI EPWMxSYNCO

TBCLK

Digital
Compare

Event Trigger

Compare
Registers

INPUT X-Bar
ePWM X-Bar

TZ1-TZ3

EPWMCLK

The time-base submodule consists of a dedicated 16-bit counter, along with built-in
synchronization logic to allow multiple ePWM modules to work together as a single system. A
clock pre-scaler divides the EPWM clock to the counter and a period register is used to control
the frequency and period of the generated waveform. The period register has a shadow register,
which acts like a buffer to allow the register updates to be synchronized with the counter, thus
avoiding corruption or spurious operation from the register being modified asynchronously by the
software.

ePWM

7 - 8 TMS320F2837xD Microcontroller Workshop - Control Peripherals

ePWM Time-Base Count Modes
TBCTR

TBCTR

TBCTR

TBPRD

TBPRD

TBPRD

Count Up Mode

Count Down Mode

Count Up and Down Mode

Asymmetrical
Waveform

Asymmetrical
Waveform

Symmetrical
Waveform

The time-base counter operates in three modes: up-count, down-count, and up-down-count. In
up-count mode the time-base counter starts counting from zero and increments until it reaches
the period register value, then the time-base counter resets to zero and the count sequence starts
again. Likewise, in down-count mode the time-base counter starts counting from the period
register value and decrements until it reaches zero, then the time-base counter is loaded with the
period value and the count sequence starts again. In up-down-count mode the time-base counter
starts counting from zero and increments until it reaches the period register value, then the time-
base counter decrements until it reaches zero and the count sequence repeats. The up-count
and down-count modes are used to generate asymmetrical waveforms, and the up-down-count
mode is used to generate symmetrical waveforms.

 ePWM

TMS320F2837xD Microcontroller Workshop - Control Peripherals 7 - 9

ePWM Phase Synchronization

SyncIn

SyncOut

CTR=zero
CTR=CMPB *

X

En

o
o

o

o
o

ooφ=120°
Phase . EPWM2A

EPWM2B

SyncIn

SyncOut

CTR=zero
CTR=CMPB *

X

En

o
o

o

o
o

ooφ=240°
Phase . EPWM3A

EPWM3B

SyncIn

SyncOut

CTR=zero
CTR=CMPB *

X

En

o
o

o

o
o

ooφ=0°
Phase . EPWM1A

EPWM1B

φ=120°

φ=120°

φ=240°

Ext. SyncIn

To eCAP1
SyncIn

* Extended selection φor CMPC and CMPD available

Synchronization allows multiple ePWM modules to work together as a single system. The
synchronization is based on a synch-in signal, time-base counter equals zero, or time-base
counter equals compare B register. Additionally, the waveform can be phase-shifted.

ePWM Time-Base Sub-Module Registers
(lab file: EPwm.c)

Name Description Structure
TBCTL Time-Base Control EPwmxRegs.TBCTL.all =
TBCTL2 Time-Base Control EPwmxRegs.TBCTL2.all =
TBSTS Time-Base Status EPwmxRegs.TBSTS.all =
TBPHS Time-Base Phase EPwmxRegs.TBPHS =
TBCTR Time-Base Counter EPwmxRegs.TBCTR =
TBPRD Time-Base Period EPwmxRegs.TBPRD =

ePWM

7 - 10 TMS320F2837xD Microcontroller Workshop - Control Peripherals

ePWM Time-Base Control Register
EPwmxRegs.TBCTL

Upper Register:

FREE_SOFT PHSDIR CLKDIV HSPCLKDIV
15 - 14 13 12 - 10 9 - 7

TBCLK = EPWMCLK / (HSPCLKDIV * CLKDIV)

TB Clock Prescale
000 = /1 (default)
001 = /2
010 = /4
011 = /8
100 = /16
101 = /32
110 = /64
111 = /128

High Speed TB
Clock Prescale
000 = /1
001 = /2 (default)
010 = /4
011 = /6
100 = /8
101 = /10
110 = /12
111 = /14

Emulation Halt Behavior
00 = stop after next CTR inc/dec
01 = stop when:

Up Mode; CTR = PRD
Down Mode; CTR = 0
Up/Down Mode; CTR = 0

1x = free run (do not stop)

Phase Direction
0 = count down after sync
1 = count up after sync

(HSPCLKDIV is for legacy compatibility)

ePWM Time-Base Control Register
EPwmxRegs.TBCTL

Lower Register:

CTRMODESWFSYNC SYNCOSEL PRDLD PHSEN
6 5 - 4 3 1 - 02

Software Force Sync Pulse
0 = no action
1 = force one-time sync

Sync Output Select
(source of EPWMxSYNC0 signal)
00 = EPWMxSYNCI
01 = CTR = 0
10 = CTR = CMPB *
11 = disable SyncOut

Counter Mode
00 = count up
01 = count down
10 = count up and down
11 = stop – freeze (default)

Period Shadow Load
0 = load on CTR = 0
1 = load immediately

Phase Reg. Enable
0 = disable
1 = CTR = TBPHS on

EPWMxSYNCI signal

* CMPC and CMPD option
available in TBCTL2 register

 ePWM

TMS320F2837xD Microcontroller Workshop - Control Peripherals 7 - 11

ePWM Compare Sub-Module

ePWM Compare Sub-Module

16-Bit
Time-Base

Counter

Compare
Logic

Action
Qualifier

Dead
Band

PWM
Chopper

Trip
Zone

Period
Register

Clock
Prescaler

EPWMxA

EPWMxB

TZy

EPWMxSYNCI EPWMxSYNCO

TBCLK

Digital
Compare

Compare
Registers

Event Trigger

Compare
Registers

INPUT X-Bar
ePWM X-Bar

TZ1-TZ3

EPWMCLK

The counter-compare submodule continuously compares the time-base count value to four
counter compare registers (CMPA, CMPB, CMPC, and CMPD) and generates four independent
compare events (i.e. time-base counter equals a compare register value) which are fed to the
action-qualifier and event-trigger submodules. The counter compare registers are shadowed to
prevent corruption or glitches during the active PWM cycle. Typically CMPA and CMPB are used
to control the duty cycle of the generated PWM waveform, and all four compare registers can be
used to start an ADC conversion or generate an ePWM interrupt. For the up-count and down-
count modes, a counter match occurs only once per cycle, however for the up-down-count mode
a counter match occurs twice per cycle since there is a match on the up count and down count.

ePWM

7 - 12 TMS320F2837xD Microcontroller Workshop - Control Peripherals

ePWM Compare Event Waveforms
TBCTR

TBCTR

TBCTR

TBPRD

TBPRD

TBPRD

Count Up Mode

Count Down Mode

Count Up and Down Mode

Asymmetrical
Waveform

Asymmetrical
Waveform

Symmetrical
Waveform

CMPA

CMPA

CMPA

CMPB

CMPB

CMPB

.

.

..

. = compare events are fed to the Action Qualifier Sub-Module

. . .
. . .

. . .
...

. .
...

.

.

CMPC and CMPD available for use as event triggers

The above ePWM Compare Event Waveform diagram shows the compare matches which are fed
into the action qualifier. Notice that with the count up and countdown mode, there are matches
on the up-count and down-count.

ePWM Compare Sub-Module Registers
(lab file: EPwm.c)

Name Description Structure
CMPCTL Compare Control EPwmxRegs.CMPCTL.all =
CMPCTL2 Compare Control EPwmxRegs.CMPCTL2.all =
CMPA Compare A EPwmxRegs.CMPA =
CMPB Compare B EPwmxRegs.CMPB =
CMPC Compare C EPwmxRegs.CMPC =
CMPD Compare D EPwmxRegs.CMPD =

 ePWM

TMS320F2837xD Microcontroller Workshop - Control Peripherals 7 - 13

ePWM Compare Control Register
EPwmxRegs.CMPCTL

6 5 4 1 - 0

LOADBMODE LOADAMODEreserved

3 - 2

SHDWBMODE SHDWAMODE

CMPA and CMPB Operating Mode
0 = shadow mode;

double buffer w/ shadow register
1 = immediate mode;

shadow register not used

CMPA and CMPB Shadow Load Mode
00 = load on CTR = 0
01 = load on CTR = PRD
10 = load on CTR = 0 or PRD
11 = freeze (no load possible)

SHDWBFULL

15 - 10 9 8

SHDWAFULL

7

reservedreserved

CMPA and CMPB Shadow Full Flag
(bit automatically clears on load)
0 = shadow not full
1 = shadow full

ePWM Compare Control Register
EPwmxRegs.CMPCTL2

6 5 4 1 - 0

LOADDMODE LOADCMODEreserved

3 - 2

SHDWDMODE SHDWCMODE

CMPC and CMPD Operating Mode
0 = shadow mode;

double buffer w/ shadow register
1 = immediate mode;

shadow register not used

CMPC and CMPD Shadow Load Mode
00 = load on CTR = 0
01 = load on CTR = PRD
10 = load on CTR = 0 or PRD
11 = freeze (no load possible)

LOADDSYNC

15 - 14 13 - 12 11 - 10

LOADCSYNC

9 - 7

reservedreserved

CMPC and CMPD Shadow Load on Sync Event
00 = no sync – use LOADCMODE/LOADDMODE
01 = when sync occurs and LOADCMODE/LOADDMODE
10 = only when sync is received
11 = reserved

ePWM

7 - 14 TMS320F2837xD Microcontroller Workshop - Control Peripherals

ePWM Action Qualifier Sub-Module

ePWM Action Qualifier Sub-Module

16-Bit
Time-Base

Counter

Compare
Logic

Action
Qualifier

Dead
Band

PWM
Chopper

Trip
Zone

Period
Register

Clock
Prescaler

EPWMxA

EPWMxB

TZy

EPWMxSYNCI EPWMxSYNCO

TBCLK

Digital
Compare

Compare
Registers

Event Trigger

Compare
Registers

INPUT X-Bar
ePWM X-Bar

TZ1-TZ3

EPWMCLK

The action-qualifier submodule is the key element in the ePWM module which is responsible for
constructing and generating the switched PWM waveforms. It utilizes match events from the
time-base and counter-compare submodules for performing actions on the EPWMxA and
EPWMxB output pins. These first three submodules are the main blocks which are used for
generating a basic PWM waveform.

 ePWM

TMS320F2837xD Microcontroller Workshop - Control Peripherals 7 - 15

ePWM Action Qualifier Actions
for EPWMA and EPWMB

SW
↓

SW
↑

SW
X

SW
T

S/W
Force

Do Nothing

Clear Low

Set High

Toggle

EPWM
Output
Actions

Time-Base Counter equals:

Z
↓

Z
↑

Z
X

Z
T

Zero

CA
↓

CA
↑

CA
X

CA
T

CMPA

CB
↓

CB
↑

CB
X

CB
T

CMPB

P
↓

P
↑

P
X

P
T

TBPRD

T1
↓

T1
↑

T1
X

T1
T

T1

T2
↓

T2
↑

T2
X

T2
T

T2

Trigger Events:

Tx Event Sources = DCAEVT1, DCAEVT2, DCBEVT1, DCBEVT2, TZ1, TZ2, TZ3, EPWMxSYNCIN

The Action Qualifier actions are setting the pin high, clearing the pin low, toggling the pin, or do
nothing to the pin, based independently on count-up and count-down time-base match event.
The match events are when the time-base counter equals the period register value, the time-base
counter is zero, the time-base counter equals CMPA, the time-base counter equals CMPB, or a
Trigger event (T1 and T2) based on a comparator, trip, or sync signal. Note that zero and period
actions are fixed in time, whereas CMPA and CMPB actions are moveable in time by
programming their respective registers. Actions are configured independently for each output
using shadowed registers, and any or all events can be configured to generate actions on either
output. Also, the output pins can be forced to any action using software.

ePWM

7 - 16 TMS320F2837xD Microcontroller Workshop - Control Peripherals

ePWM Count Up Asymmetric Waveform
with Independent Modulation on EPWMA / B

Z
↑

P
X

CB
X

CA
↓

Z
↑

P
X

CB
X

CA
↓

Z
↑

P
X

Z
↑

P
X

CB
↓

CA
X

Z
↑

P
X

CB
↓

CA
X

Z
↑

P
X

TBCTR

TBPRD

.
. . .

EPWMA

EPWMB

.

. .

. .
CMPA

CMPB

The next few figures show how the setting of the action qualifier with the compare matches are
used to modulate the output pins. Notice that the output pins for EPWMA and EPWMB are
completely independent. In the example above, the EPWMA output is being set high on the zero
match and cleared low on the compare A match. The EPWMB output is being set high on the
zero match and cleared low on the compare B match.

ePWM Count Up Asymmetric Waveform
with Independent Modulation on EPWMA

CA
↑

CB
↓

CA
↑

CB
↓

Z
T

Z
T

Z
T

EPWMA

EPWMB

TBCTR

TBPRD

.
CMPB

CMPA

. . .

 ePWM

TMS320F2837xD Microcontroller Workshop - Control Peripherals 7 - 17

In the example above, the EPWMA output is being set high on the compare A match and being
cleared low on the compare B match, while the EPWMB output is being toggled on the zero
match.

ePWM Count Up-Down Symmetric
Waveform

with Independent Modulation on EPWMA / B

CA
↑

CA
↓

CA
↑

CA
↓

CB
↑

CB
↓

CB
↑

CB
↓

EPWMA

EPWMB

TBCTR

TBPRD
CMPB
CMPA

. . .

In the example above, there are different output actions on the up-count and down-count using a
single compare register. The EPWMA and EPWMB outputs are being set high on the compare A
and B up-count matches and cleared low on the compare A and B down-count matches.

ePWM Count Up-Down Symmetric
Waveform

with Independent Modulation on EPWMA

CA
↑

CB
↓

CA
↑

CB
↓

Z
↓

P
↑

Z
↓

P
↑

EPWMA

EPWMB

TBCTR

TBPRD

.
CMPB
CMPA

. . .

ePWM

7 - 18 TMS320F2837xD Microcontroller Workshop - Control Peripherals

And finally in the example above, again using different output actions on the up-count and down-
count, the EPWMA output is being set high on the compare A up-count match and being cleared
low on the compare B down-count match. The EPWMB output is being cleared low on the zero
match and being set high on the period match.

Name Description Structure
AQCTL AQ Control Register EPwmxRegs.AQCTL.all =
AQCTLA AQ Control Output A EPwmxRegs.AQCTLA.all =
AQCTLA2 AQ Control Output A EPwmxRegs.AQCTLA2.all =
AQCTLB AQ Control Output B EPwmxRegs.AQCTLB.all =
AQCTLB2 AQ Control Output B EPwmxRegs.AQCTLB2.all =
AQTSRCSEL AQ T Source Select EPwmxRegs.AQTSRCSEL =
AQSFRC AQ S/W Force EPwmxRegs.AQSFRC.all =
AQCSFRC AQ Cont. S/W Force EPwmxRegs.AQCSFRC.all =

ePWM Action Qualifier Sub-Module
Registers
(lab file: EPwm.c)

ePWM Action Qualifier Control Register
EPwmxRegs.CTL

4
reserved

9 - 8
LDAQB
MODE

LDAQB
SYNC

LDAQA
SYNC

LDAQA
MODE

SHDWAQ
AMODEreserved

6
SHDQAQ
BMODE reserved

1 - 03 - 25711 - 1015 - 12

Action Qualifier A / Action Qualifier B
Operating Mode
0 = shadow mode;

double buffer w/ shadow register
1 = immediate mode;

shadow register not used

Action Qualifier A / Action Qualifier B
Shadow Load Mode
00 = load on CTR = 0
01 = load on CTR = PRD
10 = load on CTR = 0 or PRD
11 = freeze (no load possible)

Action Qualifier A / Action Qualifier B
Shadow to Active Load on SYNC event
00 = only on LDAQxMODE
01 = on both LDAQxMODE and SYNC
10 = only when SYNC is received
11 = reserved

 ePWM

TMS320F2837xD Microcontroller Workshop - Control Peripherals 7 - 19

ePWM Action Qualifier Control Register
EPwmxRegs.AQCTLy (y = A or B)

ZROCBU CAD CAU PRD
1 - 0

CBD
15 - 12

reserved

3 - 25 - 47 - 69 - 811 - 10

00 = do nothing (action disabled)
01 = clear (low)
10 = set (high)
11 = toggle (low → high; high → low)

Action when
CTR = CMPB

on DOWN Count

Action when
CTR = CMPB
on UP Count

Action when
CTR = CMPA

on DOWN Count

Action when
CTR = CMPA
on UP Count

Action when
CTR = 0

Action when
CTR = PRD

ePWM Action Qualifier Control Register
EPwmxRegs.AQCTL2y (y = A or B)

T1UT2D T2U T1D
1 - 015 - 8

reserved

3 - 25 - 47 - 6

00 = do nothing (action disabled)
01 = clear (low)
10 = set (high)
11 = toggle (low → high; high → low)

Action when
Event occurs
on T1 in UP

Count

Action when
Event occurs

on T1 in
DOWN Count

Action when
Event occurs

on T2 in
DOWN Count

Action when
Event occurs
on T2 in UP

Count

ePWM

7 - 20 TMS320F2837xD Microcontroller Workshop - Control Peripherals

ePWM Action Qualifier Trigger Event
Source Select Register

EPwmxRegs.AQTSRCSEL

0000 = DCAEVT1
0001 = DCAEVT2
0010 = DCBEVT1
0011 = DCBEVT2
0100 = TZ1
0101 = TZ2
0110 = TZ3
0111 = EPWMxSYNCIN

T1SELT2SEL
3 - 015 - 8

reserved

7 - 4

T1 Event
Source Select

T2 Event
Source Select

ACTSFARLDCSF OTSFB ACTSFB OTSFA
1 - 015 - 8

reserved

24 - 357 - 6

AQSFRC Shadow Reload Options
00 = load on event CTR = 0
01 = load on event CTR = PRD
10 = load on event CTR = 0 or CTR = PRD
11 = load immediately (from active reg.)

One-Time S/W Force on Output B / A
0 = no action
1 = single s/w force event

Action on One-Time S/W Force B / A
00 = do nothing (action disabled)
01 = clear (low)
10 = set (high)
11 = toggle (low → high; high → low)

ePWM Action Qualifier S/W Force
Register

EPwmxRegs.AQSFRC

 ePWM

TMS320F2837xD Microcontroller Workshop - Control Peripherals 7 - 21

CSFACSFB
1 - 015 - 4

reserved

3 - 2

Continuous S/W Force on Output B / A
00 = forcing disabled
01 = force continuous low on output
10 = force continuous high on output
11 = forcing disabled

ePWM Action Qualifier Continuous S/W
Force Register

EPwmxRegs.AQCSFRC

ePWM

7 - 22 TMS320F2837xD Microcontroller Workshop - Control Peripherals

Asymmetric and Symmetric Waveform Generation
using the ePWM
PWM switching frequency:
The PWM carrier frequency is determined by the value contained in the time-base period register,
and the frequency of the clocking signal. The value needed in the period register is:

Asymmetric PWM: 1
periodtimer

period switchingregister period −







=

Symmetric PWM:
period)2(timer

period switchingregister period =

Notice that in the symmetric case, the period value is half that of the asymmetric case. This is
because for up/down counting, the actual timer period is twice that specified in the period register
(i.e. the timer counts up to the period register value, and then counts back down).

PWM resolution:
The PWM compare function resolution can be computed once the period register value is
determined. The largest power of 2 is determined that is less than (or close to) the period value.
As an example, if asymmetric was 1000, and symmetric was 500, then:

Asymmetric PWM: approx. 10 bit resolution since 210 = 1024 ≈ 1000

Symmetric PWM: approx. 9 bit resolution since 29 = 512 ≈ 500

PWM duty cycle:
Duty cycle calculations are simple provided one remembers that the PWM signal is initially
inactive during any particular timer period, and becomes active after the (first) compare match
occurs. The timer compare register should be loaded with the value as follows:

Asymmetric PWM: TxPR cycle)duty - (100% = TxCMPR ∗

Symmetric PWM: TxPR cycle)duty - (100% = TxCMPR ∗

Note that for symmetric PWM, the desired duty cycle is only achieved if the compare registers
contain the computed value for both the up-count compare and down-count compare portions of
the time-base period.

 ePWM

TMS320F2837xD Microcontroller Workshop - Control Peripherals 7 - 23

PWM Computation Example

Symmetric PWM Computation Example
 Determine TBPRD and CMPA for 100 kHz, 25% duty

symmetric PWM from a 100 MHz time base clock

CMPA = (100% - duty cycle)*TBPRD = 0.75*500 = 375

TBPRD = fTBCLK
fPWM 22

11
100 kHz
100 MHz.. = 500=

Counter

Compare

Period

PWM Pin

fTBCLK = 100 MHz

CA
↑

CA
↓

..
fPWM = 100 kHz
(TPWM = 10 ms)

(TTBCLK = 10 ns)

Asymmetric PWM Computation Example
 Determine TBPRD and CMPA for 100 kHz, 25% duty

asymmetric PWM from a 100 MHz time base clock

CMPA = (100% - duty cycle)*(TBPRD+1) - 1 = 0.75*(999+1) - 1 = 749

TBPRD =
fTBCLK
fPWM 100 kHz

100 MHz - 1 = 999- 1 =

Counter

Compare
Period

PWM Pin

P
↓

CA
↑

fTBCLK = 100 MHz

..
fPWM = 100 kHz
(TPWM = 10 ms)

(TTBCLK = 10 ns)

ePWM

7 - 24 TMS320F2837xD Microcontroller Workshop - Control Peripherals

ePWM Dead-Band Sub-Module

ePWM Dead-Band Sub-Module

16-Bit
Time-Base

Counter

Compare
Logic

Action
Qualifier

Dead
Band

PWM
Chopper

Trip
Zone

Period
Register

Clock
Prescaler

EPWMxA

EPWMxB

TZy

EPWMxSYNCI EPWMxSYNCO

TBCLK

Digital
Compare

Compare
Registers

Event Trigger

Compare
Registers

INPUT X-Bar
ePWM X-Bar

TZ1-TZ3

EPWMCLK

The dead-band sub-module provides a means to delay the switching of a gate signal, thereby
allowing time for gates to turn off and preventing a short circuit. This sub-module supports
independently programmable rising-edge and falling-edge delays with various options for
generating the appropriate signal outputs on EPWMxA and EPWMxB.

Motivation for Dead-Band

to power
switching
device

supply rail

gate signals are
complementary PWM

♦ Transistor gates turn on faster than they shut off
♦ Short circuit if both gates are on at same time!

 ePWM

TMS320F2837xD Microcontroller Workshop - Control Peripherals 7 - 25

To explain further, power-switching devices turn on faster than they shut off. This issue would
momentarily provide a path from supply rail to ground, giving us a short circuit. The dead-band
sub-module alleviates this issue.

Dead-band control provides a convenient means of combating current shoot-through problems in
a power converter. Shoot-through occurs when both the upper and lower gates in the same
phase of a power converter are open simultaneously. This condition shorts the power supply and
results in a large current draw. Shoot-through problems occur because transistors open faster
than they close, and because high-side and low-side power converter gates are typically switched
in a complimentary fashion. Although the duration of the shoot-through current path is finite
during PWM cycling, (i.e. the closing gate will eventually shut), even brief periods of a short circuit
condition can produce excessive heating and over stress in the power converter and power
supply.

ePWM Dead-Band Block Diagram

Rising
Edge
Delay

In Out
(14-bit

counter)

Falling
Edge
Delay

In Out
(14-bit

counter)

°
° °
0

1

°
° °
0

1

°
° °
0

1

°
° °
1

0
°

°

.

.

.

.
PWMxA

PWMxB

PWMxB

PWMxA
S1

S0

S2

S3 FED

RED

OUT-MODEPOLSEL

°
° °
0

1

°
° °
0

1

S4

S5

IN-MODE

HALFCYCLE

°
° °
0

1

°
° °
0

1

S6

S7

OUTSWAP

.
°
° °

1

0

S8

°
°°

0

1S8
DEDB-
MODE

.

.

Two basic approaches exist for controlling shoot-through: modify the transistors, or modify the
PWM gate signals controlling the transistors. In the first case, the opening time of the transistor
gate must be increased so that it (slightly) exceeds the closing time. One way to accomplish this
is by adding a cluster of passive components such as resistors and diodes in series with the
transistor gate, as shown in the next figure.

Shoot-through control via power circuit modification

The resistor acts to limit the current rise rate towards the gate during transistor opening, thus
increasing the opening time. When closing the transistor however, current flows unimpeded from
the gate via the by-pass diode and closing time is therefore not affected. While this passive

PWM
signal

R

by-pass diode

ePWM

7 - 26 TMS320F2837xD Microcontroller Workshop - Control Peripherals

approach offers an inexpensive solution that is independent of the control microprocessor, it is
imprecise, the component parameters must be individually tailored to the power converter, and it
cannot adapt to changing system conditions.

The second approach to shoot-through control separates transitions on complimentary PWM
signals with a fixed period of time. This is called dead-band. While it is possible to perform
software implementation of dead-band, the C28x offers on-chip hardware for this purpose that
requires no additional CPU overhead. Compared to the passive approach, dead-band offers
more precise control of gate timing requirements. In addition, the dead time is typically specified
with a single program variable that is easily changed for different power converters or adapted
on-line.

ePWM Dead-Band Sub-Module Registers
(lab file: EPwm.c)

Rising Edge Delay = TTBCLK x DBRED
Falling Edge Delay = TTBCLK x DBFED

Name Description Structure
DBCTL Dead-Band Control EPwmxRegs.DBCTL.all =
DBCTL2 Dead-Band Control 2 EPwmxRegs.DBCTL2.all =
DBRED 14-bit Rising Edge Delay EPwmxRegs.DBRED =
DBFED 14-bit Falling Edge Delay EPwmxRegs.DBFED =

 ePWM

TMS320F2837xD Microcontroller Workshop - Control Peripherals 7 - 27

ePWM Dead Band Control Registers

1 - 03 - 25 - 415
SHDW
DBFED
MODE

SHDW
DBRED
MODE

LOAD
RED

MODE

LOAD
FED

MODE
IN_

MODE
OUT_
MODE

POL
SEL

OUT
SWAP

DEDB_
MODE

HALF
CYCLE

7 - 69 - 8101113 - 1214
EPwmxRegs.DBCTL

1 - 0215 - 3
SHDW
DBCTL
MODE

LOAD
DBCTL
MODE

reserved

EPwmxRegs.DBCTL2

Shadow Load Mode
00 = load on CTR = 0
01 = load on CTR = PRD
10 = load on CTR = 0 or PRD
11 = freeze (no load possible)

Operating Mode
0 = shadow mode;

double buffer w/ shadow register
1 = immediate mode;

shadow register not used

S1 S0S3 S2S5 S4S7 S6S8

0 = full cycle clocking
(TBCLK rate)

1 = half cycle clocking
(TBCLK*2 rate)

ePWM Chopper Sub-Module

ePWM Chopper Sub-Module

16-Bit
Time-Base

Counter

Compare
Logic

Action
Qualifier

Dead
Band

PWM
Chopper

Trip
Zone

Period
Register

Clock
Prescaler

EPWMxA

EPWMxB

TZy

EPWMxSYNCI EPWMxSYNCO

TBCLK

Digital
Compare

Compare
Registers

Event Trigger

Compare
Registers

INPUT X-Bar
ePWM X-Bar

TZ1-TZ3

EPWMCLK

The PWM chopper submodule is used with pulse transformer-based gate drives to control the
power switching devices. This submodule modulates a high-frequency carrier signal with the
PWM waveform that is generated by the action-qualifier and dead-band submodules.

ePWM

7 - 28 TMS320F2837xD Microcontroller Workshop - Control Peripherals

Programmable options are available to support the magnetic properties and characteristics of the
transformer and associated circuitry.

Purpose of the PWM Chopper

Allows a high frequency carrier
signal to modulate the PWM
waveform generated by the Action
Qualifier and Dead-Band modules

Used with pulse transformer-based
gate drivers to control power
switching elements

Shown in the figure below, a high-frequency carrier signal is ANDed with the ePWM outputs.
Also, this circuit provides an option to include a larger, one-shot pulse width before the sustaining
pulses.

ePWM Chopper Waveform
EPWMxA

EPWMxB

CHPFREQ

EPWMxA

EPWMxB

OSHT

EPWMxA

Programmable
Pulse Width
(OSHTWTH)

Sustaining
Pulses

With One-Shot Pulse on EPWMxA and/or EPWMxB

 ePWM

TMS320F2837xD Microcontroller Workshop - Control Peripherals 7 - 29

ePWM Chopper Sub-Module Registers
(lab file: EPwm.c)

Name Description Structure
PCCTL PWM-Chopper Control EPwmxRegs.PCCTL.all =

ePWM Chopper Control Register
EPwmxRegs.PCCTL

CHPENCHPDUTY CHPFREQ OSHTWTH
015 - 11

reserved

4 - 17 - 510 - 8

Chopper Enable
0 = disable (bypass)
1 = enable

One-Shot Pulse Width
0000 = 1 x SYSCLKOUT/8 1000 = 9 x SYSCLKOUT/8
0001 = 2 x SYSCLKOUT/8 1001 = 10 x SYSCLKOUT/8
0010 = 3 x SYSCLKOUT/8 1010 = 11 x SYSCLKOUT/8
0011 = 4 x SYSCLKOUT/8 1011 = 12 x SYSCLKOUT/8
0100 = 5 x SYSCLKOUT/8 1100 = 13 x SYSCLKOUT/8
0101 = 6 x SYSCLKOUT/8 1101 = 14 x SYSCLKOUT/8
0110 = 7 x SYSCLKOUT/8 1110 = 15 x SYSCLKOUT/8
0111 = 8 x SYSCLKOUT/8 1111 = 16 x SYSCLKOUT/8

Chopper Clk Freq.
000 = SYSCLKOUT/8 ÷ 1
001 = SYSCLKOUT/8 ÷ 2
010 = SYSCLKOUT/8 ÷ 3
011 = SYSCLKOUT/8 ÷ 4
100 = SYSCLKOUT/8 ÷ 5
101 = SYSCLKOUT/8 ÷ 6
110 = SYSCLKOUT/8 ÷ 7
111 = SYSCLKOUT/8 ÷ 8

Chopper Clk Duty Cycle
000 = 1/8 (12.5%)
001 = 2/8 (25.0%)
010 = 3/8 (37.5%)
011 = 4/8 (50.0%)
100 = 5/8 (62.5%)
101 = 6/8 (75.0%)
110 = 7/8 (87.5%)
111 = reserved

ePWM

7 - 30 TMS320F2837xD Microcontroller Workshop - Control Peripherals

ePWM Trip-Zone and Digital Compare Sub-Modules
ePWM Trip-Zone and Digital Compare

Sub-Modules

16-Bit
Time-Base

Counter

Compare
Logic

Action
Qualifier

Dead
Band

PWM
Chopper

Trip
Zone

Period
Register

Clock
Prescaler

EPWMxA

EPWMxB

TZy

EPWMxSYNCI EPWMxSYNCO

TBCLK

Digital
Compare

Compare
Registers

Event Trigger

Compare
Registers

INPUT X-Bar
ePWM X-Bar

TZ1-TZ3

EPWMCLK

The trip zone and digital compare sub-modules provide a protection mechanism to protect the
output pins from abnormalities, such as over-voltage, over-current, and excessive temperature
rise.

Trip-Zone Features
 Trip-Zone has a fast, clock independent logic path to high-impedance

the EPWMxA/B output pins
 Interrupt latency may not protect hardware when responding to over

current conditions or short-circuits through ISR software
 Supports: #1) one-shot trip for major short circuits or over

current conditions
#2) cycle-by-cycle trip for current limiting operation

CPU
core P

W
M

O
U
T
P
U
T
S

EPWMxTZINT

TZ6
TZ5
TZ4

INPUT X-Bar

ePWM X-Bar Cycle-by-Cycle
Mode

One-Shot
Mode

EPWMxA

EPWMxB

Digital
Compare

CPU
SYSCTRL

eQEP1

EMUSTOP
CLOCKFAIL

EQEP1ERR

Over
Current
Sensors

TZ1 – TZ3

 ePWM

TMS320F2837xD Microcontroller Workshop - Control Peripherals 7 - 31

The trip-zone submodule utilizes a fast clock independent logic mechanism to quickly handle fault
conditions by forcing the EPWMxA and EPWMxB outputs to a safe state, such as high, low, or
high-impedance, thus avoiding any interrupt latency that may not protect the hardware when
responding to over current conditions or short circuits through ISR software. It supports one-shot
trips for major short circuits or over current conditions, and cycle-by-cycle trips for current limiting
operation. The trip-zone signals can be generated externally from any GPIO pin which is mapped
through the Input X-Bar (TZ1 – TZ3), internally from an inverted eQEP error signal (TZ4), system
clock failure (TZ5), or from an emulation stop output from the CPU (TZ6). Additionally, numerous
trip-zone source signals can be generated from the digital-compare subsystem.

The power drive protection is a safety feature that is provided for the safe operation of systems
such as power converters and motor drives. It can be used to inform the monitoring program of
motor drive abnormalities such as over-voltage, over-current, and excessive temperature rise. If
the power drive protection interrupt is unmasked, the PWM output pins will be put in a safe
immediately after the pin is driven low. An interrupt will also be generated.

Digital Compare Trip Inputs

GPIO
MUX

INPUT
X-BAR

ePWM
X-BAR

Digital
Compare

Sub-
Module

TRIPIN1 & TZ1
TRIPIN2 & TZ2
TRIPIN3 & TZ3

TRIPIN6
TRIPIN4
TRIPIN5
TRIPIN7
TRIPIN8
TRIPIN9

TRIPIN10
TRIPIN11
TRIPIN12

TRIPIN1 & TZ1
TRIPIN2 & TZ2
TRIPIN3 & TZ3

TRIPIN6
TRIPIN4
TRIPIN5
TRIPIN7
TRIPIN8
TRIPIN9

TRIPIN10
TRIPIN11
TRIPIN12

TRIP COMBO
DCAHTRIPSEL
DCALTRIPSEL
DCBHTRIPSEL
DCBLTRIPSEL

TRIPIN14 (ECCDBLERR)
TRIPIN15 (PIEERR)

TRIPIN15
TRIPIN14

The digital compare submodules receive their trip signals from the Input X-BAR and ePWM X-
BAR.

ePWM

7 - 32 TMS320F2837xD Microcontroller Workshop - Control Peripherals

The ePWM X-BAR is used to route various internal and external signals to the ePWM modules.
Eight trip signals from the ePWM X-BAR are routed to all of the ePWM modules.

ePWM X-Bar

EPWM/ECAP sync

ADCSOCAO

ADCSOCBO

ECAP1
ECAP2
ECAP3
ECAP4
ECAP5
ECAP6

ADCA
ADCB
ADCC
ADCD

All
ePWM

Modules

CMPSS1

CMPSS8

INPUT X-Bar

ePWM
X-Bar

SD1

SD2

TRIPIN4
TRIPIN5
TRIPIN7
TRIPIN8
TRIPIN9

TRIPIN10
TRIPIN11
TRIPIN12

INPUT1
INPUT2
INPUT3
INPUT4
INPUT5
INPUT6

EVT1 to EVT4
EVT1 to EVT4
EVT1 to EVT4
EVT1 to EVT4

ECAP1.OUT
ECAP2.OUT
ECAP3.OUT
ECAP4.OUT
ECAP5.OUT
ECAP6.OUT

ADCSOCA

ADCSOCB

EXTSYNCOUT

CTRIPH
CTRIPL

CTRIPL
CTRIPH

FLT1.COMPH
FLT1.COMPL

FLT4.COMPH
FLT4.COMPL

FLT1.COMPH
FLT1.COMPL

FLT4.COMPH
FLT4.COMPL

The ePWM X-BAR architecture block diagram shown below is replicated 8 times. The ePWM X-
BAR can select a single signal or logically OR up to 32 signals. The table in the figure defines the
various trip sources that can be multiplexed to the trip-zone and digital compare submodules.

0
0.0
0.1
0.2
0.3

1
1.0
1.1
1.2
1.3

31
31.0
31.1
31.2
31.3

TRIPINx

TRIPOUTPUTINV

TRIPxMUXENABLE

TRIPxMUX0TO15CFG.MUX0

TRIPxMUX0TO15CFG.MUX1

TRIPxMUX16TO31CFG.MUX31

ePWM X-Bar Architecture

MUX 0 1 2 3
16 SD1FLT1.COMPH SD1FLT1.COMPH_OR_COMPL
17 SD1FLT1.COMPL
18 SD1FLT2.COMPH SD1FLT2.COMPH_OR_COMPL
19 SD1FLT2.COMPL
20 SD1FLT3.COMPH SD1FLT3.COMPH_OR_COMPL
21 SD1FLT3.COMPL
22 SD1FLT4.COMPH SD1FLT4.COMPH_OR_COMPL
23 SD1FLT4.COMPL
24 SD2FLT1.COMPH SD2FLT1.COMPH_OR_COMPL
25 SD2FLT1.COMPL
26 SD2FLT2.COMPH SD2FLT2.COMPH_OR_COMPL
27 SD2FLT2.COMPL
28 SD2FLT3.COMPH SD2FLT3.COMPH_OR_COMPL
29 SD2FLT3.COMPL
30 SD2FLT4.COMPH SD2FLT4.COMPH_OR_COMPL
31 SD2FLT4.COMPL

MUX 0 1 2 3
0 CMPSS1.CTRIPH CMPSS1.CTRIPH_OR_CTRIPL ADCAEVT1 ECAP1.OUT
1 CMPSS1.CTRIPL INPUTXBAR1 ADCCEVT1
2 CMPSS2.CTRIPH CMPSS2.CTRIPH_OR_CTRIPL ADCAEVT2 ECAP2.OUT
3 CMPSS2.CTRIPL INPUTXBAR2 ADCCEVT2
4 CMPSS3.CTRIPH CMPSS3.CTRIPH_OR_CTRIPL ADCAEVT3 ECAP3.OUT
5 CMPSS3.CTRIPL INPUTXBAR3 ADCCEVT3
6 CMPSS4.CTRIPH CMPSS4.CTRIPH_OR_CTRIPL ADCAEVT4 ECAP4.OUT
7 CMPSS4.CTRIPL INPUTXBAR4 ADCCEVT4
8 CMPSS5.CTRIPH CMPSS5.CTRIPH_OR_CTRIPL ADCBEVT1 ECAP5.OUT
9 CMPSS5.CTRIPL INPUTXBAR5 ADCDEVT1

10 CMPSS6.CTRIPH CMPSS6.CTRIPH_OR_CTRIPL ADCBEVT2 ECAP6.OUT
11 CMPSS6.CTRIPL INPUTXBAR6 ADCDEVT2
12 CMPSS7.CTRIPH CMPSS7.CTRIPH_OR_CTRIPL ADCBEVT3
13 CMPSS7.CTRIPL ADCSOCA ADCDEVT3
14 CMPSS8.CTRIPH CMPSS8.CTRIPH_OR_CTRIPL ADCBEVT4 EXTSYNCOUT
15 CMPSS8.CTRIPL ADCSOCB ADCDEVT4

This block diagram is replicated 8 times

EPwmXbarRegs.register

Note: TRIPLOCK register locks the
configuration for the ePWM X-Bar

 ePWM

TMS320F2837xD Microcontroller Workshop - Control Peripherals 7 - 33

Purpose of the Digital Compare
Sub-Module

Generates ‘compare’ events that can:
 Trip the ePWM
Generate a Trip interrupt
 Sync the ePWM
Generate an ADC start of conversion

 Digital compare module inputs are:
 Input X-Bar
 ePWM X-Bar
 Trip-zone input pins

 A compare event is generated when one or more
of its selected inputs are either high or low

Optional ‘Blanking’ can be used to temporarily
disable the compare action in alignment with
PWM switching to eliminate noise effects

Digital Compare Sub-Module Signals

Digital Trip
Event A1
Compare

Digital Trip
Event A2
Compare

Digital Trip
Event B1
Compare

Digital Trip
Event B2
Compare

Generate PWM Sync
Time-Base Sub-Module

Generate SOCA
Event-Trigger Sub-Module

Trip PWMA Output

Generate Trip Interrupt

Trip-Zone Sub-Module

Generate PWM Sync
Time-Base Sub-Module

Generate SOCB
Event-Trigger Sub-Module

Trip PWMB Output

Generate Trip Interrupt

Trip-Zone Sub-Module

DCAH

DCAL

DCBH

DCBL

DCTRIPSEL TZDCSEL DCACTL / DCBCTL

DCAEVT1

DCAEVT2

DCBEVT1

DCBEVT2

blanking

blanking

TRIPIN1 & TZ1

TRIPIN2 & TZ2

TRIPIN3 & TZ3

TRIPIN4

TRIPIN12

TRIPIN15

TRIPIN14

TRIP COMBO

●
●
●

The digital-compare subsystem compares signals external to the ePWM module, such as a signal
from the CMPSS analog comparators, to directly generate PWM events or actions which are then
used by the trip-zone, time-base, and event-trigger submodules. These ‘compare’ events can trip
the ePWM module, generate a trip interrupt, sync the ePWM module, or generate an ADC start of

ePWM

7 - 34 TMS320F2837xD Microcontroller Workshop - Control Peripherals

conversion. A compare event is generated when one or more of its selected inputs are either
high or low. The signals can originate from any external GPIO pin which is mapped through the
Input X-Bar and from various internal peripherals which are mapped through the ePWM X-Bar.
Additionally, an optional ‘blanking’ function can be used to temporarily disable the compare action
in alignment with PWM switching to eliminate noise effects.

Digital Compare Events
 The user selects the input for each of

DCAH, DCAL, DCBH, DCBL
 Each A and B compare uses its

corresponding DCyH/L inputs (y = A or B)
 The user selects the signal state that

triggers each compare from the following
choices:

i. DCyH  low DCyL  don’t care

ii. DCyH  high DCyL  don’t care

iii. DCyL  low DCyH  don’t care

iv. DCyL  high DCyH  don’t care

v. DCyL  high DCyH  low

Name Description Structure
DCACTL DC A Control EPwmxRegs.DCACTL.all =
DCBCTL DC B Control EPwmxRegs.DCBCTL.all =
DCTRIPSEL DC Trip Select EPwmxRegs.DCTRIPSEL.all =
DCAHTRIPSEL AH OR Input Select EPWMxRegs.DCAHTRIPSEL.all =
DCALTRIPSEL AL OR Input Select EPwmxRegs.DCALTRIPSEL.all =
DCBHTRIPSEL BH OR Input Select EPwmxRegs.DCBHTRIPSEL.all =
DCBLTRIPSEL BL OR Input Select EPwmxRegs.DCBLTRIPSEL.all =
TZDCSEL Digital Compare EPwmxRegs.TZDCSEL.all =
TZCTL Trip-Zone Control EPwmxRegs.TZCTL.all =
TZSEL Trip-Zone Select EPwmxRegs.TZSEL.all =
TZEINT Enable Interrupt EPwmxRegs.TZEINT.all =

ePWM Digital Compare and Trip-Zone
Sub-Module Registers

(lab file: EPwm.c)

Refer to the Technical Reference Manual for a complete listing of registers

 ePWM

TMS320F2837xD Microcontroller Workshop - Control Peripherals 7 - 35

DCBLCOMPSEL
15 - 12 11 - 8

7 - 4 3 - 0

DCBHCOMPSEL

DCALCOMPSEL DCAHCOMPSEL

Digital Compare B
Low Input Source Select

Digital Compare B
High Input Source Select

Digital Compare A
Low Input Source Select

Digital Compare A
High Input Source Select

ePWM Digital Compare Trip Select
Register

EPwmxRegs.DCTRIPSEL

0000 = TRIPIN1 & TZ1 0100 = TRIPIN5 1000 = TRIPIN9 1100 = reserved

0001 = TRIPIN2 & TZ2 0101 = TRIPIN6 1001 = TRIPIN10 1101 = TRIPIN14

0010 = TRIPIN3 & TZ3 0110 = TRIPIN7 1010 = TRIPIN11 1110 = TRIPIN15

0011 = TRIPIN4 0111 = TRIPIN8 1011 = TRIPIN12 1111 = TRIP Combo

2 - 015 - 12

reserved

5 - 3
DCBEVT2 DCBEVT1 DCAEVT2 DCAEVT1

8 - 611 - 9

000 = event disable
001 = DCyH  low, DCyL  don’t care
010 = DCyH  high, DCyL  don’t care
011 = DCyL  low, DCyH  don’t care
100 = DCyL  high, DCyH  don’t care
101 = DCyL  high, DCyH  low
11x = reserved

where y = A or B

Digital Compare Output A
Event 2/1 Select

Digital Compare Output B
Event 2/1 Select

ePWM Trip-Zone Digital Compare Event
Select Register

EPwmxRegs.TZDCSEL

ePWM

7 - 36 TMS320F2837xD Microcontroller Workshop - Control Peripherals

ePWM Digital Compare Control Register
EPwmxRegs.DCyCTL (y = A or B)

9 8 2 0
reserved

17 - 415 - 10
EVT1FRC
SYNCSEL

EVT2FRC
SYNCSEL

EVT2SRC
SEL

EVT1SRC
SEL

EVT1
SYNCE

EVT1
SOCEreserved

3

DCyEVT1 Source
Signal Select
0 = DCyEVT1 signal
1 = DCEVTFILT signal

DCyEVT2 Source
Signal Select
0 = DCyEVT2 signal
1 = DCEVTFILT signal

DCyEVT1 Source Force
Sync Signal Select
0 = synchronous
1 = asynchronous

DCyEVT1 SOC
Generation
0 = disable
1 = enable

DCyEVT1 SYNC
Generation
0 = disable
1 = enable

DCyEVT2 Source Force
Sync Signal Select
0 = synchronous
1 = asynchronous

ePWM Trip-Zone Control Register
EPwmxRegs.TZCTL

TZATZB
1 - 015 - 12

reserved

3 - 2

TZ1 to TZ6 Action on
EPWMxB / EPWMxA

DCBEVT2 DCBEVT1 DCAEVT2 DCAEVT1
5 - 47 - 69 - 811 - 10

00 = high impedance
01 = force high
10 = force low
11 = do nothing (disable)

Digital Compare Output
Event 2/1 Action

on EPWMxA

Digital Compare Output
Event 2/1 Action

on EPWMxB

 ePWM

TMS320F2837xD Microcontroller Workshop - Control Peripherals 7 - 37

ePWM Trip-Zone Select Register
EPwmxRegs.TZSEL

OSHT1OSHT5 OSHT4 OSHT3 OSHT2
8

OSHT6
15 910111213

CBC1CBC5 CBC4 CBC3 CBC2
0

CBC6
7 12345

Cycle-by-Cycle Trip Zone
(event cleared when CTR = 0;
i.e. cleared every PWM cycle)
0 = disable as trip source
1 = enable as trip source

One-Shot Trip Zone
(event only cleared under S/W
control; remains latched)
0 = disable as trip source
1 = enable as trip source

14

6

DCBEVT1

DCBEVT2 DCAEVT2

DCAEVT1

OST CBCreserved
15 - 7 02 1

reserved

Cycle-by-Cycle
Interrupt Enable
0 = disable
1 = enable

One-Shot
Interrupt Enable
0 = disable
1 = enable

DCBEVT2 DCBEVT1 DCAEVT2 DCAEVT1

Digital Compare
Output B Event 2/1
Interrupt Enable
0 = disable
1 = enable

3456

Digital Compare
Output A Event 2/1
Interrupt Enable
0 = disable
1 = enable

ePWM Trip-Zone Enable Interrupt
Register

EPwmxRegs.TZEINT

ePWM

7 - 38 TMS320F2837xD Microcontroller Workshop - Control Peripherals

ePWM Event-Trigger Sub-Module

ePWM Event-Trigger Sub-Module

16-Bit
Time-Base

Counter

Compare
Logic

Action
Qualifier

Dead
Band

PWM
Chopper

Trip
Zone

Period
Register

Clock
Prescaler

EPWMxA

EPWMxB

TZy

EPWMxSYNCI EPWMxSYNCO

TBCLK

Digital
Compare

Compare
Registers

Event Trigger

Compare
Registers

INPUT X-Bar
ePWM X-Bar

TZ1-TZ3

EPWMCLK

The event-trigger submodule manages the events generated by the time-base, counter-compare,
and digital-compare submodules for generating an interrupt to the CPU and/or a start of
conversion pulse to the ADC when a selected event occurs.

ePWM Event-Trigger Interrupts and SOC
TBCTR
TBPRD
CMPD

CMPA

CTR = 0
CTR = PRD

CTRU = CMPA
CTRD = CMPA
CTRU = CMPB
CTRD = CMPB

CTR = 0 or PRD

CMPC
CMPB

CTRU = CMPC
CTRD = CMPC
CTRU = CMPD
CTRD = CMPD

.

 ePWM

TMS320F2837xD Microcontroller Workshop - Control Peripherals 7 - 39

These event triggers can occur when the time-base counter equals zero, period, zero or period,
the up or down count match of a compare register. Recall that the digital-compare subsystem
can also generate an ADC start of conversion based on one or more compare events. Notice
counter up and down are independent and separate.

Name Description Structure
ETSEL Event-Trigger Selection EPwmxRegs.ETSEL.all =
ETPS Event-Trigger Pre-Scale EPwmxRegs.ETPS.all =
ETFLG Event-Trigger Flag EPwmxRegs.ETFLG.all =
ETCLR Event-Trigger Clear EPwmxRegs.ETCLR.all =
ETFRC Event-Trigger Force EPwmxRegs.ETFRC.all =

ePWM Event-Trigger Sub-Module
Registers
(lab file: EPwm.c)

Refer to the Technical Reference Manual for a complete listing of registers

The event-trigger submodule also incorporates pre-scaling logic to issue an interrupt request or
ADC start of conversion at every event or up to every fifteenth event.

ePWM Event-Trigger Selection Register
EPwmxRegs.ETSEL

15 11 7 - 4 2 - 0

INTEN INTSELreserved

3

SOCBSEL SOCASELSOCAENSOCBEN

10 - 814 - 12

Enable SOCB / A
0 = disable
1 = enable

EPWMxSOCB / A Select
000 = DCBEVT1 / DCAEVT1
001 = CTR = 0
010 = CTR = PRD
011 = CTR = 0 or PRD
100 = CTRU = CMPA
101 = CTRD = CMPA
110 = CTRU = CMPB
111 = CTRD = CMPB

Enable EPWMxINT
0 = disable
1 = enable

EPWMxINT Select
000 = reserved
001 = CTR = 0
010 = CTR = PRD
011 = CTR = 0 or PRD
100 = CTRU = CMPA
101 = CTRD = CMPA
110 = CTRU = CMPB
111 = CTRD = CMPB

ePWM

7 - 40 TMS320F2837xD Microcontroller Workshop - Control Peripherals

High Resolution PWM (HRPWM)

High-Resolution PWM (HRPWM)

 Significantly increases the resolution of conventionally derived digital PWM
 Uses 8-bit extensions to Compare registers (CMPxHR), Period register

(TBPRDHR) and Phase register (TBPHSHR) for edge positioning control
 Typically used when PWM resolution falls below ~9-10 bits which occurs at

frequencies greater than ~200 kHz (with system clock of 100 MHz)
 Not all ePWM outputs support HRPWM feature (see device datasheet)

PWM Period

Device Clock
(i.e. 100 MHz)

Regular
PWM Step
(i.e. 10 ns)

HRPWM
Micro Step (~150 ps)

HRPWM divides a clock
cycle into smaller steps

called Micro Steps
(Step Size ~= 150 ps)

ms ms ms ms ms ms

Calibration Logic

Calibration Logic tracks the
number of Micro Steps per

clock to account for
variations caused by
Temp/Volt/Process

(fixed Time-Base/2)

The ePWM module is capable of significantly increase its time resolution capabilities over the
standard conventionally derived digital PWM. This is accomplished by adding 8-bit extensions to
the counter compare register (CMPxHR), period register (TBPRDHR), and phase register
(TBPHSHR), providing a finer time granularity for edge positioning control. This is known as
high-resolution PWM (HRPWM) and it is based on micro edge positioner (MEP) technology. The
MEP logic is capable of positioning an edge very finely by sub-dividing one coarse system clock
of the conventional PWM generator with time step accuracy on the order of 150 picoseconds. A
self-checking software diagnostics mode is used to determine if the MEP logic is running
optimally, under all operating conditions such as for variations caused by temperature, voltage,
and process. HRPWM is typically used when the PWM resolution falls below approximately 9 or
10 bits which occurs at frequencies greater than approximately 200 kHz with an EPWMCLK of
100 MHz.

 eCAP

TMS320F2837xD Microcontroller Workshop - Control Peripherals 7 - 41

eCAP

Capture Module (eCAP)

 The eCAP module timestamps transitions on a
capture input pin
Can be used to measure the time width of a pulse

 Auxiliary PWM generation

Timer

Timestamp
Values

Trigger

pin

t1
t2

The capture units allow time-based logging of external signal transitions. It is used to accurately
time external events by timestamping transitions on the capture input pin. It can be used to
measure the speed of a rotating machine, determine the elapsed time between pulses, calculate
the period and duty cycle of a pulse train signal, and decode current/voltage measurements
derived from duty cycle encoded current/voltage sensors.

Capture units can be configured to trigger an A/D conversion that is synchronized with an
external event. There are several potential advantages to using the capture for this function over
the ADCSOC pin associated with the ADC module. First, the ADCSOC pin is level triggered, and
therefore only low to high external signal transitions can start a conversion. The capture unit
does not suffer from this limitation since it is edge triggered and can be configured to start a
conversion on either rising edges or falling edges. Second, if the ADCSOC pin is held high
longer than one conversion period, a second conversion will be immediately initiated upon
completion of the first. This unwanted second conversion could still be in progress when a
desired conversion is needed. In addition, if the end-of-conversion ADC interrupt is enabled, this
second conversion will trigger an unwanted interrupt upon its completion. These two problems
are not a concern with the capture unit. Finally, the capture unit can send an interrupt request to
the CPU while it simultaneously initiates the A/D conversion. This can yield a time savings when
computations are driven by an external event since the interrupt allows preliminary calculations to
begin at the start-of-conversion, rather than at the end-of-conversion using the ADC end-of-
conversion interrupt. The ADCSOC pin does not offer a start-of-conversion interrupt. Rather,
polling of the ADCSOC bit in the control register would need to be performed to trap the
externally initiated start of conversion.

eCAP

7 - 42 TMS320F2837xD Microcontroller Workshop - Control Peripherals

eCAP Module Block Diagram – Capture Mode

32-Bit
Time-Stamp

Counter

Capture 1
Register

Event
Prescale

Polarity
Select 1

Polarity
Select 2

Polarity
Select 3

Polarity
Select 4

Capture 2
Register

Capture 3
Register

Capture 4
Register

Ev
en

t L
og

ic

ECAPx
pin

CAP1POL

CAP2POL

CAP3POL

CAP4POL

PRESCALE

CPUx.SYSCLK

The eCAP module captures signal transitions on a dedicated input pin and sequentially loads a
32-bit time-base counter value in up to four 32-bit time-stamp capture registers (CAP1 – CAP4).
By using a 32-bit counter, rollover is minimized. Independent edge polarity can be configured as
rising or falling edge, and the module can be run in either one-shot mode for up to four time-
stamp events or continuous mode to capture up to four time-stamp events operating as a circular
buffer. The capture input pin is routed through the Input X-Bar, allowing any GPIO pin on the
device to be used as the input. Also, the input capture signal can be pre-scaled and interrupts
can be generated on any of the four capture events. The time-base counter can be run in either
absolute or difference (delta) time-stamp mode. In absolute mode the counter runs continuously,
whereas in difference mode the counter resets on each capture

 eCAP

TMS320F2837xD Microcontroller Workshop - Control Peripherals 7 - 43

eCAP Module Block Diagram – APWM Mode

32-Bit
Time-Stamp

Counter

Period
Register

(CAP3)
Period

Register
(CAP1)

Compare
Register

(CAP4)

Compare
Register
(CAP2)

PWM
Compare

Logic ECAP
pin

Shadowed

Shadowed

immediate
mode

shadow
mode

shadow
mode

immediate
mode

CPUx.SYSCLK

If the module is not used in capture mode, the eCAP module can be configured to operate as a
single channel asymmetrical PWM module (i.e. time-base counter operates in count-up mode).

eCAP Module Registers
(lab file: ECap.c)

Name Description Structure
ECCTL1 Capture Control 1 ECapxRegs.ECCTL1.all =
ECCTL2 Capture Control 2 ECapxRegs.ECCTL2.all =
TSCTR Time-Stamp Counter ECapxRegs.TSCTR =
CTRPHS Counter Phase Offset ECapxRegs.CTRPHS =
CAP1 Capture 1 ECapxRegs.CAP1 =
CAP2 Capture 2 ECapxRegs.CAP2 =
CAP3 Capture 3 ECapxRegs.CAP3 =
CAP4 Capture 4 ECapxRegs.CAP4 =
ECEINT Enable Interrupt ECapxRegs.ECEINT.all =
ECFLG Interrupt Flag ECapxRegs.ECFLG.all =
ECCLR Interrupt Clear ECapxRegs.ECCLR.all =
ECFRC Interrupt Force ECapxRegs.ECFRC.all =

eCAP

7 - 44 TMS320F2837xD Microcontroller Workshop - Control Peripherals

eCAP Control Register 1
ECapxRegs.ECCTL1

CAPLDENFREE_SOFT PRESCALE
15 - 14 13 - 9 8

Upper Register:

Emulation Control
00 = TSCTR stops immediately
01 = TSCTR runs until equals 0
1X = free run (do not stop)

Event Filter Prescale Counter
00000 = divide by 1 (bypass)
00001 = divide by 2
00010 = divide by 4
00011 = divide by 6
00100 = divide by 8

11110 = divide by 60
11111 = divide by 62

CAP1 – 4 Load
on Capture Event
0 = disable
1 = enable

eCAP Control Register 1
ECapxRegs.ECCTL1

Lower Register:

CTRRST4 CAP4POL
7 3 02

CTRRST3 CAP3POL CTRRST2 CAP2POL CTRRST1 CAP1POL
1456

Counter Reset on Capture Event
0 = no reset (absolute time stamp mode)
1 = reset after capture (difference mode)

Capture Event Polarity
0 = trigger on rising edge
1 = trigger on falling edge

 eCAP

TMS320F2837xD Microcontroller Workshop - Control Peripherals 7 - 45

eCAP Control Register 2
ECapxRegs.ECCTL2

Upper Register:

SWSYNCAPWMPOL CAP_APWM

10 815 - 11

reserved

9

APWM Output Polarity
(valid only in APWM mode)
0 = active high output
1 = active low output

Capture / APWM mode
0 = capture mode
1 = APWM mode

Software Force
Counter Synchronization
0 = no effect
1 = TSCTR load of current

module and other modules
if SYNCO_SEL bits = 00

eCAP Control Register 2
ECapxRegs.ECCTL2

Lower Register:

SYNCO_SEL SYNCI_EN

7 - 6 3 02 - 1

TSCTRSTOP REARM STOP_WRAP CONT_ONESHT

45

Sync-Out Select
00 = sync-in to sync-out
01 = CTR = PRD event

generates sync-out
1X = disable

Counter Sync-In
0 = disable
1 = enable

Time Stamp
Counter Stop
0 = stop
1 = run

Re-arm
(capture mode only)
0 = no effect
1 = arm sequence

Stop Value for One-Shot Mode/
Wrap Value for Continuous Mode
(capture mode only)
00 = stop/wrap after capture event 1
01 = stop/wrap after capture event 2
10 = stop/wrap after capture event 3
11 = stop/wrap after capture event 4

Continuous/One-Shot
(capture mode only)
0 = continuous mode
1 = one-shot mode

eCAP

7 - 46 TMS320F2837xD Microcontroller Workshop - Control Peripherals

eCAP Interrupt Enable Register
ECapxRegs.ECEINT

CTR=CMP CTR=PRD
7 3 02

CTROVF CEVT4 CEVT3 CEVT2 CEVT1
1456

reserved

15 - 8

reserved

0 = disable as interrupt source
1 = enable as interrupt source

CTR = CMP
Interrupt Enable

CTR = PRD
Interrupt Enable

CTR = Overflow
Interrupt Enable

Capture Event 3
Interrupt Enable

Capture Event 1
Interrupt Enable

Capture Event 4
Interrupt Enable

Capture Event 2
Interrupt Enable

The capture unit interrupts offer immediate CPU notification of externally captured events. In
situations where this is not required, the interrupts can be masked and flag testing/polling can be
used instead. This offers increased flexibility for resource management. For example, consider a
servo application where a capture unit is being used for low-speed velocity estimation via a
pulsing sensor. The velocity estimate is not used until the next control law calculation is made,
which is driven in real-time using a timer interrupt. Upon entering the timer interrupt service
routine, software can test the capture interrupt flag bit. If sufficient servo motion has occurred
since the last control law calculation, the capture interrupt flag will be set and software can
proceed to compute a new velocity estimate. If the flag is not set, then sufficient motion has not
occurred and some alternate action would be taken for updating the velocity estimate. As a
second example, consider the case where two successive captures are needed before a
computation proceeds (e.g. measuring the width of a pulse). If the width of the pulse is needed
as soon as the pulse ends, then the capture interrupt is the best option. However, the capture
interrupt will occur after each of the two captures, the first of which will waste a small number of
cycles while the CPU is interrupted and then determines that it is indeed only the first capture. If
the width of the pulse is not needed as soon as the pulse ends, the CPU can check, as needed,
the capture registers to see if two captures have occurred, and proceed from there.

 eQEP

TMS320F2837xD Microcontroller Workshop - Control Peripherals 7 - 47

eQEP

What is an Incremental Quadrature
Encoder?

A digital (angular) position sensor

slots spaced θ deg. apart

photo sensors spaced θ/4 deg. apart

light source (LED)

shaft rotation

Ch. A

Ch. B

Quadrature Output from Photo Sensors

θ

θ/4

Incremental Optical Encoder

The eQEP module interfaces with a linear or rotary incremental encoder for determining position,
direction, and speed information from a rotating machine that is typically found in high-
performance motion and position-control systems.

How is Position Determined from
Quadrature Signals?

Ch. A

Ch. B

(00) (11)
(10) (01)(A,B) =

00

01

11

10

Quadrature Decoder
State Machine

increment
counter

decrement
counter

Position resolution is θ/4 degrees

Illegal
Transitions;

generate
phase error

interrupt

eQEP

7 - 48 TMS320F2837xD Microcontroller Workshop - Control Peripherals

A quadrature decoder state machine is used to determine position from two quadrature signals.

eQEP Module Block Diagram

Quadrature
Decoder

EQEPxA/XCLK

EQEPxB/XDIR

EQEPxI

EQEPxS

Position/Counter
Compare

Quadrature
Capture

32-Bit Unit
Time-Base

QEP
Watchdog

Generate the direction and
clock for the position counter
in quadrature count modeGenerate a sync output

and/or interrupt on a
position compare match

Measure the elapsed time
between the unit position events;
used for low speed measurement

Generate periodic
interrupts for velocity
calculations

Monitors the quadrature
clock to indicate proper
operation of the motion
control system

Quadrature -
clock mode

Direction -
count mode

CPUx.SYSCLK

The inputs include two pins (QEPA and QEPB) for quadrature-clock mode or direction-count
mode, an index pin (QEPI), and a strobe pin (QEPS). These pins are configured using the GPIO
multiplexer and need to be enabled for synchronous input. In quadrature-clock mode, two square
wave signals from a position encoder are inputs to QEPA and QEPB which are 90 electrical
degrees out of phase. This phase relationship is used to determine the direction of rotation. If
the position encoder provides direction and clock outputs, instead of quadrature outputs, then
direction-count mode can be used. QEPA input will provide the clock signal and QEPB input will
have the direction information. The QEPI index signal occurs once per revolution and can be
used to indicate an absolute start position from which position information is incrementally
encoded using quadrature pulses. The QEPS strobe signal can be connected to a sensor or limit
switch to indicate that a defined position has been reached.

 eQEP

TMS320F2837xD Microcontroller Workshop - Control Peripherals 7 - 49

eQEP Module Connections

Ch. A

Ch. B

Index
Quadrature

Decoder

EQEPxA/XCLK

EQEPxB/XDIR

EQEPxI

EQEPxS

Position/Counter
Compare

Quadrature
Capture

32-Bit Unit
Time-Base

QEP
Watchdog

Strobe
from homing sensorCPUx.SYSCLK

The above figure shows a summary of the connections to the eQEP module.

Lab 7: Control Peripherals

7 - 50 TMS320F2837xD Microcontroller Workshop - Control Peripherals

Lab 7: Control Peripherals
 Objective

The objective of this lab exercise is to become familiar with the programming and operation of the
control peripherals and their interrupts. ePWM1A will be setup to generate a 2 kHz, 25% duty
cycle symmetrical PWM waveform. The waveform will then be sampled with the on-chip analog-
to-digital converter and displayed using the graphing feature of Code Composer Studio. Next,
eCAP1 will be setup to detect the rising and falling edges of the waveform. This information will
be used to determine the width of the pulse and duty cycle of the waveform. The results of this
step will be viewed numerically in a memory window.

Lab 7: Control Peripherals

ADC
RESULT0

...

data
memoryCPU copies

result to
buffer during
ADC ISR

ePWM2

jumper
wire

Capture 1 Register
ADC-
INA0

TB Counter
Compare

Action Qualifier

ePWM1

eCAP1

Capture 2 Register

Capture 3 Register

Capture 4 Register
View ADC
buffer PWM
samples

Code Composer
Studio

ePWM2 triggering
ADC on period match
using SOCA trigger every
20 µs (50 kHz)

 Procedure

Open the Project
1. A project named Lab7 has been created for this lab exercise. Open the project by

clicking on Project  Import CCS Projects. The “Import CCS Eclipse Projects”
window will open then click Browse… next to the “Select search-directory” box. Navigate
to: C:\C28x\Labs\Lab7\cpu01 and click OK. Then click Finish to import the project.
All build options have been configured the same as the previous lab exercise. The files
used in this lab exercise are:

 Lab 7: Control Peripherals

TMS320F2837xD Microcontroller Workshop - Control Peripherals 7 - 51

Adc.c Gpio.c
CodeStartBranch.asm Lab_5_6_7.cmd
Dac.c Main_7.c
DefaultIsr_7.c PieCtrl.c
DelayUs.asm PieVect.c
ECap.c SineTable.c
EPwm.c SysCtrl.c
F2837xD_Adc.c Watchdog.c
F2837xD_GlobalVariableDefs.c Xbar.c
F2837xD_Headers_nonBIOS_cpu1.cmd

Note: The ECap.c file will be added and used with eCAP1 to detect the rising and falling
edges of the waveform in the second part of this lab exercise.

Setup Shared I/O and ePWM1
2. Edit Gpio.c and adjust the shared I/O pin in GPIO0 for the PWM1A function.

3. In EPwm.c, setup ePWM1 to implement the PWM waveform as described in the objective
for this lab exercise. The following registers need to be modified: TBCTL (set clock
prescales to divide-by-1, no software force, sync and phase disabled), TBPRD, CMPA,
CMPCTL (load on 0 or PRD), and AQCTLA (set on up count and clear on down count for
output A). Software force, deadband, PWM chopper and trip action has been disabled.
(Hint – notice the last steps enable the timer count mode and enable the clock to the
ePWM module). Directly make use of the global variable names for the TBPRD and
CMPA values which have been set using #define in the beginning of Lab.h file. Within
the Project Explorer window, the Lab.h file is located in the include folder under
/Lab_common/include. (As a challenge, you could calculate the values for TBPRD and
CMPA). Notice that ePWM2 has been initialized earlier in the code for the ADC lab
exercise. Save your work.

Build and Load
4. Click the “Build” button and watch the tools run in the Console window. Check for

errors in the Problems window.

5. Click the “Debug” button (green bug). A Launching Debug Session window will open.
Select only CPU1 to load the program on (i.e. uncheck CPU2), and then click OK. Then
the CCS Debug perspective view should open, the program will load automatically, and
you should now be at the start of main(). If the device has been power cycled since the
last lab exercise, be sure to configure the boot mode to EMU_BOOT_SARAM using the
Scripts menu.

Run the Code – PWM Waveform
6. Using a jumper wire, connect the PWM1A (header J4, pin #40) to ADCINA0 (header J3,

pin #30) on the LaunchPad. Refer to the following diagram for the pins that need to be
connected.

Lab 7: Control Peripherals

7 - 52 TMS320F2837xD Microcontroller Workshop - Control Peripherals

7. Open a memory browser to view some of the contents of the ADC results buffer. The
address label for the ADC results buffer is AdcBuf (type &AdcBuf) in the “Data” memory
page. We will be running our code in real-time mode, and we will need to have the
memory window continuously refresh.

8. Run the code (real-time mode) using the Script function: Scripts  Realtime
Emulation Control  Run_Realtime_with_Reset. Watch the window update.
Verify that the ADC result buffer contains the updated values.

9. Open and setup a graph to plot a 50-point window of the ADC results buffer.
Click: Tools  Graph  Single Time and set the following values:

Acquisition Buffer Size 50

DSP Data Type 16-bit unsigned integer

Sampling Rate (Hz) 50000

Start Address AdcBuf

Display Data Size 50

Time Display Unit ms

Select OK to save the graph options.

10. The graphical display should show the generated 2 kHz, 25% duty cycle symmetric PWM
waveform. The period of a 2 kHz signal is 500 ms. You can confirm this by measuring the
period of the waveform using the “measurement marker mode” graph feature. Disable
continuous refresh for the graph before taking the measurements. In the graph window
toolbar, left-click on the ruler icon with the red arrow. Note when you hover your mouse
over the icon, it will show “Toggle Measurement Marker Mode”. Move the mouse to
the first measurement position and left-click. Again, left-click on the Toggle
Measurement Marker Mode icon. Move the mouse to the second measurement
position and left-click. The graph will automatically calculate the difference between the
two values taken over a complete waveform period. When done, clear the measurement
points by right-clicking on the graph and select Remove All Measurement Marks.
Then enable continuous refresh for the graph.

Frequency Domain Graphing Feature of Code Composer Studio
11. Code Composer Studio also has the ability to make frequency domain plots. It does this

by using the PC to perform a Fast Fourier Transform (FFT) of the DSP data. Let's make

 Lab 7: Control Peripherals

TMS320F2837xD Microcontroller Workshop - Control Peripherals 7 - 53

a frequency domain plot of the contents in the ADC results buffer (i.e. the PWM
waveform).

Click: Tools  Graph  FFT Magnitude and set the following values:

Acquisition Buffer Size 50

DSP Data Type 16-bit unsigned integer

Sampling Rate (Hz) 50000

Start Address AdcBuf

Data Plot Style Bar

FFT Order 10

Select OK to save the graph options.

12. On the plot window, hold the mouse left-click key and move the marker line to observe
the frequencies of the different magnitude peaks. Do the peaks occur at the expected
frequencies?

13. Fully halt the CPU (real-time mode) by using the Script function: Scripts 
Realtime Emulation Control  Full_Halt.

Setup eCAP1 to Measure Width of Pulse
The first part of this lab exercise generated a 2 kHz, 25% duty cycle symmetric PWM
waveform which was sampled with the on-chip analog-to-digital converter and displayed
using the graphing feature of Code Composer Studio. Next, eCAP1 will be setup to detect
the rising and falling edges of the waveform. This information will be used to determine the
period and duty cycle of the waveform. The results of this step will be viewed numerically in
a memory window and can be compared to the results obtained using the graphing features
of Code Composer Studio.

14. Add (copy) ECap.c to the project from C:\C28x\Labs\Lab7\source.

15. In Main_7.c, add code to call the InitECap()function. There are no passed
parameters or return values, so the call code is simply:

InitECap();

16. Edit Xbar.c and adjust the input selection register INPUT7SELECT for GPIO24 (header
J4, pin #34) to feed the eCAP1 function. Simply set the register to 24.

17. Open and inspect the eCAP1 interrupt service routine (ECAP1_INT_ISR) in the file
DefaultIsr_7.c. Notice that PwmDuty is calculated by CAP2 – CAP1 (rising to falling
edge) and that PwmPeriod is calculated by CAP3 – CAP1 (rising to rising edge).

18. In ECap.c, setup eCAP1 to calculate PWM_duty and PWM_period. The following
registers need to be modified: ECCTL2 (continuous mode, re-arm disable, and sync
disable), ECCTL1 (set prescale to divide-by-1, configure capture event polarity without
reseting the counter), and ECEINT (enable desired eCAP interrupt).

19. Using the “PIE Interrupt Assignment Table” find the location for the eCAP1 interrupt
“ECAP1_INT” and fill in the following information:

 PIE group #: # within group:

Lab 7: Control Peripherals

7 - 54 TMS320F2837xD Microcontroller Workshop - Control Peripherals

This information will be used in the next step.

20. Modify the end of ECap.c to do the following:
- Enable the “ECAP1” interrupt in the PIE (Hint: use the PieCtrlRegs structure)
- Enable the appropriate core interrupt in the IER register

Build and Load
21. Save all changes to the files and build the project by clicking Project  Build

Project, or by clicking on the “Build” button if you have added it to the tool bar. Select
Yes to “Reload the program automatically”.

Run the Code – Pulse Width Measurement
22. Using a jumper wire, connect the PWM1A (header J4, pin #40) to ECAP1 (header J4, pin

#34, feed from the Input X-bar using GPIO24) on the LaunchPad. Refer to the
following diagram for the pins that need to be connected.

23. Open a memory browser to view the address label PwmPeriod. (Type &PwmPeriod in
the address box). The address label PwmDuty (address &PwmDuty) should appear in
the same memory browser window. Scroll the window up, if needed.

24. Set the memory browser properties format to “32-Bit UnSigned Int”. We will be running
our code in real-time mode, and we will need to have the memory browser continuously
refresh.

25. Run the code (real-time mode) by using the Script function: Scripts  Realtime
Emulation Control  Run_Realtime_with_Reset. Notice the values for
PwmDuty and PwmPeriod.

26. Fully halt the CPU (real-time mode) by using the Script function: Scripts 
Realtime Emulation Control  Full_Halt.

Questions:

• How do the captured values for PwmDuty and PwmPeriod relate to the compare register
CMPA and time-base period TBPRD settings for ePWM1A?

• What is the value of PwmDuty in memory?

• What is the value of PwmPeriod in memory?

• How does it compare with the expected value?

 Lab 7: Control Peripherals

TMS320F2837xD Microcontroller Workshop - Control Peripherals 7 - 55

Optional Exercise – Modulate the PWM Waveform
If you finish early, you might want to experiment with the code by observing the effects of
changing the ePWM1 CMPA register using real-time emulation. Be sure that the jumper wire is
connecting PWM1A (header J4, pin #40) to ADCINA0 (header J3, pin #30), and the Single Time
graph is displayed. The graph must be enabled for continuous refresh.

a) Run the code in real-time mode.
b) Open an Expressions window to the EPwm1Regs.CMPA register – in EPwm.c highlight

the “EPwm1Regs” structure and right click, then select Add Watch Expression… and
then OK.

c) In the Expressions window open “EPwm1Regs”, then open “CMPA” and open “bit”.
d) The Expressions window must be enabled for continuous refresh.
e) Under “bit” change the “CMPA” 18750 value (within a range of 2500 and 22500).
f) Notice the effect on the PWM waveform in the graph.

You have just modulated the PWM waveform by manually changing the CMPA value. Next, we
will modulate the PWM automatically by having the ADC ISR change the CMPA value.

a) In DefaultIsr_7.c notice the code in the ADCA1 interrupt service routine used to modulate
the PWM1A output between 10% and 90% duty cycle.

b) In Main.c add “PWM_MODULATE” to the Expressions window using the same procedure
above.

c) Then with the code running in real-time mode, change the “PWM_MODULATE” from 0 to
1 and observe the PWM waveform in the graph. Also, in the Expressions window notice
the CMPA value being updated.

(If you do not have time to work on this optional exercise, you may want to try this later).

Terminate Debug Session and Close Project
27. Terminate the active debug session using the Terminate button. This will close the

debugger and return Code Composer Studio to the CCS Edit perspective view.

28. Next, close the project by right-clicking on Lab7 in the Project Explorer window and
select Close Project.

End of Exercise

Lab 7: Control Peripherals

7 - 56 TMS320F2837xD Microcontroller Workshop - Control Peripherals

TMS320F2837xD Microcontroller Workshop - Direct Memory Access 8 - 1

Direct Memory Access

Introduction
This module explains the operation of the direct memory access (DMA) controller. The DMA has
six channels with independent PIE interrupts.

Module Objectives

Module Objectives

Understand the operation of the
Direct Memory Access (DMA)
controller

Show how to use the DMA to transfer
data between peripherals and/or
memory without intervention from
the CPU

The DMA module provides a hardware method of transferring data between peripherals and/or
memory without intervention from the CPU, effectively freeing up the CPU for other functions.
Each CPU subsystem has its own DMA and using the DMA is ideal when an application requires
a significant amount of time spent moving large amounts of data from off-chip memory to on-chip
memory, or from a peripheral such as the ADC result register to a memory RAM block, or
between two peripherals. Additionally, the DMA is capable of rearranging the data for optimal
CPU processing such as binning and “ping-pong” buffering.

Specifically, the DMA can read data from the ADC result registers, transfer to or from memory
blocks G0 through G15, IPC RAM, EMIF, transfer to or from the McBSP and SPI, and also modify
registers in the ePWM. A DMA transfer is started by a peripheral or software trigger. There are
six independent DMA channels, where each channel can be configured individually and each
DMA channel has its own unique PIE interrupt for CPU servicing. All six DMA channels operate
the same way, except channel 1 can be configured at a higher priority over the other five
channels. At its most basic level the DMA is a state machine consisting of two nested loops and
tightly coupled address control logic which gives the DMA the capability to rearrange the blocks of
data during the transfer for post processing. When a DMA transfers is completed, the DMA can
generate an interrupt

Direct Memory Access (DMA)

8 - 2 TMS320F2837xD Microcontroller Workshop - Direct Memory Access

Chapter Topics
Direct Memory Access.. 8-1

Direct Memory Access (DMA) ... 8-3
Basic Operation ... 8-4
DMA Examples ... 8-6
Channel Priority Modes ... 8-9
DMA Throughput ... 8-10
DMA Registers .. 8-11

Lab 8: Servicing the ADC with DMA ... 8-15

 Direct Memory Access (DMA)

TMS320F2837xD Microcontroller Workshop - Direct Memory Access 8 - 3

Direct Memory Access (DMA)

DMA Triggers, Sources, and Destinations

McBSP

DMA
6-channels

ADC
Result 0-15

Triggers

PIE
DINTCH1-6

PWM1
PWM2

PWM11
PWM12

GS0 RAM

GS15 RAM

EMIF

ADCA/B/C/D (1-4, EVT)
MXEVTA/B MREVTA/B

XINT1-5 TINT0-2
ePWM1-12 (SOCA-B)

SD1FLT1-4 SD2FLT1-4
SPITX/RX (A-C)

USBA_EPx_RX/TX1-3
software

IPC MSG RAM

SPI

CAP
QEP

CMPSS
DAC

SDFM

DMA / CLA Common Peripheral Access
Common peripherals can be accessed by the CPU and either DMA or CLA

CLA Access / DMA Access
ePWM/HRPWM, eCAP, eQEP,

CMPSS, DAC, SDFM
SPI A/B/C, McBSP A/B, uPP
(uPP has no DMA access)

PF1

PF2

1 - 03 - 215 - 4
PF2SEL PF1SELreserved

CpuSysRegs.SECMSEL

x0 = connected to CLA *
x1 = connected to DMA

* Default (lock bit protected)
Note: CPUSELx bit associated with each peripheral
defines if the peripheral is connected to CPU1 or CPU2

CPUx

CPUx.CLA

CPUx.DMA A
rb

ite
r CPUx Peripheral Frame 1

CPUx.SECMSEL

CPUx Peripheral Frame 2

CPUSELx.PERy

Direct Memory Access (DMA)

8 - 4 TMS320F2837xD Microcontroller Workshop - Direct Memory Access

Basic Operation

DMA Definitions
 Word

 16 or 32 bits
 Word size is configurable per DMA channel

 Burst
 Consists of multiple words
 Smallest amount of data transferred at one time

 Burst Size
 Number of words per burst
 Specified by BURST_SIZE register

 5-bit ‘N-1’ value (maximum of 32 words/burst)

 Transfer
 Consists of multiple bursts

 Transfer Size
 Number of bursts per transfer
 Specified by TRANSFER_SIZE register

 16-bit ‘N-1’ value - exceeds any practical requirements

Simplified State Machine Operation

Burst Size times

Transfer Size times

The DMA state machine at its most basic
level is two nested loops

End Transfer

Move Word

Start Transfer

DMA can be configured to
re-initialize at the end of the
transfer (continuous mode)

 Direct Memory Access (DMA)

TMS320F2837xD Microcontroller Workshop - Direct Memory Access 8 - 5

Basic Address Control Registers

SRC_ADDR

SRC_ADDR_SHADOW

DST_ADDR

DST_ADDR_SHADOW

SRC_BURST_STEP

SRC_TRANSFER_STEP

DST_BURST_STEP

DST_TRANSFER_STEP

Active pointers

Pointer shadow registers
copied to active pointers at
start of transfer

Signed value added to active
pointer after each word

Signed value added to active
pointer after each burst

32

Simplified State Machine Example

3 words/burst
2 bursts/transfer

Read/Write Data

Add Burst Step
to Address

Pointer

Add Transfer
Step to Address

Pointer

Moved
“Burst Size”

Words?

Moved
“Transfer Size”

Bursts?

Y

Y

N

N

Wait for event
to start/continue

transfer

Start Transfer

End Transfer

Direct Memory Access (DMA)

8 - 6 TMS320F2837xD Microcontroller Workshop - Direct Memory Access

DMA Interrupts

 Each DMA channel has its
own PIE interrupt

 The mode for each
interrupt can be configured
individually

 The CHINTMODE bit in the
MODE register selects the
interrupt mode

Read/Write Data

Add Burst Step
to Address

Pointer

End Transfer

Add Transfer
Step to Address

Pointer

Moved
“Burst Size”

Words?

Moved
“Transfer Size”

Bursts?

Y

Y

N

N

Wait for event
to start/continue

transfer

Start TransferMode #1:
Interrupt
at start of
transfer

Mode #2:
Interrupt
at end of
transfer

DMA Examples

0x44440x0000

0x000040030x000040020x000040010x000040000x00000000

0x0000F0030x0000F0020x0000F0010x0000F0000x00000000

0x33330x0000
0x22220x0000

0x0000F000

0x11110x0000

Simple Example

Read/Write Data

Add Burst Step
to Address

Pointer

End Transfer

Add Transfer
Step to Address

Pointer

Moved
“Burst Size”

Words?

Moved
“Transfer Size”

Bursts?
Y

Y

N

N

Wait for event
to start/continue

transfer

SRC_ADDR_SHADOW

SRC_ADDR

SRC_BURST_STEP
SRC_TRANSFER_STEP

BURST_SIZE*
TRANSFER_SIZE*

Addr Value
0x11110xF000
0x22220xF001
0x33330xF002
0x44440xF003

Source Registers

0x0001
0x0001

0x0001
0x0001

DST_ADDR_SHADOW

DST_ADDR

DST_BURST_STEP
DST_TRANSFER_STEP

Addr Value
0x4000
0x4001
0x4002
0x4003

Destination Registers

0x00004000
0x0001
0x0001

2 words/burst
2 bursts/transfer

* Size registers are N-1

Objective: Move 4 words from memory location 0xF000 to
memory location 0x4000 and interrupt CPU at end of transfer

Start Transfer

Note: This example could also have been done using 1 word/burst and 4 bursts/transfer, or 4 words/burst
and 1 burst/transfer. This would affect Round-Robin progression, but not interrupts.

Interrupt to PIE

 Direct Memory Access (DMA)

TMS320F2837xD Microcontroller Workshop - Direct Memory Access 8 - 7

Data Binning Example

ADCA Results

GS3 RAM

CH0
CH1
CH2
CH3
CH4

0x0B00 CH0
CH1
CH2
CH3
CH4

CH0
CH1
CH2
CH3
CH4

1st Conversion Sequence

0xF000

0xF003

0xF006

0xF009

0xF00C

0x0B01
0x0B02
0x0B03
0x0B04

0xF001

0xF004

0xF007

0xF00A

0xF00D

0xF002

0xF005

0xF008

0xF00B

0xF00E

2nd Conversion Sequence3rd Conversion Sequence

CH0

CH1

CH2

CH3

CH4

Objective: Bin 3 samples of 5 ADC channels, then interrupt the CPU

* Size registers are N-1

Data Binning Example Register Setup

BURST_SIZE*
TRANSFER_SIZE*

0x0004 5 words/burst
0x0002 3 bursts/transfer

SRC_ADDR_SHADOW
SRC_BURST_STEP

SRC_TRANSFER_STEP

0x00000B00
0x0001

DST_ADDR_SHADOW
DST_BURST_STEP

DST_TRANSFER_STEP
0x0003
0xFFF5 (-11)

0xFFFC (-4)

CH4
CH3
CH2
CH1
CH00x0B00

0x0B01
0x0B02

ADCA Results

GS3 RAM

0xF000

0xF003

0xF006

0xF009

0xF00C

CH0
CH0
CH0

CH1
CH1
CH1

CH2
CH2
CH2

CH3
CH3
CH3

CH4
CH4
CH4

0xF001

0xF004

0xF007

0xF00A

0xF00D

0xF002

0xF005

0xF008

0xF00B

0xF00E

0x0B03
0x0B04

Objective: Bin 3 samples of 5 ADC channels, then interrupt the CPU

SOC0 – SOC4 configured to CH0 – CH4, respectively,
ADCA configured to re-trigger (continuous conversion)

ADC Registers:

DMA Registers:

0x0000F000 starting address**

** Typically use a relocatable symbol in your code, not a hard value

Direct Memory Access (DMA)

8 - 8 TMS320F2837xD Microcontroller Workshop - Direct Memory Access

Ping-Pong Buffer Example

ADCA Result Register

50 word
‘Ping’ buffer

50 word
‘Pong’ buffer

GS0 RAM
0x0B00

DMA
Interrupt

DMA
Interrupt

0xC140

Objective: Buffer ADC ch. 0 ping-pong style, 50 samples per buffer

ADCRESULT0

SOC0 configured to ADCINA0
with 1 conversion per trigger

DMA configured to re-init after transfer (CONTINUOUS = 1)

Ping-Pong Example Register Setup

SRC_BURST_STEP
SRC_TRANSFER_STEP 0x0000

DST_BURST_STEP
DST_TRANSFER_STEP 0x0001

SRC_ADDR_SHADOW

DST_ADDR_SHADOW

BURST_SIZE*
TRANSFER_SIZE*

0x0000 1 word/burst
0x0031 50 bursts/transfer

* Size registers are N-1

Objective: Buffer ADC ch. 0 ping-pong style, 50 samples per buffer

don’t care since BURST_SIZE = 0

don’t care since BURST_SIZE = 0

0x00000B00 starting address

0x0000C140 starting address**

Read/Write Data

Add Burst Step
to Address

Pointer

End Transfer

Add Transfer Step
to Address Pointer

Moved
“Burst Size”

Words?

Moved
“Transfer Size”

Bursts?

Y

Y

N

N

Wait for event to
start/continue transfer

Start Transfer

Convert ADCA Channel ADCINA0 – 1 conversion per trigger (i.e. ePWM2SOCA)

DMA Registers:

ADC Registers:

Other:

** DST_ADDR_SHADOW must be changed between ping and pong buffer address in
the DMA ISR. Typically use a relocatable symbol in your code, not a hard value.

 Direct Memory Access (DMA)

TMS320F2837xD Microcontroller Workshop - Direct Memory Access 8 - 9

Channel Priority Modes

Channel Priority Modes

 Round Robin Mode:
 All channels have equal priority
 After each enabled channel has

transferred a burst of words, the
next enabled channel is serviced
in round robin fashion

 Channel 1 High Priority Mode:
 Same as Round Robin except CH1

can interrupt DMA state machine
 If CH1 trigger occurs, the current

word (not the complete burst) on
any other channel is completed
and execution is halted

 CH1 is serviced for complete burst
 When completed, execution

returns to previous active channel
 This mode is intended primarily

for the ADC, but can be used by
any DMA event configured to
trigger CH1

DMA
event?

CH6 CH1

CH2CH5

CH4 CH3

Y

N

Priority Modes and the State Machine

Read/Write Data

Add Burst Step
to Address

Pointer

Add Transfer
Step to Address

Pointer

Moved
“Burst Size”

Words?

Moved
“Transfer Size”

Bursts?

Y

Y

N

N

Point where other
pending channels

are serviced
Wait for event

to start/continue
transfer

Point where
CH1 can

interrupt other
channels in

CH1 Priority Mode

Start Transfer

End Transfer

Direct Memory Access (DMA)

8 - 10 TMS320F2837xD Microcontroller Workshop - Direct Memory Access

DMA Throughput

DMA Throughput
4 cycles/word (5 for McBSP reads)

1 cycle delay to start each burst
1 cycle delay returning from CH1

high priority interrupt
32-bit transfer doubles throughput

(except McBSP, which supports 16-bit transfers only)

Example: 128 16-bit words from ADC to RAM
8 bursts * [(4 cycles/word * 16 words/burst) + 1] = 520 cycles

Example: 64 32-bit words from ADC to RAM
8 bursts * [(4 cycles/word * 8 words/burst) + 1] = 264 cycles

DMA vs. CPU Access Arbitration
DMA has priority over CPU
If a multi-cycle CPU access is already in

progress, DMA stalls until current CPU
access finishes

The DMA will interrupt back-to-back CPU
accesses

Can the CPU be locked out?
Generally No!
DMA is multi-cycle transfer; CPU will sneak

in an access when the DMA is accessing the
other end of the transfer (e.g. while DMA
accesses destination location, the CPU can
access the source location)

 Direct Memory Access (DMA)

TMS320F2837xD Microcontroller Workshop - Direct Memory Access 8 - 11

DMA Registers

DMA Registers
DmaRegs.name (lab file: Dma.c)

DMACTRL DMA Control Register
PRIORITYCTRL1 Priority Control Register 1
MODE Mode Register
CONTROL Control Register
BURST_SIZE Burst Size Register
BURST_COUNT Burst Count Register
SRC_BURST_STEP Source Burst Step Size Register
DST_BURST_STEP Destination Burst Step Size Register
TRANSFER_SIZE Transfer Size Register
TRANSFER_COUNT Transfer Count Register
SRC_TRANSFER_STEP Source Transfer Step Size Register
DST_TRANSFER_STEP Destination Transfer Step Size Register
SRC_ADDR_SHADOW Shadow Source Address Pointer Register
SRC_ADDR Active Source Address Pointer Register
DST_ADDR_SHADOW Shadow Destination Address Pointer Register
DST_ADDR Active Destination Address Pointer Register
DMACHSRCSELx (x = 1 or 2) Trigger Source Selection Register

Register Description

D
M

A
C

H
x

R
eg

is
te

rs

Refer to the Technical Reference Manual for a complete listing of registers

DMA Control Register
DmaRegs.DMACTRL

HARDRESETPRIORITYRESET
015 - 2

reserved

1

Priority Reset
0 = writes ignored (always reads back 0)
1 = reset state-machine after any pending

burst transfer complete

Hard Reset
0 = writes ignored (always reads back 0)
1 = reset DMA module

Direct Memory Access (DMA)

8 - 12 TMS320F2837xD Microcontroller Workshop - Direct Memory Access

Priority Control Register 1
DmaRegs.PRIORITYCTRL1

CH1PRIORITY
015 - 1

reserved

DMA CH1 Priority
0 = same priority as other channels
1 = highest priority channel

Mode Register
DmaRegs.CHx.MODE

15 11 10
CONTINUOUS ONESHOT

13 - 1214

Channel Interrupt
0 = disable
1 = enable

Data Size Mode
0 = 16-bit transfer
1 = 32-bit transfer

Continuous Mode
0 = DMA stops
1 = DMA re-initializes

One Shot Mode
0 = one burst transfer per trigger
1 = subsequent burst transfers

occur without additional trigger

CHINTE DATASIZE reserved

9 4 - 06 - 578

Channel Interrupt Generation
0 = at beginning of transfer
1 = at end of transfer

Peripheral
Interrupt Trigger
0 = disable
1 = enable

CHINTMODE PERINTE OVRINTE PERINTSELreserved

Overflow
Interrupt Enable
0 = disable
1 = enable

Peripheral Interrupt Source Select
Set bits to the channel number

See Trigger Sources on next slide

 Direct Memory Access (DMA)

TMS320F2837xD Microcontroller Workshop - Direct Memory Access 8 - 13

DMA Trigger Source Selection Registers
 Selects the Trigger Source for each DMA channel

 Each channel can be triggered by up to 256 interrupt sources
 Select ‘no peripheral’ if trigger is generated by software
 Default value = 0x00
 See “Peripheral Interrupt Trigger Sources” table on next slide

CH4
31 - 24 7 - 0

CH3 CH2 CH1
23 - 16 15 - 8

DmaClaSrcSelRegs.DMACHSRCSEL1

reserved
31 - 24 7 - 0

reserved CH6 CH5
23 - 16 15 - 8

DmaClaSrcSelRegs.DMACHSRCSEL2

Note: DMACHSRCSELLOCK register can be used to lock above registers (lock bit for each register)

Peripheral Interrupt Trigger Sources
0 No Peripheral 13 ADCCINT3 36 EPWM1SOCA 49 EPWM7SOCB 70 TINT2 109 SPITXDMAA

1 ADCAINT1 14 ADCCINT4 37 EPWM1SOCB 50 EPWM8SOCA 71 MXEVTA 110 SPIRXDMAA

2 ADCAINT2 15 ADCCEVT 38 EPWM2SOCA 51 EPWM8SOCB 72 MREVTA 111 SPITXDMAB

3 ADCAINT3 16 ADCDINT1 39 EPWM2SOCB 52 EPWM9SOCA 73 MXEVTB 112 SPIRXDMAB

4 ADCAINT4 17 ADCDINT2 40 EPWM3SOCA 53 EPWM9SOCB 74 MREVTB 113 SPITXDMAC

5 ADCAEVT 18 ADCDINT3 41 EPWM3SOCB 54 EPWM10SOCA 95 SD1FLT1 114 SPIRXDMAC

6 ADCBINT1 19 ADCDINT4 42 EPWM4SOCA 55 EPWM10SOCB 96 SD1FLT2 131 USBA_EPx_RX1

7 ADCBINT2 20 ADCDEVT 43 EPWM4SOCB 56 EPWM11SOCA 97 SD1FLT3 132 USBA_EPx_TX1

8 ADCBINT3 29 XINT1 44 EPWM5SOCA 57 EPWM11SOCB 98 SD1FLT4 133 USBA_EPx_RX2

9 ADCBINT4 30 XINT2 45 EPWM5SOCB 58 EPWM12SOCA 99 SD2FLT1 134 USBA_EPx_TX2

10 ADCBEVT 31 XINT3 46 EPWM6SOCA 59 EPWM12SOCB 100 SD2FLT2 135 USBA_EPx_RX3

11 ADCCINT1 32 XINT4 47 EPWM6SOCB 68 TINT0 101 SD2FLT3 136 USBA_EPx_TX3

12 ADCCINT2 33 XINT5 48 EPWM7SOCA 69 TINT1 102 SD2FLT4

// Set DMA Channel 2 to trigger on EPWM1SOCA

DmaClaSrcSelRegs.DMACHSRCSEL1.bit.CH2 = 36;

Note: values not shown in table are reserved

Direct Memory Access (DMA)

8 - 14 TMS320F2837xD Microcontroller Workshop - Direct Memory Access

Control Register
DmaRegs.CHx.CONTROL

reserved OVRFLG
15 11 810 - 9

RUNSTS BURSTSTS TRANSFERRST
121314

Overflow Flag *
0 = no overflow
1 = overflow

Run Status *
0 = channel disabled
1 = channel enabled

Burst Status *
0 = no activity
1 = servicing burst

Transfer Status *
0 = no activity
1 = transferring

Peripheral Interrupt Trigger Flag *
0 = no interrupt event trigger
1 = interrupt event trigger

* = read-only

PERINTFLGreserved

7 3 02
PERINTCLR PERINTFRC SOFTRESET HALT RUN

146 - 5

Error Clear
0 = no effect
1 = clear SYNCERR

Peripheral Interrupt Clear
0 = no effect
1 = clears event and PERINTFLG

Peripheral Interrupt Force
0 = no effect
1 = sets event and PERINTFLG

Soft Reset
0 = no effect
1 = default state

Halt
0 = no effect
1 = halt

Run
0 = no effect
1 = run

ERRCLR reserved

 Lab 8: Servicing the ADC with DMA

TMS320F2837xD Microcontroller Workshop - Direct Memory Access 8 - 15

Lab 8: Servicing the ADC with DMA
 Objective

The objective of this lab exercise is to become familiar with operation of the DMA. In the previous
lab exercise, the CPU was used to store the ADC conversion result in the memory buffer during
the ADC ISR. In this lab exercise the DMA will be configured to transfer the results directly from
the ADC result registers to the memory buffer. ADC channel A0 will be buffered ping-pong style
with 50 samples per buffer. As an operational test, the 2 kHz, 25% duty cycle symmetric PWM
waveform (ePWM1A) will be displayed using the graphing feature of Code Composer Studio.

Lab 8: Servicing the ADC with DMA

ADC
RESULT0

ePWM2

jumper
wire

ADCINA0

data
memory

Display
using CCS

TB Counter
Compare

Action Qualifier

ePWM1

ePWM2 triggering ADC on period
match using SOCA trigger every
20 µs (50 kHz)

Objective:
Configure the DMA to buffer
ADCA Channel A0 ping-pong
style with 50 samples per buffer

ping

CPU writes data
to AdcBuf during

DMA ISR

pong

data
memory

DMA

 Procedure

Open the Project
1. A project named Lab8 has been created for this lab exercise. Open the project by

clicking on Project  Import CCS Projects. The “Import CCS Eclipse Projects”
window will open then click Browse… next to the “Select search-directory” box. Navigate
to: C:\C28x\Labs\Lab8\cpu01 and click OK. Then click Finish to import the project.
All build options have been configured the same as the previous lab exercise. The files
used in this lab exercise are:

Lab 8: Servicing the ADC with DMA

8 - 16 TMS320F2837xD Microcontroller Workshop - Direct Memory Access

Adc.c
CodeStartBranch.asm Gpio.c
Dac.c Lab_8.cmd
DefaultIsr_8.c Main_8.c
DelayUs.asm PieCtrl.c
Dma.c PieVect.c
ECap.c SineTable.c
EPwm.c SysCtrl.c
F2837xD_Adc.c Watchdog.c
F2837xD_GlobalVariableDefs.c Xbar.c
F2837xD_Headers_nonBIOS_cpu1.cmd

Inspect Lab_8.cmd
2. Open and inspect Lab_8.cmd. Notice that a section called “dmaMemBufs” is being

linked to RAMGS4. This section links the destination buffer for the DMA transfer to a DMA
accessible memory space. Close the inspected file.

Setup DMA Initialization
The DMA controller needs to be configured to buffer ADC channel A0 ping-pong style with 50
samples per buffer. One conversion will be performed per trigger with the ADC operating in
single sample mode.

3. Edit Dma.c to implement the DMA operation as described in the objective for this lab
exercise. Configure the DMA Channel 1 Mode Register (MODE) so that the peripheral
interrupt source select is set to channel 1. Enable the peripheral interrupt trigger and set
the channel for interrupt generation at the start of transfer. Configure for 16-bit data
transfers with one burst per trigger and auto re-initialization at the end of the transfer.
Enable the channel interrupt. Configure the DMA Trigger Selection Register
(DMACHSRCSELx) so that the ADCAINT1 is the peripheral interrupt trigger source. In
the DMA Channel 1 Control Register (CONTROL) clear the error and peripheral interrupt
bits. Enable the channel to run.

4. Open Main_8.c and add a line of code in main() to call the InitDma() function.
There are no passed parameters or return values. You just type

 InitDma();

 at the desired spot in main().

Setup PIE Interrupt for DMA
Recall that ePWM2 is triggering the ADC at a 50 kHz rate. In the previous lab exercise, the ADC
generated an interrupt to the CPU, and the CPU read the ADC result register in the ADC ISR.
For this lab exercise, the ADC is instead triggering the DMA, and the DMA will generate an
interrupt to the CPU. The CPU will read the ADC result register in the DMA ISR.

5. Edit Adc.c to comment out the code used to enable the ADCA1 interrupt in PIE group 1.
This is no longer being used. The DMA interrupt will be used instead.

6. Using the “PIE Interrupt Assignment Table” find the location for the DMA Channel 1
interrupt “DMA_CH1” and fill in the following information:

PIE group #: # within group:

This information will be used in the next step.

 Lab 8: Servicing the ADC with DMA

TMS320F2837xD Microcontroller Workshop - Direct Memory Access 8 - 17

7. Modify the end of Dma.c to do the following:
- Enable the “DMA_CH1” interrupt in the PIE (Hint: use the PieCtrlRegs structure)
- Enable the appropriate core interrupt in the IER register

8. Open and inspect DefaultIsr_8.c. Notice that this file contains the DMA interrupt
service routine. Save all modified files.

Build and Load
9. Click the “Build” button and watch the tools run in the Console window. Check for

errors in the Problems window.

10. Click the “Debug” button (green bug). A Launching Debug Session window will open.
Select only CPU1 to load the program on (i.e. uncheck CPU2), and then click OK. Then
the CCS Debug perspective view should open, the program will load automatically, and
you should now be at the start of main(). If the device has been power cycled since the
last lab exercise, be sure to configure the boot mode to EMU_BOOT_SARAM using the
Scripts menu.

Run the Code – Test the DMA Operation

Note: For the next step, check to be sure that the jumper wire connecting PWM1A (header J4,
pin #40) to ADCINA0 (header J3, pin #30) is in place on the LaunchPad.

11. Run the code in real-time mode using the Script function: Scripts  Realtime
Emulation Control  Run_Realtime_with_Reset. Open and watch the
memory browser update. Verify that the ADC result buffer contains updated values.

12. Open and setup a graph to plot a 50-point window of the ADC results buffer.
Click: Tools  Graph  Single Time and set the following values:

Acquisition Buffer Size 50

DSP Data Type 16-bit unsigned integer

Sampling Rate (Hz) 50000

Start Address AdcBuf

Display Data Size 50

Time Display Unit µs

Select OK to save the graph options.

13. The graphical display should show the generated 2 kHz, 25% duty cycle symmetric PWM
waveform. Notice that the results match the previous lab exercise.

14. Fully halt the CPU (real-time mode) by using the Script function: Scripts 
Realtime Emulation Control  Full_Halt.

Lab 8: Servicing the ADC with DMA

8 - 18 TMS320F2837xD Microcontroller Workshop - Direct Memory Access

Terminate Debug Session and Close Project
15. Terminate the active debug session using the Terminate button. This will close the

debugger and return Code Composer Studio to the CCS Edit perspective view.

16. Next, close the project by right-clicking on Lab8 in the Project Explorer window and
select Close Project.

End of Exercise

TMS320F2837xD Microcontroller Workshop - Control Law Accelerator 9 - 1

Control Law Accelerator

Introduction
This module explains the operation of the control law accelerator (CLA). The CLA is an
independent, fully programmable, 32-bit floating-point math processor. It executes algorithms
independently and in parallel with the CPU. This extends the capabilities of the C28x CPU by
adding parallel processing. The CLA has direct access to the ADC result registers. Additionally,
the CLA has access to all ePWM, high-resolution PWM, eCAP, eQEP, CMPSS, DAC, SDFM,
SPI, McBSP, uPP and GPIO data registers. This allows the CLA to read ADC samples “just-in-
time” and significantly reduces the ADC sample to output delay enabling faster system response
and higher frequency operation. The CLA responds to peripheral interrupts independently of the
CPU. Utilizing the CLA for time-critical tasks frees up the CPU to perform other system,
diagnostics, and communication functions concurrently.

Module Objectives

Module Objectives

Explain the purpose and operation of the
Control Law Accelerator (CLA)

Describe the CLA initialization procedure

Review the CLA registers, instruction set,
and programming flow

Control Law Accelerator (CLA)

9 - 2 TMS320F2837xD Microcontroller Workshop - Control Law Accelerator

Chapter Topics
Control Law Accelerator... 9-1

Control Law Accelerator (CLA) ... 9-3
CLA Block Diagram ... 9-4
CLA Memory and Register Access ... 9-4
CLA Tasks ... 9-5
CLA Control and Execution Registers .. 9-6
CLA Registers ... 9-7
CLA Initialization ... 9-10
CLA Task Programming .. 9-11
CLA C Language Implementation and Restrictions .. 9-11
CLA Assembly Language Implementation .. 9-14
CLA Code Debugging ... 9-17

Lab 9: CLA Floating-Point FIR Filter ... 9-18

 Control Law Accelerator (CLA)

TMS320F2837xD Microcontroller Workshop - Control Law Accelerator 9 - 3

Control Law Accelerator (CLA)

Control Law Accelerator (CLA)
C28x CPU

CLA
PWM

ADC
&

CMP

 The CLA is a 32-bit floating-point processor that responds
to peripheral triggers and executes code independent of
the main CPU

 Designed for fast trigger response and oriented toward
math computations

 Direct access to ePWM, HRPWM, eCAP, eQEP, ADC result,
CMPSS, DAC, SDFM, SPI, McBSP, GPIO and uPP registers

 Frees up the CPU for other tasks (communications and
diagnostics)

The CLA is an independent 32-bit floating-point math hardware accelerator which executes real-
time control algorithms in parallel with the main C28x CPU, effectively doubling the computational
performance. Each CPU subsystem has its own CLA that responds directly to peripheral triggers,
which can free up the C28x CPU for other tasks, such as communications and diagnostics. With
direct access to the various control and communication peripherals, the CLA minimizes latency,
enables a fast trigger response, and avoids CPU overhead. Also, with direct access to the ADC
results registers, the CLA is able to read the result on the same cycle that the ADC sample
conversion is completed, providing “just-in-time” reading, which reduces the sample to output
delay.

Control Law Accelerator (CLA)

9 - 4 TMS320F2837xD Microcontroller Workshop - Control Law Accelerator

CLA Block Diagram

CLA Block Diagram

MPERINT1-8 CLA_INT1-8
LVF, LUF PIE

C28x
CPU

INT11
INT12

CLA
Control & Execution

Registers

CLA Program Bus

CLA Data Bus

Task Triggers
(Peripheral Interrupts)

Task1 Trigger
Task2 Trigger
Task3 Trigger
Task4 Trigger
Task5 Trigger
Task6 Trigger
Task7 Trigger
Task8 Trigger

Program
RAM

MSG RAMs
CPU to CLA
CLA to CPU

Data
RAM ePWM

HRPWM
CMPSS
SDFM

Registers
eCAP
eQEP
DAC

Registers
SPI A/B/C

McBSP A/B
uPP

Registers
ADC Results
GPIO Data

CLA Memory and Register Access

CLA Memory and Register Access

 Contains CLA program code
 Mapped to the CPU at reset
 Initialized by the CPU

CLA Program Memory
 Used to pass data between

the CPU and CLA
 Always mapped to both

the CPU and CLA

Message RAMs

 Contains variables and coefficients
used by the CLA program code

 Mapped to the CPU at reset
 Initialized by CPU

CLA Data Memory

Peripheral Register Access

LS0 - LS5 RAM

Program
RAM

(2Kw each)

MSG RAMs
CPU to CLA
CLA to CPU
(128w/128w)

LS0 - LS5 RAM

Data
RAM

(2Kw each)

ePWM
HRPWM
CMPSS
SDFM

Registers
eCAP
eQEP
DAC

PF1
Registers
SPI A/B/C

McBSP A/B
uPP

PF2

 Provides direct access to peripherals
 Either the CLA or DMA can have

access to a PF, but not both
 CPUx.SECMSEL register selects CLA

or DMA per PF (default is CLA)

Note: CPU1.CLA1 has access to EMIF2 for data only

Registers
ADC Results
GPIO Data

The CLA has access to the LSx RAM blocks and each memory block can be configured to be
either dedicated to the CPU or shared between the CPU and CLA. After reset the memory block

 Control Law Accelerator (CLA)

TMS320F2837xD Microcontroller Workshop - Control Law Accelerator 9 - 5

is mapped to the CPU, where it can be initialized by the CPU before being shared with the CLA.
Once it is shared between the CPU and CLA it then can be configured to be either program
memory or data memory. When configured as program memory it contains the CLA program
code, and when configured as data memory it contains the variable and coefficients that are used
by the CLA program code. Additionally, dedicated message RAMs are used to pass data
between the CPU and CLA, and CLA and CPU.

CLA Tasks

CLA Tasks

 A Task is similar to an interrupt service routine
 CLA supports 8 Tasks (Task1-8)
 A task is started by a peripheral interrupt trigger

Triggers are enabled in the CLA1TASKSRCSELx register
 When a trigger occurs the CLA begins execution at

the associated task vector entry (MVECT1-8)
 Once a task begins it runs to completion (no nesting)

MPERINT1-8 CLA_INT1-8
LVF, LUF PIE

C28x
CPU

INT11
INT12

CLA
Control & Execution

Registers

Task Triggers
(Peripheral Interrupts)

Task1 Trigger
Task2 Trigger
Task3 Trigger
Task4 Trigger
Task5 Trigger
Task6 Trigger
Task7 Trigger
Task8 Trigger

Programming the CLA consists of initialization code, which is performed by the CPU, and tasks.
A task is similar to an interrupt service routine, and once started it runs to completion. Tasks can
be written in C or assembly code, where typically the user will use assembly code for high
performance time-critical tasks, and C for non-critical tasks. Each task is capable of being
triggered by a variety of peripherals without CPU intervention, which makes the CLA very efficient
since it does not use interrupts for hardware synchronization, nor must the CLA do any context
switching. Unlike the traditional interrupt-based scheme, the CLA approach becomes
deterministic. The CLA supports eight independent tasks and each is mapped back to an event
trigger. Since the CLA is a software programmable accelerator, it is very flexible and can be
modified for different applications.

Control Law Accelerator (CLA)

9 - 6 TMS320F2837xD Microcontroller Workshop - Control Law Accelerator

Software Triggering a Task
 Tasks can also be started by a software trigger

using the CPU

asm(" EALLOW"); //enable protected register access

Cla1Regs.MIFRC.bit.INT4 = 1; //start task 4

asm(" EDIS"); //disable protected register access

 Method #1: Write to Interrupt Force Register (MIFRC) register

INT2INT3INT4INT5INT6INT7INT8 INT1
0123456715 - 8

reserved

 Method #2: Use IACK instruction

asm(" IACK #0x0008"); //set bit 3 in MIFRC to start task 4

More efficient – does not require EALLOW
Note: Use of IACK requires Cla1Regs.MCTL.bit.IACKE = 1

CLA Control and Execution Registers

CLA Control and Execution Registers

 CLA1TASKSRCSELx – Task Interrupt Source Select (Task 1-8)
 MVECT1-8 – Task Interrupt Vector (MVECT1/2/3/4/5/6/7/8)
 LSxCLAPGM – Memory Map Configuration (LS0 – LS5 RAM)
 MPC – 16-bit Program Counter (initialized by appropriate MVECTx register)
 MR0-3 – CLA Floating-Point Result Registers (32 bit)
 MAR0-1 – CLA Auxiliary Registers (16 bit)

1

0

MIFR MIERCLA1TASKSRCSELx

CLA
Core

CLA Program Bus CLA Data Bus
Program
Memory

Data
Memory

LSxCLAPGM

MVECT1-8MPC

MAR0
MAR1

CLA_INT1-8
LVF, LUF

MR0
MR1
MR2
MR3

PIE C28x
CPU

INT11
INT12

S/W TriggerMIFRC

Task

Source

Triggers

•
•
•

•
•
•

•
•
•

•
•
•

 Control Law Accelerator (CLA)

TMS320F2837xD Microcontroller Workshop - Control Law Accelerator 9 - 7

CLA Registers

CLA Registers

MCTL Control Register
LSxMSEL Memory Selection CPU/CLA Register
LSxCLAPGM CLA Program/Data Memory Register
CLA1TASKSRCSELx Task Source Select Register (x = 1-2)
MIFR Interrupt Flag Register
MIER Interrupt Enable Register
MIFRC Interrupt Force Register
MICLR Interrupt Flag Clear Register
MIOVF Interrupt Overflow Flag Register
MICLROVF Interrupt Overflow Flag Clear Register
MIRUN Interrupt Run Status Register
MVECTx Task x Interrupt Vector (x = 1-8)
MPC CLA 16-bit Program Counter
MARx CLA Auxiliary Register x (x = 0-1)
MRx CLA Floating-Point 32-bit Result Register (x = 0-3)
MSTF CLA Floating-Point Status Register

Register Description

CLA Control Register
Cla1Regs.MCTL

HARDRESETIACKE SOFTRESETreserved
15 - 3 02 1

Hard Reset
0 = no effect
1 = CLA reset

(registers set
to default state)

Soft Reset
0 = no effect
1 = CLA reset

(stop current task)

IACK Enable
0 = CPU IACK instruction ignored
1 = CPU IACK instruction triggers a task

Control Law Accelerator (CLA)

9 - 8 TMS320F2837xD Microcontroller Workshop - Control Law Accelerator

CLA Memory Configuration Registers

Selects LS RAM as program or data CLA memory
0 = CLA data memory
1 = CLA program memory

Master Select for LS RAM
00 = memory is dedicated to CPU
01 = memory is shared between CPU and CLA
1x = reserved

31 - 6
reserved

0
CLAPGM_LS0CLAPGM_LS1CLAPGM_LS2CLAPGM_LS3CLAPGM_LS4CLAPGM_LS5

12345
MemCfgRegs.LSxCLAPGM

MSEL_LS0
1 - 05 - 4

reserved MSEL_LS1MSEL_LS2MSEL_LS3MSEL_LS4MSEL_LS5
3 - 27 - 69 - 811 - 1031 - 12

MemCfgRegs.LSxMSEL

Note: register lock protected

CLA Task Source Selection Registers
 Selects the Trigger Source for each Task

 Each task can be triggered by up to 256 interrupt sources
 Select ‘Software’ if task is unused or software triggered
Default value = Software = 0x00
 See “CLA Interrupt Trigger Sources” table on next slide

TASK4
31 - 24 7 - 0

TASK3 TASK2 TASK1
23 - 16 15 - 8

DmaClaSrcSelRegs.CLA1TASKSRCSEL1

TASK8
31 - 24 7 - 0

TASK7 TASK6 TASK5
23 - 16 15 - 8

DmaClaSrcSelRegs.CLA1TASKSRCSEL2

Note: CLA1TASKSRCSELLOCK register can be used to lock above registers (lock bit for each register)

 Control Law Accelerator (CLA)

TMS320F2837xD Microcontroller Workshop - Control Law Accelerator 9 - 9

CLA Task Interrupt Trigger Sources
0 Software 13 ADCCINT3 36 EPWM1INT 69 TINT1 84 EQEP2INT

1 ADCAINT1 14 ADCCINT4 37 EPWM2INT 70 TINT2 85 EQEP3INT

2 ADCAINT2 15 ADCCEVT 38 EPWM3INT 71 MXEVTA 87 HRCAP1INT

3 ADCAINT3 16 ADCDINT1 39 EPWM4INT 72 MREVTA 88 HRCAP2INT

4 ADCAINT4 17 ADCDINT2 40 EPWM5INT 73 MXEVTB 95 SD1INT

5 ADCAEVT 18 ADCDINT3 41 EPWM6INT 74 MREVTB 96 SD2INT

6 ADCBINT1 19 ADCDINT4 42 EPWM7INT 75 ECAP1INT 107 UPP1INT

7 ADCBINT2 20 ADCDEVT 43 EPWM8INT 76 ECAP2INT 109 SPITXINTA

8 ADCBINT3 29 XINT1 44 EPWM9INT 77 ECAP3INT 110 SPIRXINTA

9 ADCBINT4 30 XINT2 45 EPWM10INT 78 ECAP4INT 111 SPITXINTB

10 ADCBEVT 31 XINT3 46 EPWM11INT 79 ECAP5INT 112 SPIRXINTB

11 ADCCINT1 32 XINT4 47 EPWM12INT 80 ECAP6INT 113 SPITXINTC

12 ADCCINT2 33 XINT5 68 TINT0 83 EQEP1INT 114 SPIRXINTC

// Set EPWM1INT to trigger CLA Task5

DmaClaSrcSelRegs.CLA1TASKSRCSEL2.bit.TASK5 = 36;

Note: values not shown in table are reserved

CLA Interrupt Enable Register
Cla1Regs.MIER

INT2INT3INT4INT5INT6INT7INT8 INT1
0123456715 - 8

reserved

Cla1Regs.MIER.bit.INT2 = 1; //enable Task 2 interrupt

Cla1Regs.MIER.all = 0x0028; //enable Task 6 and 4 interrupts

0 = task interrupt disable (default)
1 = task interrupt enable

Control Law Accelerator (CLA)

9 - 10 TMS320F2837xD Microcontroller Workshop - Control Law Accelerator

CLA Initialization

CLA Initialization

1. Copy CLA task code from flash to CLA program RAM
2. Initialize CLA data RAMs, as needed

 Populate with data coefficients, constants, etc.

3. Configure the CLA registers
 Enable the CLA clock (PCLKCR3 register)

 Populate the CLA task interrupt vectors (MVECT1-8 registers)

 Select the desired task interrupt sources (CLA1TASKSRCSELx register)

 If desired, set Cla1Regs.MCTL.bit.IACKE = 1 to enable IACK instruction
to start tasks using software (avoids EALLOW)

 Map CLA program RAM and data RAMs to CLA space

4. Configure desired CLA task completion interrupts in the PIE
5. Enable CLA task triggers in the MIER register
6. Initialize the desired peripherals to trigger the CLA tasks

Performed by the CPU during software initialization

Data can passed between the CLA and CPU via message RAMs or allocated CLA Data RAM

Enabling CLA Support in CCS

 Set the “Specify CLA support” project option to ‘cla1’

 When creating a new CCS project, choosing a device
variant that has the CLA will automatically select this
option, so normally no user action is required

 Control Law Accelerator (CLA)

TMS320F2837xD Microcontroller Workshop - Control Law Accelerator 9 - 11

CLA Task Programming

CLA Task Programming

 Can be written in C or assembly code

 Assembly code will give best performance
for time-critical tasks

Writing in assembly may not be so bad!
 CLA programs in floating point

 Often not that much code in a task

 Commonly, the user will use assembly for
critical tasks, and C for non-critical tasks

CLA C Language Implementation and Restrictions

CLA C Language Implementation
 Supports C only (no C++ or GCC extension support)

 Different data type sizes than C28x CPU and FPU

 CLA architecture is designed for 32-bit data types
 16-bit computations incur overhead for sign-extension
 16-bit values mostly used to read/write 16-bit peripheral registers
 There is no SW or HW support for 64-bit integer or floating point

TYPE CPU and FPU CLA
char 16 bit 16 bit

short 16 bit 16 bit

int 16 bit 32 bit

long 32 bit 32 bit

long long 64 bit 32 bit

float 32 bit 32 bit

double 32 bit 32 bit

long double 64 bit 32 bit

pointers 32 bit 16 bit

Control Law Accelerator (CLA)

9 - 12 TMS320F2837xD Microcontroller Workshop - Control Law Accelerator

CLA C Language Restrictions (1 of 2)

 No initialization support for global and static
local variables

int16_t x; // valid

int16_t x=5; // not valid

 Initialized global variables should be declared in a
.c file instead of the .cla file

.c file: .cla file:
int16_t x=5; extern int16_t x;

 For initialized static variables, easiest solution is to
use an initialized global variable instead

 No recursive function calls
 No function pointers

CLA C Language Restrictions (2 of 2)

 No support for certain fundamental math
operations
 integer division: z = x/y;
 modulus (remainder): z = x%y;
 unsigned 32-bit integer compares

Uint32 i; if(i < 10) {…} // not valid

int32 i; if(i < 10) {…} // valid

Uint16 i; if(i < 10) {…} // valid

int16 i; if(i < 10) {…} // valid

float32 x; if(x < 10) {…} // valid

 No standard C math library functions, but TI
provides some function examples (next slide)

 Control Law Accelerator (CLA)

TMS320F2837xD Microcontroller Workshop - Control Law Accelerator 9 - 13

C2000Ware™ - CLA Software Support
 TI provides some examples of floating-point math CLA functions

Resource Explorer

CLAmath

Examples

CLA Compiler Scratchpad Memory Area

MEMORY
{

}

SECTIONS
{

/*** CLA Compiler Required Sections ***/
.scratchpad : > RAMLS0, PAGE = 1

}

Lab.cmd

 For local and compiler generated temporary variables
 Static allocation, used instead of a stack
 Defined in the linker command file

Control Law Accelerator (CLA)

9 - 14 TMS320F2837xD Microcontroller Workshop - Control Law Accelerator

CLA Task C Code Example
#include "Lab.h"

;-------------------------------------

interrupt void Cla1Task1 (void)

{

__mdebugstop();

xDelay[0] = (float32)AdcaResultRegs.ADCRESULT0;

Y = coeffs[4] * xDelay[4];

xDelay[4] = xDelay[3];

xDelay[1] = xDelay[0];

Y = Y + coeffs[0] * xDelay[0];

ClaFilteredOutput = (Uint16)Y;

}

;-------------------------------------

interrupt void Cla1Task2 (void)

{

}

;-------------------------------------

ClaTasks_C.cla

 .cla extension
causes the c2000
compiler to invoke
the CLA compiler

 All code within this
file is placed in the
section “Cla1Prog”

 C Peripheral
Register Header File
references can be
used in CLA C and
assembly code

 Closing braces are
replaced with
MSTOP instructions
when compiled

CLA Assembly Language Implementation

CLA Assembly Language
Implementation

 Same instruction format as the CPU and FPU
Destination operand on the left

 Source operand(s) on the right

 Same mnemonics as FPU, with a leading “M”
CPU: MPY ACC, T, loc16

FPU: MPYF32 R0H, R1H, R2H

CLA: MMPYF32 MR0, MR1, MR2

Destination Operand Source Operands

 Control Law Accelerator (CLA)

TMS320F2837xD Microcontroller Workshop - Control Law Accelerator 9 - 15

CLA Assembly Instruction Overview
Type Example Cycles
Load (Conditional) MMOV32 MRa,mem32{,CONDF} 1
Store MMOV32 mem32,MRa 1
Load with Data Move MMOVD32 MRa,mem32 1
Store/Load MSTF MMOV32 MSTF,mem32 1
Compare, Min, Max MCMPF32 MRa,MRb 1
Absolute, Negative Value MABSF32 MRa,MRb 1
Unsigned Integer to Float MUI16TOF32 MRa,mem16 1
Integer to Float MI32TOF32 MRa,mem32 1
Float to Integer & Round MF32TOI16R MRa,MRb 1
Float to Integer MF32TOI32 MRa,MRb 1
Multiply, Add, Subtract MMPYF32 MRa,MRb,MRc 1
1/X (16-bit Accurate) MEINVF32 MRa,MRb 1
1/Sqrt(x) (16-bit Accurate) MEISQRTF32 MRa,MRb 1
Integer Load/Store MMOV16 MRa,mem16 1
Load/Store Auxiliary Register MMOV16 MAR,mem16 1
Branch/Call/Return (conditional delayed) MBCNDD 16bitdest {,CNDF} 1-7
Integer Bitwise AND, OR, XOR MAND32 MRa,MRb,MRc 1
Integer Add and Subtract MSUB32 MRa,MRb,MRc 1
Integer Shifts MLSR32 MRa,#SHIFT 1
Write Protection Enable/Disable MEALLOW 1
Halt Code or End Task MSTOP 1
No Operation MNOP 1

See the Technical Reference Manual for a complete listing of instructions

CLA Assembly Parallel Instructions
 Parallel instructions are ‘built-in’ and not free form

 You cannot just combine two regular instructions
 Operates as a single instruction with a single opcode

 Performs two operations in a single cycle
 A parallel instruction is recognized by the parallel bars

 Example: Add + Parallel Store

MADDF32 MR3, MR3, MR1

|| MMOV32 @_Var, MR3

Instruction Example Cycles
Multiply
& Parallel Add/Subtract

MMPYF32 MRa,MRb,MRc
|| MSUBF32 MRd,MRe,MRf 1

Multiply, Add, Subtract
& Parallel Store

MADDF32 MRa,MRb,MRc
|| MMOV32 mem32,MRe 1

Multiply, Add, Subtract, MAC
& Parallel Load

MADDF32 MRa,MRb,MRc
|| MMOV32 MRe, mem32 1

Control Law Accelerator (CLA)

9 - 16 TMS320F2837xD Microcontroller Workshop - Control Law Accelerator

CLA Assembly Addressing Modes
 Two addressing modes: Direct and Indirect
 Both modes can access the lower 64Kx16 of memory only:

 All of the CLA data space
 Both message RAMs
 Shared peripheral registers

 Direct – Populates opcode field with 16-bit address of the variable

example 1: MMOV32 MR1, @_VarA

example 2: MMOV32 MR1, @_EPwm1Regs.CMPA.all

 Indirect – Uses the address in MAR0 or MAR1 to access memory;
after the read or write MAR0/MAR1 is incremented by a
16-bit signed value

example 1: MMOV32 MR0, *MAR0[2]++

example 2: MMOV32 MR1, *MAR1[-2]++

CLA Task Assembly Code Example
.cdecls "Lab.h"

.sect "Cla1Prog"

_Cla1Task1: ; FIR filter

MUI16TOF32 MR2, @_AdcaResultRegs.ADCRESULT0

MMPYF32 MR2, MR1, MR0

MADDF32 MR3, MR3, MR2

MF32TOUI16 MR2, MR3

MMOV16 @_ClaFilteredOutput, MR2

MSTOP ; End of task

;-------------------------------------

_Cla1Task2:

MSTOP

;-------------------------------------

_Cla1Task3:

MSTOP

ClaTasks.asm

 .cdecls directive used
to include the C
header file in the CLA
assembly file

 .sect directive used to
place CLA assembly
code in its own
section

 C Peripheral Register
Header File references
can be used in CLA
assembly code

 MSTOP instruction
used at the end of the
task

 Control Law Accelerator (CLA)

TMS320F2837xD Microcontroller Workshop - Control Law Accelerator 9 - 17

CLA Initialization Code Example

#include "F2837xD_Cla_typedefs.h"

#include “F2837xD_Device.h"

extern interrupt void Cla1Task1();

extern interrupt void Cla1Task2();

extern interrupt void Cla1Task8();

Lab.h

#include "Lab.h"

// Initialize CLA task interrupt vectors

Cla1Regs.MVECT1 = (uint16_t)(&Cla1Task1);

Cla1Regs.MVECT2 = (uint16_t)(&Cla1Task2);

Cla1Regs.MVECT7 = (uint16_t)(&Cla1Task7);

Cla1Regs.MVECT8 = (uint16_t)(&Cla1Task8);

Cla.c

 Defines data types and
special registers
specific to the CLA

 Defines register bit
field structures

 CLA task prototypes
are prefixed with the
‘interrupt’ keyword

 CLA task symbols are
visible to all C28x CPU
and CLA code

Type-1 CLAs MVECT registers accept full 16-bit task addresses as opposed to offsets used on older Type-0 CLAs

CLA Code Debugging

CLA Code Debugging

1. Insert a breakpoint in the CLA code
 Insert a MDEBUGSTOP instruction(s) in the code where desired then rebuild/reload
 In C code, can use __mdebugstop() intrinsic, or asm(“ MDEBUGSTOP”)
 When the debugger is not connected, the MDEBUGSTOP acts like an MNOP

2. Connect to the CLA target in CCS
 This enables CLA breakpoints

3. Run the CPU target
 CLA task will trigger (via peripheral interrupt or software)
 CLA executes instructions until MDEBUGSTOP is hit

4. Load the code symbols into the CLA context in CCS
 This allows source-level debug
 Needs to be done only once per debug session unless the .out file changes

5. Debug the CLA code
 Can single-step the code, or run to the next MDEBUGSTOP or to the end of the task
 If another task is pending, it will start at the end of the previous task

6. Disconnect the CLA target to disable CLA breakpoints, if desired

 The CLA and CPU are debugged from the same JTAG port
 You can halt, single-step, and run the CLA independent of the CPU
 A CLA single step execute one pipeline cycle, whereas a CPU single

step executes one instruction (and flushes the pipeline)

Lab 9: CLA Floating-Point FIR Filter

9 - 18 TMS320F2837xD Microcontroller Workshop - Control Law Accelerator

Lab 9: CLA Floating-Point FIR Filter
 Objective

The objective of this lab exercise is to become familiar with operation and programming of the
CLA. In this lab exercise, the ePWM1A generated 2 kHz, 25% duty cycle symmetric PWM
waveform will be filtered using the CLA. The CLA will directly read the ADC result register and a
task will run a low-pass FIR filter on the sampled waveform. The filtered result will be stored in a
circular memory buffer. Note that the CLA is operating concurrently with the CPU. As an
operational test, the filtered and unfiltered waveforms will be displayed using the graphing feature
of Code Composer Studio.

Lab 9: CLA Floating-Point FIR Filter

CPU copies
result to
buffer during
CLA ISR

ADC
RESULT0

ePWM2

jumper
wire

ADCINA0

...

data
memory

Display
using CCS

TB Counter
Compare

Action Qualifier

ePWM1

ePWM2 triggering ADC on period
match using SOCA trigger every
20 µs (50 kHz)

CLA
Cla1Task1
Cla1Task2

Cla1Task8

Recall that a task is similar to an interrupt service routine. Once a task is triggered it runs to
completion. In this lab exercise two tasks will be used. Task 1 contains the low-pass filter. Task
8 contains a one-time initialization routine that is used to clear (set to zero) the filter delay chain.

Since there are tradeoffs between the conveniences of C programming and the performance
advantages of assembly language programming, three different task scenarios will be explored:

1. Filter and initialization tasks both in C
2. Filter task in assembly, initialization task in C
3. Filter and initialization tasks both in assembly

These three scenarios will highlight the flexibility of programming the CLA tasks, as well as show
the required configuration steps for each. Note that scenarios 1 and 2 are the most likely to be
used in a real application. There is little to be gained by putting the initialization task in assembly
with scenario 3, but it is shown here for completeness as an all-assembly CLA setup.

 Lab 9: CLA Floating-Point FIR Filter

TMS320F2837xD Microcontroller Workshop - Control Law Accelerator 9 - 19

 Procedure

Open the Project
1. A project named Lab9 has been created for this lab exercise. Open the project by

clicking on Project  Import CCS Projects. The “Import CCS Eclipse Projects”
window will open then click Browse… next to the “Select search-directory” box. Navigate
to: C:\C28x\Labs\Lab9\cpu01 and click OK. Then click Finish to import the project.
All build options have been configured the same as the previous lab exercise. The files
used in this lab exercise are:

Adc.c F2837xD_GlobalVariableDefs.c
Cla_9.c F2837xD_Headers_nonBIOS_cpu1.cmd
ClaTasks.asm Gpio.c
ClaTasks_C.cla Lab_9.cmd
CodeStartBranch.asm Main_9.c
Dac.c PieCtrl.c
DefaultIsr_9_10.c PieVect.c
DelayUs.asm SineTable.c
Dma.c SysCtrl.c
ECap.c Watchdog.c
EPwm.c Xbar.c
F2837xD_Adc.c

Note: The ClaTasks.asm file will be added during the lab exercise.

Enabling CLA Support in CCS
2. Open the build options by right-clicking on Lab9 in the Project Explorer window and

select Properties. Then under “C2000 Compiler” select “Processor Options”.
Notice the “Specify CLA support” is set to cla1. This is needed to compile and
assemble CLA code. Click OK to close the Properties window.

Inspect Lab_9.cmd
3. Open and inspect Lab_9.cmd. Notice that a section called “Cla1Prog” is being linked

to RAMLS4. This section links the CLA program tasks to the CPU memory space. Two
other sections called “Cla1Data1” and “Cla1Data2” are being linked to RAMLS1 and
RAMLS2, respectively, for the CLA data. These memory spaces will be mapped to the
CLA memory space during initialization. Also, notice the two message RAM sections
used to pass data between the CPU and CLA.

We are linking CLA code directly to the CLA program RAM because we are not yet using
the flash memory. CCS will load the code for us into RAM, and therefore the CPU will
not need to copy the CLA code into the CLA program RAM. In the flash programming lab
exercise later in this workshop, we will modify the linking so that the CLA code is loaded
into flash, and the CPU will do the copy.

4. The CLA C compiler uses a section called .scratchpad for storing local and compiler
generated temporary variables. This scratchpad memory area is allocated using the
linker command file. Notice .scratchpad is being linked to RAMLS0. Close the
Lab_9.cmd linker command file.

Lab 9: CLA Floating-Point FIR Filter

9 - 20 TMS320F2837xD Microcontroller Workshop - Control Law Accelerator

Setup CLA Initialization
During the CLA initialization, the CPU memory block RAMLS4 needs to be configured as CLA
program memory. This memory space contains the CLA Task routines. A one-time force of the
CLA Task 8 will be executed to clear the delay buffer. The CLA Task 1 has been configured to
run an FIR filter. The CLA needs to be configured to start Task 1 on the ADCAINT1 interrupt
trigger. The next section will setup the PIE interrupt for the CLA.

5. Open ClaTasks_C.cla and notice Task 1 has been configured to run an FIR filter.
Within this code the ADC result integer (i.e. the filter input) is being first converted to
floating-point, and then at the end the floating-point filter output is being converted back
to integer. Also, notice Task 8 is being used to initialize the filter delay line. The .cla
extension is recognized by the compiler as a CLA C file, and the compiler will generate
CLA specific code.

6. Edit Cla_9.c to implement the CLA operation as described in the objective for this lab
exercise. Set RAMLS0, RAMLS1, RAMLS2, and RAMLS4 memory blocks as shared
between the CPU and CLA. Configure the RAMLS4 memory block to be mapped to CLA
program memory space. Configure the RAMLS0, RAMLS1 and RAMLS2 memory blocks to
be mapped to CLA data memory space. Note that the RAMLS0 memory block will be
used for the CLA C compiler scratchpad. Set Task 1 peripheral interrupt source to
ADCAINT1 and set the other Task peripheral interrupt source inputs to “software” (i.e.
none). Enable CLA Task 1 interrupt. Enable the use of the IACK instruction to trigger a
task, and then enable Task 8 interrupt.

7. Open Main_9.c and add a line of code in main() to call the InitCla() function.
There are no passed parameters or return values. You just type

 InitCla();

 at the desired spot in main().

8. In Main_9.c comment out the line of code in main() that calls the InitDma() function.
The DMA is no longer being used. The CLA will directly access the ADC RESULT0
register.

Setup PIE Interrupt for CLA
Recall that ePWM2 is triggering the ADC at a 50 kHz rate. In the Control Peripherals lab exercise
(i.e. ePWM lab), the ADC generated an interrupt to the CPU, and the CPU read the ADC result
register in the ADC ISR. Then in the DMA lab exercise, the ADC instead triggered the DMA, and
the DMA generated an interrupt to the CPU, where the CPU read the ADC result register in the
DMA ISR. For this lab exercise, the ADC is instead triggering the CLA, and the CLA will directly
read the ADC result register and run a task implementing an FIR filter. The CLA will generate an
interrupt to the CPU, which will store the filtered results to a circular buffer implemented in the
CLA ISR.

9. Remember that in Adc.c we commented out the code used to enable the ADCA1
interrupt in PIE group 1. This is no longer being used. The CLA interrupt will be used
instead.

10. Using the “PIE Interrupt Assignment Table” find the location for the CLA Task 1 interrupt
“CLA1_1” and fill in the following information:

PIE group #: # within group:

This information will be used in the next step.

 Lab 9: CLA Floating-Point FIR Filter

TMS320F2837xD Microcontroller Workshop - Control Law Accelerator 9 - 21

11. Modify the end of Cla_9.c to do the following:
- Enable the “CLA1_1” interrupt in the PIE (Hint: use the PieCtrlRegs structure)
- Enable the appropriate core interrupt in the IER register

12. Open and inspect DefaultIsr_9_10.c. Notice that this file contains the CLA interrupt
service routine. Save all modified files.

Build and Load
13. Click the “Build” button and watch the tools run in the Console window. Check for

errors in the Problems window.

14. Click the “Debug” button (green bug). A Launching Debug Session window will open.
Select only CPU1 to load the program on (i.e. uncheck CPU2), and then click OK. Then
the CCS Debug perspective view should open, the program will load automatically, and
you should now be at the start of main(). If the device has been power cycled since the
last lab exercise, be sure to configure the boot mode to EMU_BOOT_SARAM using the
Scripts menu.

Run the Code – Test the CLA Operation (Tasks in C)

Note: For the next step, check to be sure that the jumper wire connecting PWM1A (header J4,
pin #40) to ADCINA0 (header J3, pin #30) is in place on the LaunchPad.

15. Run the code in real-time mode using the Script function: Scripts  Realtime
Emulation Control  Run_Realtime_with_Reset. Open and watch the
memory browser window update. Verify that the ADC result buffer contains updated
values.

16. Setup a dual-time graph of the filtered and unfiltered ADC results buffer. Click:
Tools  Graph  Dual Time and set the following values:

Acquisition Buffer Size 50

DSP Data Type 16-bit unsigned integer

Sampling Rate (Hz) 50000

Start Address A AdcBufFiltered

Start Address B AdcBuf

Display Data Size 50

Time Display Unit µs

17. The graphical display should show the filtered PWM waveform in the Dual Time A display
and the unfiltered waveform in the Dual Time B display. You should see that the results
match the previous lab exercise.

18. Fully halt the CPU (real-time mode) by using the Script function: Scripts 
Realtime Emulation Control  Full_Halt.

Lab 9: CLA Floating-Point FIR Filter

9 - 22 TMS320F2837xD Microcontroller Workshop - Control Law Accelerator

Change Task 1 to FIR Filter in Assembly
Previously, the initialization and filter tasks were implemented in C. In this part, we will not be
using the C implementation of the FIR filter located at Task 1 in ClaTasks_C.cla. Instead,
we will add ClaTasks.asm to the project and use the assembly implementation of the FIR
filter located at Task 1 in this file. The CLA setup code in Cla_9.c and the filter initialization
C-code located at Task 8 in ClaTasks_C.cla will not need to change.

19. Open ClaTasks_C.cla and at the beginning of Task 1 change the #if preprocessor
directive from 1 to 0. The sections of code between the #if and #endif will not be
compiled. This has the same effect as commenting out this code. We need to do this to
avoid a conflict with the Task 1 in ClaTask.asm file.

20. Add (copy) ClaTasks.asm to project from C:\C28x\Labs\Lab9\source.

21. Open ClaTasks.asm and notice that the .cdecls directive is being used to include the C
header file in the CLA assembly file. Therefore, we can use the Peripheral Register
Header File references in the CLA assembly code. Next, notice Task 1 has been
configured to run an FIR filter. Within this code special instructions have been used to
convert the ADC result integer (i.e. the filter input) to floating-point and the floating-point
filter output back to integer. Notice at Task 2 the assembly preprocessor .if directive is
set to 0. The assembly preprocessor .endif directive is located at the end of Task 8.
With this setting, Tasks 2 through 8 will not be assembled, again avoiding a conflict with
Task 2 through 8 in the ClaTasks_C.cla file. Save all modified files.

Build and Load
22. Build the project by clicking Project  Build Project, or by clicking on the

“Build” button (if it has been added to the tool bar). Select Yes to “Reload the program
automatically”.

Run the Code – Test the CLA Operation (Tasks in C and ASM)
23. Run the code in real-time mode using the Script function: Scripts  Realtime

Emulation Control  Run_Realtime_with_Reset, and watch the graph window
update. To confirm these are updated values, carefully remove and replace the jumper
wire to ADCINA0. (Remember the graph must be enabled for continuous refresh). The
results should be the same as before.

24. Fully halt the CPU (real-time mode) by using the Script function: Scripts 
Realtime Emulation Control  Full_Halt.

Change All Tasks to Assembly
In this part, we will be using the assembly implementation of the FIR filter and filter delay line
initialization routine located at Task 1 and Task 8, respectively, in the ClaTasks.asm file.
The setup in Cla_9.c will remain the same. The ClaTasks_C.cla is no longer needed
and will be excluded from the build. As a result, the CLA C compiler is not used and the CLA
C compiler scratchpad area allocated by the linker command file will not be needed.

25. Open ClaTasks.asm and at the beginning of Task 2 change the assembly preprocessor
.if directive to 1. Recall that the assembly preprocessor .endif directive is located at the
end of Task 8. Now Task 2 through Task 8 will be assembled, along with Task 1.

26. Exclude ClaTasks_C.cla from the project to avoid conflicts with ClaTasks.asm. In
the Project Explorer window right-click on ClaTasks_C.cla and select “Exclude from
Build”. This file is no longer needed since all of the tasks are now in ClaTasks.asm.

 Lab 9: CLA Floating-Point FIR Filter

TMS320F2837xD Microcontroller Workshop - Control Law Accelerator 9 - 23

Build and Load
27. Build the project by clicking Project  Build Project, or by clicking on the

“Build” button (if it has been added to the tool bar). Select Yes to “Reload the program
automatically”.

Run the Code – Test the CLA Operation (Tasks in ASM)
28. Run the code in real-time mode using the Script function: Scripts  Realtime

Emulation Control  Run_Realtime_with_Reset, and watch the graph window
update. To confirm these are updated values, carefully remove and replace the jumper
wire to ADCINA0. The results should be the same as before.

29. Fully halt the CPU (real-time mode) by using the Script function: Scripts 
Realtime Emulation Control  Full_Halt.

Terminate Debug Session and Close Project
30. Terminate the active debug session using the Terminate button. This will close the

debugger and return Code Composer Studio to the CCS Edit perspective view.

31. Next, close the project by right-clicking on Lab9 in the Project Explorer window and
select Close Project.

End of Exercise

Lab 9: CLA Floating-Point FIR Filter

9 - 24 TMS320F2837xD Microcontroller Workshop - Control Law Accelerator

Lab 9 Reference: Low-Pass FIR Filter

Bode Plot of Digital Low Pass Filter

Coefficients: [1/16, 4/16, 6/16, 4/16, 1/16]

Sample Rate: 50 kHz

TMS320F2837xD Microcontroller Workshop - System Design 10 - 1

System Design

Introduction
This module discusses various aspects of system design. Details of the emulation and analysis
block along with JTAG will be explored. Flash memory programming and the Code Security
Module will be described.

Module Objectives

Module Objectives

Emulation and Analysis Block

External Memory Interface (EMIF)

Flash Configuration and
Memory Performance

Flash Programming

Dual Code Security Module (DCSM)

Emulation and Analysis Block

10 - 2 TMS320F2837xD Microcontroller Workshop - System Design

Chapter Topics
System Design .. 10-1

Emulation and Analysis Block ... 10-3
External Memory Interface (EMIF) .. 10-5
Flash Configuration and Memory Performance .. 10-7
Flash Programming ... 10-10
Dual Code Security Module (DCSM) .. 10-12
Lab 10: Programming the Flash .. 10-16

 Emulation and Analysis Block

TMS320F2837xD Microcontroller Workshop - System Design 10 - 3

Emulation and Analysis Block

JTAG Emulation System
(based on IEEE 1149.1 Boundary Scan Standard)

Some Available Debug Probes

XDS100 CLASS -
BlackHawk: USB100
Spectrum Digital: XDS100

XDS200 CLASS -
BlackHawk: USB200
Spectrum Digital: XDS200

These debug probes offer a balance of low
cost with good performance compared to the
XDS100 class debug probes

These debug probes are ultra-low cost, and
have an unlimited free license for use with
Code Composer Studio

H
E
A
D
E
R

System Under Test

SCAN IN

SCAN OUT
Debug
Probe

TMS320C2000

Note: XDS510 CLASS debug probes are not recommended (obsolete); and for C2000, XDS560 CLASS debug
probes are not recommended since they are expensive and do not offer any advantage over the XDS200
CLASS debug probes

Emulation Connections to the Device

TRST

TMS

TDI

TDO

TCK

EMU0

EMU1

TRST

TMS

TDI

TDO

TCK

TCK_RET

13

14

2

1

3

7

11

9
GND

PD

Vcc (3.3 V)

GND

GND

GND

GND

GND

5

4

6

8

10

12

Vcc (3.3 V)

TMS320F28x7x Debug Header

= If distance between device and header is greater than 6 inches

GND

Emulation and Analysis Block

10 - 4 TMS320F2837xD Microcontroller Workshop - System Design

On-Chip Emulation Analysis Block:
Capabilities

Two hardware analysis units can be configured to provide
any one of the following advanced debug features:

Halt program execution after a
specific value is written to a variable

1 Address Watchpoint with Data

Halt on a specified instruction only
after some other specific routine has
executed

1 Pair Chained Breakpoints

Halt on a specified instruction
(for debugging in Flash)

2 Hardware Breakpoints

A memory location is getting
corrupted; halt the processor when
any value is written to this location

2 Address Watchpoints

Debug ActivityAnalysis Configuration

⇒

⇒

⇒

⇒

On-Chip Emulation Analysis Block:
Hardware Breakpoints and Watchpoints

View  Breakpoints

Hardware Breakpoint
Properties

Hardware Watchpoint
Properties

 External Memory Interface (EMIF)

TMS320F2837xD Microcontroller Workshop - System Design 10 - 5

External Memory Interface (EMIF)

External Memory Interface (EMIF)
 Provides a means for the CPU, DMA, and CLA to connect

to various memory devices
 Support for synchronous (SDRAM) and asynchronous

(SRAM, NOR Flash) memories
 F2837xD includes two EMIFs

 EMIF1 – 16/32-bit interface shared between CPU1 and CPU2
 EMIF2 – 16-bit interface dedicated to CPU1

Arbiter/
Memory

Protection
EMIF1

16/32-Bit
Interface

CPU1

CPU1.DMA1

CPU2

CPU2.DMA1

Arbiter/
Memory

Protection
EMIF2

16-Bit
Interface

CPU1

CPU1.CLA1

EMIF1 shared between CPU1 & CPU2 EMIF2 dedicated to CPU1

External Memory Interface Signals

EMIF_nCS[0]
EMIF_nCAS
EMIF_nRAS

EMIF_CLK
EMIF_CKE

EMIF_nCS[4:2]
EMIF_nOE

EMIF_WAIT
EMIF_RnW

EMIF_nWE
EMIF_BA[1:0]

EMIF_nDQM[x:0]
EMIF_D[x:0]
EMIF_A[x:0]

EMIF

SDRAM
Interface

Asynchronous
Interface

Shared SDRAM
and asynchronous
Interface

Chip select
Column address strobe

Row address strobe
SDRAM clock
Clock enable

Chip select pins
Output enable

Wait input with programmable polarity
Asynchronous read/write control

Write enable
Bank address pins

Byte enable pins
Data bus

Address bus

External Memory Interface (EMIF)

10 - 6 TMS320F2837xD Microcontroller Workshop - System Design

Configurations for EMIF1 and EMIF2

 Synchronous (SDRAM) Memory Support:
 One, two, and four banks of SDRAMs
 Devices with eight, nine, ten, and eleven column address
 CAS latency of two or three clock cycles
 Self-refresh and power-down modes

 Asynchronous (SRAM and NOR Flash) Memory Support:
 External “Wait” input for slower memories
 Programmable read and write cycle timings: setup, hold, strobe
 Programmable data bus width, and select strobe option
 Extended Wait option with programmable timeout

EMIF1 EMIF2
Maximum Data Width 32-Bit 16-Bit
Maximum Address Width 22-Bit (some pins muxed) 12-Bit
SDRAM CSx Support 1 (CS0) 1 (CS0)
ASRAM CSx Support 3 (CS2, CS3, CS4) 1 (CS2)

EMIF Performance

Notes: 1. A ‘word’ can be a 16- or 32-bit access
2. ASRAM assumed to have ta(A) of 10 or 12 ns (access time)
3. TMS320F2837x

a. ASRAM read setup/strobe/hold timings are 1/4/1, add 2 cycles bus start, 1 cycle data latency to CPU  9 cycles
(successive reads that are back-to-back do not incur the 1 cycle data latency, so 8*N+1 cycles for N “RPT” transfers)

b. ASRAM write setup/strobe/hold timings are 1/1/1, add 2 cycles bus start  5 cycles
c. ASRAM read assumes ta(OE) < 5 ns (This is typical for 10 or 12 ns ASRAM)
d. DRAM read, 100 MHz DRAM  14 cycles
e. DRAM write, 100 MHz DRAM  9 cycles

Memory
Type

Access
Type

CPU
Cycles

Throughput
(Mword/s)

ASRAM read 9 22
DRAM read 14 14.3

ASRAM write 5 40

DRAM write 9 22.2

TMS320F2837x at 200 MHz SYSCLK

 Flash Configuration and Memory Performance

TMS320F2837xD Microcontroller Workshop - System Design 10 - 7

Flash Configuration and Memory Performance

Basic Flash Operation
 RWAIT bit-field in the FRDCNTL register specifies the number of

random accesses wait states
 OTP reads are hardwired for 10 wait states (RWAIT has no effect)
 Must specify the number of SYSCLK cycle wait-states;

Reset defaults are maximum value (15)
 Flash/OTP reads returned after (RWAIT + 1 SYSCLK cycles)
 Flash configuration code should not be run from the Flash memory

FlashCtrlRegs.FRDCNTL.bit.RWAIT = 0x3; // Setting for 200 MHz

reserved

31 08 7

RWAIT reserved

12 11

*** Refer to the F28x7x datasheet for detailed numbers ***
For 200 MHz, RANDWAIT = 3

Speeding Up Execution in Flash / OTP

Enable prefetch mechanism:
FlashCtrlRegs.FRD_INTF_CTRL.bit.PREFETCH_EN = 1;

Enable data cache:
FlashCtrlRegs.FRD_INTF_CTRL.bit.DATA_CACHE_EN = 1;

16 or 32
dispatched

16

128

Aligned
128-bit
fetch

2-level deep
fetch buffer

128
C28x
core

decoder
unit

128-bit data
cache

M
U

X

Instruction
fetch

Data read either from
program or data memoryFlash or OTP

Flash Configuration and Memory Performance

10 - 8 TMS320F2837xD Microcontroller Workshop - System Design

Code Execution Performance

 Assume 200 MHz SYSCLKOUT and single-cycle
execution for each instruction

Internal RAM: 200 MIPS
Fetch up to 32 bits every cycle  1 instruction/cycle

Flash: 200 MIPS
Assume RWAIT=3, prefetch buffer enabled
Fetch 128 bits every 4 cycles:

(128 bits) / (32-bits per instruction worst-case)  4 instructions/4 cycles

PC discontinuity will degrade this, while 16-bit instructions can help

Benchmarking in control applications has shown actual performance of about
90% efficiency, yielding approximately 180 MIPS

Data Access Performance
 Assume 200 MHz SYSCLKOUT

 Internal RAM has best data performance – put time critical data here
 Flash performance often sufficient for constants and tables
 Note that the flash instruction fetch pipeline will also stall during a

flash data access
 For best flash performance, arrange data so that all 128 bits in a

cache line are utilized (e.g. sequential access)

Memory 16-bit access 32-bit access Notes
(words/cycle) (words/cycle)

Internal RAM 1 1

Flash 0.73 0.57
‘sequential’ access (8 words/11 cycles) (4 words/7 cycles)

Flash 0.25 0.25
random access (1 word/4 cycles) (1 word/4 cycles)

Assumes RWAIT = 3,
flash data cache enabled,
all 128 bits in cache are used

Assumes RWAIT = 3

 Flash Configuration and Memory Performance

TMS320F2837xD Microcontroller Workshop - System Design 10 - 9

Flash / OTP Power Modes
 Power configuration settings save power by putting Flash/OTP to

‘Sleep’ or ‘Standby’ mode; Flash will automatically enter ‘Active’
mode if a Flash/OTP access is made

 At reset Flash/OTP is in sleep mode
 Operates in three power modes:

 Sleep (lowest power)
 Standby (shorter transition time to active)
 Active (highest power)

 After an access is made, Flash/OTP can automatically power down
to ‘Standby’ or ‘Sleep’ (active grace period set in user
programmable counters)

Setting Flash charge pump fallback power mode to active:
FlashCtrlRegs.FPAC1.bit.PMPPWR = 0x1; // 0: sleep, 1: active

Setting fallback power mode to active:
FlashCtrlRegs.FBFALLBACK.bit.BNKPWR0 = 0x3; // 0: sleep, 1: standby,

// 2: reserved, 3: active

Error Correction Code (ECC) Protection
 Provides capability to screen out Flash/OTP memory faults (enabled at reset)
 Single error correction and double error detection (SECDED)
 For every 64-bits of Flash/OTP, 8 ECC check bits are calculated and

programmed into ECC memory
 ECC check bits are programmed along with Flash/OTP data
 During an instruction fetch or data read operation the 64-bit data/8-bit ECC are

processed by the SECDED to determine one of three conditions:
 No error occurred
 A correctable error (single bit data error) occurred
 A non-correctable error (double bit data error or address error) occurred

SECDED
Single-bit data error
Address/double-bit data error
Single-bit error position
Corrected data out

SECDED
Single-bit data error
Address/double-bit data error
Single-bit error position
Corrected data out

128-bit aligned

Flash
and
OTP

ECC (15:8)

Data (127:64)

ECC (7:0)

Data (63:0)

FlashEccRegs.ECC_ENABLE.bit.ENABLE = 0xA; // 0xA enable; other values disable

Flash Programming

10 - 10 TMS320F2837xD Microcontroller Workshop - System Design

Flash Programming

Flash Programming Basics
 The device CPU performs the flash programming
 The CPU executes Flash utility code from RAM that reads the Flash

data and writes it into the Flash
 We need to get the Flash utility code and the Flash data into RAM

FLASH CPU

RAM

F28x7x

JTAGEmulator

SPI

Flash
Utility
Code

Flash
Data

I2C

R
O

M
B

oo
tlo

ad
er

CAN

SCIRS232

USB

GPIO

Flash Programming Basics
 Sequence of steps for Flash programming:

Minimum Erase size is a sector
Minimum Program size is a bit!
 Important not to lose power during erase step:

If CSM passwords happen to be all zeros, the
CSM will be permanently secured!

 Chance of this happening is quite small! (Erase
step is performed sector by sector)

1. Erase - Set all bits to one
2. Program - Program selected bits with zero
3. Verify - Verify flash contents

Algorithm Function

 Flash Programming

TMS320F2837xD Microcontroller Workshop - System Design 10 - 11

Flash Programming Utilities
 JTAG Emulator Based

 CCS on-chip Flash programmer (Tools  On-Chip Flash)
 CCS UniFlash (TI universal Flash utility)
 BlackHawk Flash utilities (requires Blackhawk emulator)
 Elprotronic FlashPro2000
 Spectrum Digital SDFlash JTAG (requires SD emulator)

 SCI Serial Port Bootloader Based
 CodeSkin C2Prog
 Elprotronic FlashPro2000

 Production Test/Programming Equipment Based
 BP Microsystems programmer
 Data I/O programmer

 Build your own custom utility
 Can use any of the ROM bootloader methods
 Can embed flash programming into your application
 Flash API algorithms provided by TI

* TI web has links to all utilities (http://www.ti.com/c2000)

Dual Code Security Module (DCSM)

10 - 12 TMS320F2837xD Microcontroller Workshop - System Design

Dual Code Security Module (DCSM)

Dual Code Security Module (DCSM)
 DCSM offers protection for two zones – zone 1 & zone 2

(Note: For dual-core devices each CPU has a DCSM)

 Each zone has its own dedicated secure OTP
 Contains security configurations for each zone

 The following on-chip memory can be secured:
 Flash – each sector individually
 LS0-5 RAM – each block individually
 D0-1 RAM – each block individually
 CLA – Includes CLA message RAMs

 Data reads and writes from secured memory are only
allowed for code running from secured memory

 All other data read/write accesses are blocked:
JTAG emulator/debugger, ROM bootloader, code running in
external memory or unsecured internal memory

Zone Selection
 Each securable on-chip memory resource can

be allocated to either zone 1 (Z1), zone 2 (Z2),
or as non-secure
DcsmZ1Regs.Z1_GRABSECTR register:

Allocates individual Flash sectors to zone 1 or non-secure

DcsmZ2Regs.Z2_GRABSECTR register:
Allocates individual Flash sectors to zone 2 or non-secure

DcsmZ1Regs.Z1_GRABRAMR register:
Allocates LS0-5, D0-1, and CLA1 to zone 1 or non-secure

DcsmZ2Regs.Z2_GRABRAMR register:
Allocates LS0-5, D0-1, and CLA1 to zone 2 or non-secure

Technical Reference Manual contains a table to resolve mapping conflicts

 Dual Code Security Module (DCSM)

TMS320F2837xD Microcontroller Workshop - System Design 10 - 13

CSM Passwords

 Each zone is secured by its own 128-bit (four 32-bit
words) user defined CSM password

 Passwords for each zone is stored in its dedicated
OTP location
 Location based on a zone-specific link pointer

 128-bit CSMKEY registers are used to secure and
unsecure the device

 Password locations for each zone can be locked and
secured by programming PSWDLOCK fields in the
OTP with any value other than “1111” (0xF)

Zx_CSMPSWD0
Zx_CSMPSWD1
Zx_CSMPSWD2
Zx_CSMPSWD3

Zone Select Bits in OTP

xxx11111111111111111111111111111 0x020
xxx11111111111111111111111111110 0x030
xxx1111111111111111111111111110x 0x040
xxx111111111111111111111111110xx 0x050
xxx11111111111111111111111110xxx 0x060
xxx1111111111111111111111110xxxx 0x070
xxx111111111111111111111110xxxxx 0x080
xxx11111111111111111111110xxxxxx 0x090
xxx1111111111111111111110xxxxxxx 0x0A0
xxx111111111111111111110xxxxxxxx 0x0B0
xxx11111111111111111110xxxxxxxxx 0x0C0
xxx1111111111111111110xxxxxxxxxx 0x0D0
xxx111111111111111110xxxxxxxxxxx 0x0E0
xxx11111111111111110xxxxxxxxxxxx 0x0F0
xxx1111111111111110xxxxxxxxxxxxx 0x100
xxx111111111111110xxxxxxxxxxxxxx 0x110
xxx11111111111110xxxxxxxxxxxxxxx 0x120
xxx1111111111110xxxxxxxxxxxxxxxx 0x130
xxx111111111110xxxxxxxxxxxxxxxxx 0x140
xxx11111111110xxxxxxxxxxxxxxxxxx 0x150
xxx1111111110xxxxxxxxxxxxxxxxxxx 0x160
xxx111111110xxxxxxxxxxxxxxxxxxxx 0x170
xxx11111110xxxxxxxxxxxxxxxxxxxxx 0x180
xxx1111110xxxxxxxxxxxxxxxxxxxxxx 0x190
xxx111110xxxxxxxxxxxxxxxxxxxxxxx 0x1A0
xxx11110xxxxxxxxxxxxxxxxxxxxxxxx 0x1B0
xxx1110xxxxxxxxxxxxxxxxxxxxxxxxx 0x1C0
xxx110xxxxxxxxxxxxxxxxxxxxxxxxxx 0x1D0
xxx10xxxxxxxxxxxxxxxxxxxxxxxxxxx 0x1E0
xxx0xxxxxxxxxxxxxxxxxxxxxxxxxxxx 0x1F0

Zx-LINKPOINTER Address offset of
Zone-Select block

Zone Select Block
Addr. Offset 32-bit Content

0x0 Zx-EXEONLYRAM

0x2 Zx-EXEONLYSECT

0x4 Zx-GRABRAM

0x6 Zx-GRABSECT

0x8 Zx-CSMPSWD0

0xA Zx-CSMPSWD1

0xC Zx-CSMPSWD2

0xE Zx-CSMPSWD3

 Final link pointer value is
resolved by comparing all three
individual link pointer values
(bit-wise voting logic)

 OTP value “1” programmed as
“0” (no erase operation)

Dual Code Security Module (DCSM)

10 - 14 TMS320F2837xD Microcontroller Workshop - System Design

Zone Select Block - Linker Pointer

Zone Select Block

Addr. Offset 32-bit Content

0x0 Zx-EXEONLYRAM

0x2 Zx-EXEONLYSECT

0x4 Zx-GRABRAM

0x6 Zx-GRABSECT

0x8 Zx-CSMPSWD0

0xA Zx-CSMPSWD1

0xC Zx-CSMPSWD2

0xE Zx-CSMPSWD3

Zone 1 OTP FLASH

0x78000 Z1-LINKPOINTER1

0x78002 Reserved

0x78004 Z1-LINKPOINTER2

0x78006 Reserved

0x78008 Z1-LINKPOINTER3

0x7800A Reserved

0x78010 Z1-PSWDLOCK

0x78012 Reserved

0x78014 Z1-CRCLOCK

0x78016 Reserved

0x78018 Reserved

0x7801A Reserved

0x7801E Z1-BOOTCTRL

0x78020 ZoneSelectBlock1
(16 x 16-bits)

0x78030 ZoneSelectBlock2
(16 x 16-bits)

●
●

●
●

0x781F0 ZoneSelectBlockn
(16 x 16-bits)

Zone 2 OTP FLASH

0x78200 Z2-LINKPOINTER1

0x78202 Reserved

0x78204 Z2-LINKPOINTER2

0x78206 Reserved

0x78208 Z2-LINKPOINTER3

0x7820A Reserved

0x78210 Z2-PSWDLOCK

0x78212 Reserved

0x78214 Z2-CRCLOCK

0x78216 Reserved

0x78218 Reserved

0x7821A Reserved

0x7821E Z2-BOOTCTRL

0x78220 ZoneSelectBlock1
(16 x 16-bits)

0x78230 ZoneSelectBlock2
(16 x 16-bits)

●
●

●
●

0x783F0 ZoneSelectBlockn
(16 x 16-bits)

Three link pointers
need to be

programmed with
the same value

(not ECC
protected)

Secure and Unsecure the CSM

The CSM is always secured after reset
To unsecure the CSM:

Perform a dummy read of each CSMPSWD(0,1,2,3)
register (passwords in the OTP)

Write the correct password to each
CSMKEY(0,1,2,3) register

Passwords are all 0xFFFF on new devices
When passwords are all 0xFFFF, only a read of

each password location (PWL) is required to
unsecure the device

The bootloader does these dummy reads and
hence unsecures devices that do not have
passwords programmed

 Dual Code Security Module (DCSM)

TMS320F2837xD Microcontroller Workshop - System Design 10 - 15

CSM Caveats
 Never program all the PWL’s as 0x0000

Doing so will permanently lock the zone
 Programming the PSWDLOCK field with any

other value than “1111” (0xF) will lock and
secure the password locations

 Remember that code running in unsecured
RAM cannot access data in secured memory
Don’t link the stack to secured RAM if you have

any code that runs from unsecured RAM
 Do not embed the passwords in your code!

Generally, the CSM is unsecured only for debug
Code Composer Studio can unsecure the zone

CSM Password Match Flow

Zone secure
after reset or

runtime

Dummy reads of CSM
PWL of secure zone (that

needs to be unsecure)

Start
Zone

permanently
locked

Zone
Unsecure

Write CSM password
of that zone into

CSMKEYx registers

Correct
password?

Is PWL =
all Fs?

Is PWL =
all 0s?

Yes

Yes

Yes

No

No

No

Lab 10: Programming the Flash

10 - 16 TMS320F2837xD Microcontroller Workshop - System Design

Lab 10: Programming the Flash
 Objective

The objective of this lab exercise is to program and execute code from the on-chip flash memory.
The TMS320F28379D device has been designed for standalone operation in an embedded
system. Using the on-chip flash eliminates the need for external non-volatile memory or a host
processor from which to bootload. In this lab exercise, the steps required to properly configure
the software for execution from internal flash memory will be covered.

Lab 10: Programming the Flash

Objective:

 Program system into Flash Memory

 Learn use of CCS Flash Programmer

 DO NOT PROGRAM PASSWORDS

ADC
RESULT0

ePWM2

jumper
wire

TB Counter
Compare

Action Qualifier

ePWM1
ADCINA0

ePWM2 triggering
ADC on period match
using SOCA trigger every
20 µs (50 kHz)

CPU copies
result to
buffer during
CLA ISR...

data
memory

Display
using CCS

CLA
_Cla1Task1
_Cla1Task2

_Cla1Task8

 Procedure

Open the Project
1. A project named Lab10 has been created for this lab exercise. Open the project by

clicking on Project  Import CCS Projects. The “Import CCS Eclipse Projects”
window will open then click Browse… next to the “Select search-directory” box. Navigate
to: C:\C28x\Labs\Lab10\cpu01 and click OK. Then click Finish to import the
project. All build options have been configured the same as the previous lab exercise.
The files used in this lab exercise are:

 Lab 10: Programming the Flash

TMS320F2837xD Microcontroller Workshop - System Design 10 - 17

Adc.c F2837xD_GlobalVariableDefs.c
Cla_10.c F2837xD_Headers_nonBIOS_cpu1.cmd
ClaTasks.asm Flash.c
ClaTasks_C.cla Gpio.c
CodeStartBranch.asm Lab_10.cmd
Dac.c Main_10.c
DefaultIsr_9_10.c PieCtrl.c
DelayUs.asm PieVect.c
Dma.c SineTable.c
ECap.c SysCtrl.c
EPwm.c Watchdog.c
F2837xD_Adc.c Xbar.c

Note: The Flash.c file will be added during the lab exercise.

Link Initialized Sections to Flash
Initialized sections, such as code and constants, must contain valid values at device power-up.
Stand-alone operation of an embedded system means that no debug probe (emulator) is
available to initialize the device RAM. Therefore, all initialized sections must be linked to the on-
chip flash memory.

Each initialized section actually has two addresses associated with it. First, it has a LOAD
address which is the address to which it gets loaded at load time (or at flash programming time).
Second, it has a RUN address which is the address from which the section is accessed at
runtime. The linker assigns both addresses to the section. Most initialized sections can have the
same LOAD and RUN address in the flash. However, some initialized sections need to be loaded
to flash, but then run from RAM. This is required, for example, if the contents of the section
needs to be modified at runtime by the code.

2. Open and inspect the linker command file Lab_10.cmd. Notice that the first flash sector
has been divided into two blocks named BEGIN_FLASH and FLASH_A. The FLASH_A
flash sector origin and length has been modified to avoid conflicts with the other flash
sector spaces. The remaining flash sectors have been combined into a single block
named FLASH_BCDEFGHIJKLMN. See the reference slide at the end of this lab
exercise for further details showing the address origins and lengths of the various flash
sectors used.

3. Edit Lab_10.cmd to link the following compiler sections to on-chip flash memory block
FLASH_BCDEFGHIJKLMN:

Compiler Sections:

.text .cinit .const .econst .pinit .switch

Copying Interrupt Vectors from Flash to RAM
The interrupt vectors must be located in on-chip flash memory and at power-up needs to be
copied to the PIE RAM as part of the device initialization procedure. The code that performs this
copy is located in InitPieCtrl(). The C-compiler runtime support library contains a memory copy
function called memcpy() which will be used to perform the copy.

4. Open and inspect InitPieCtrl() in PieCtrl.c. Notice the memcpy() function used to
initialize (copy) the PIE vectors. At the end of the file a structure is used to enable the
PIE.

Lab 10: Programming the Flash

10 - 18 TMS320F2837xD Microcontroller Workshop - System Design

Initializing the Flash Control Registers
The initialization code for the flash control registers cannot execute from the flash memory (since
it is changing the flash configuration!). Therefore, the initialization function for the flash control
registers must be copied from flash (load address) to RAM (run address) at runtime. The
memory copy function memcpy() will again be used to perform the copy. The initialization code
for the flash control registers InitFlash() is located in the Flash.c file.

5. Add (copy) Flash.c to the project from C:\C28x\Labs\Lab10\source.

6. Open and inspect Flash.c. The C compiler CODE_SECTION pragma is used to place
the InitFlash() function into a linkable section named “secureRamFuncs”.

7. The “secureRamFuncs” section will be linked using the user linker command file
Lab_10.cmd. In Lab_10.cmd the “secureRamFuncs” will load to flash (load address)
but will run from RAMLS5 (run address). Also notice that the linker has been asked to
generate symbols for the load start, load size, and run start addresses.

While not a requirement from a MCU hardware or development tools perspective (since
the C28x MCU has a unified memory architecture), historical convention is to link code to
program memory space and data to data memory space. Therefore, notice that for the
RAMLS5 memory we are linking “secureRamFuncs” to, we are specifiying “PAGE = 0”
(which is program memory).

8. Open and inspect Main_10.c. Notice that the memory copy function memcpy() is being
used to copy the section “secureRamFuncs”, which contains the initialization function for
the flash control registers.

9. Add a line of code in main() to call the InitFlash() function. There are no passed
parameters or return values. You just type

 InitFlash();

 at the desired spot in main().

Dual Code Security Module and Passwords
The DCSM module provides protection against unwanted copying (i.e. pirating!) of your code
from flash, OTP, LS0-5 RAM blocks, D0-1 RAM blocks, and CLA memory blocks. The DCSM
uses a 128-bit password made up of 4 individual 32-bit words. They are located in the OTP.
During this lab exercise, dummy passwords of 0xFFFFFFFF will be used – therefore only dummy
reads of the password locations are needed to unsecure the DCSM. DO NOT PROGRAM ANY
REAL PASSWORDS INTO THE DEVICE. After development, real passwords are typically
placed in the password locations to protect your code. We will not be using real passwords in the
workshop. Again, DO NOT CHANGE THE VALUES FROM 0xFFFFFFFF.

Executing from Flash after Reset
The F28379D device contains a ROM bootloader that will transfer code execution to the flash
after reset. When the boot mode selection is set for “Jump to Flash” mode, the bootloader will
branch to the instruction located at address 0x080000 in the flash. An instruction that branches
to the beginning of your program needs to be placed at this address. Note that BEGIN_FLASH
begins at address 0x080000. There are exactly two words available to hold this branch
instruction, and not coincidentally, a long branch instruction “LB” in assembly code occupies
exactly two words. Generally, the branch instruction will branch to the start of the C-environment
initialization routine located in the C-compiler runtime support library. The entry symbol for this
routine is _c_int00. Recall that C code cannot be executed until this setup routine is run.

 Lab 10: Programming the Flash

TMS320F2837xD Microcontroller Workshop - System Design 10 - 19

Therefore, assembly code must be used for the branch. We are using the assembly code file
named CodeStartBranch.asm.

10. Open and inspect CodeStartBranch.asm. This file creates an initialized section
named “codestart” that contains a long branch to the C-environment setup routine. This
section needs to be linked to a block of memory named BEGIN_FLASH.

11. In the earlier lab exercises, the section “codestart” was directed to the memory named
BEGIN_M0. Edit Lab_10.cmd so that the section “codestart” will be directed to
BEGIN_FLASH. Save your work.

On power up the reset vector will be fetched and the ROM bootloader will begin execution. If the
emulator is connected, the device will be in emulation boot mode and will use the EMU_KEY and
EMU_BMODE values in the PIE RAM to determine the boot mode. This mode was utilized in the
previous lab exercises. In this lab exercise, we will be disconnecting the emulator and running in
stand-alone boot mode (but do not disconnect the emulator yet!). The bootloader will read the
OTP_KEY and OTP_BMODE values from their locations in the OTP. The behavior when these
values have not been programmed (i.e., both 0xFF) or have been set to invalid values is boot to
flash boot mode.

Initializing the CLA
Previously, the named section “Cla1Prog” containing the CLA program tasks was linked directly
to the CPU memory block RAMLS4 for both load and run purposes. At runtime, all the code did
was map the RAMLS4 block to the CLA program memory space during CLA initialization. For an
embedded application, the CLA program tasks are linked to load to flash and run from RAM. At
runtime, the CLA program tasks must be copied from flash to RAMLS4. The memory copy
function memcpy() will once again be used to perform the copy. After the copy is performed, the
RAMLS4 block will then be mapped to CLA program memory space as was done in the earlier
lab.

12. In Lab_10.cmd notice that the named section “Cla1Prog” will now load to flash (load
address) but will run from RAMLS4 (run address). The linker will also be used to
generate symbols for the load start, load size, and run start addresses.

13. Open Cla_10.c and notice that the memory copy function memcpy() is being used to
copy the CLA program code from flash to RAMLS4 using the symbols generated by the
linker. Just after the copy the MemCfgRegs structure is used to configure the RAMLS4
block as CLA program memory space. Close the opened files.

Build – Lab.out
14. Click the “Build” button to generate the Lab.out file to be used with the CCS Flash

Programmer. Check for errors in the Problems window.

Programming the On-Chip Flash Memory
In CCS the on-chip flash programmer is integrated into the debugger. When the program is
loaded CCS will automatically determine which sections reside in flash memory based on the
linker command file. CCS will then program these sections into the on-chip flash memory.
Additionally, in order to effectively debug with CCS, the symbolic debug information (e.g., symbol
and label addresses, source file links, etc.) will automatically load so that CCS knows where
everything is in your code. Clicking the “Debug” button in the CCS Edit perspective will
automatically launch the debugger, connect to the target, and program the flash memory in a
single step.

Lab 10: Programming the Flash

10 - 20 TMS320F2837xD Microcontroller Workshop - System Design

15. Program the flash memory by clicking the “Debug” button (green bug). A Launching
Debug Session window will open. Select only CPU1 to load the program on (i.e. uncheck
CPU2), and then click OK. The CCS Debug perspective view will open and the flash
memory will be programmed. (If needed, when the “Progress Information” box opens
select “Details >>” in order to watch the programming operation and status). After
successfully programming the flash memory the “Progress Information” box will close.
Then the program will load automatically, and you should now be at the start of main().

Running the Code – Using CCS
16. Reset the CPU using the “CPU Reset” button or click:

Run  Reset  CPU Reset

The program counter should now be at address 0x3FF16A in the “Disassembly” window,
which is the start of the bootloader in the Boot ROM. If needed, click on the “View
Disassembly…” button in the window that opens, or click View  Disassembly.

17. Under Scripts on the menu bar click:

EMU Boot Mode Select  EMU_BOOT_FLASH

This has the debugger load values into EMU_KEY and EMU_BMODE so that the
bootloader will jump to "Flash" at address 0x080000.

18. Next click:

Run  Go Main

The code should stop at the beginning of your main()routine. If you got to that point
succesfully, it confirms that the flash has been programmed properly, that the bootloader
is properly configured for jump to flash mode, and that the codestart section has been
linked to the proper address.

19. You can now run the CPU, and you should observe the LED D9 on the LaunchPad
blinking. Try resetting the CPU, select the EMU_BOOT_FLASH boot mode, and then
hitting run (without doing the Go Main procedure). The LED should be blinking again.

20. Halt the CPU.

Terminate Debug Session and Close Project
21. Terminate the active debug session using the Terminate button. This will close the

debugger and return Code Composer Studio to the CCS Edit perspective view.

22. Next, close the project by right-clicking on Lab10 in the Project Explorer window and
select Close Project.

Running the Code – Stand-alone Operation (No Emulator)
Recall that if the device is in stand-alone boot mode, the state of GPIO72 and GPIO84 pins are
used to determine the boot mode. On the LaunchPad switch SW1 controls the boot options for
the F28379D device. Check that switch SW1 positions 1 and 2 are set to the default “1 – on”
position (both switches up). This will configure the device (in stand-alone boot mode) to
GetMode. Since the OTP_KEY has not been programmed, the default GetMode will be boot from
flash. Details of the switch positions can be found in the LaunchPad User’s Guide.

23. Close Code Composer Studio.

 Lab 10: Programming the Flash

TMS320F2837xD Microcontroller Workshop - System Design 10 - 21

24. Disconnect the USB cable from the LaunchPad (i.e. remove power from the LaunchPad).

25. Re-connect the USB cable to the LaunchPad (i.e. power the LaunchPad). The LED
should be blinking, showing that the code is now running from flash memory.

End of Exercise

Lab 10: Programming the Flash

10 - 22 TMS320F2837xD Microcontroller Workshop - System Design

Lab 12 Reference: Programming the Flash

Flash Memory Section Blocks

SECTIONS
{

codestart :> BEGIN_FLASH, PAGE = 0

}

Lab_10.cmd

BEGIN_FLASH
length = 0x2

page = 0

FLASH_BCDEFGHIJKLMN
length = 0x03E000

page = 0

FLASH_A
length = 0x001FFE

page = 0

0x080000

0x080002

0x082000

origin =

Startup Sequence from Flash Memory

0x080000

0x3F8000

0x3FFFC0

Boot ROM (32Kw)

BROM vector (64w)
* reset vector

Boot Code

RESET

InitBoot

{SCAN GPIO}

FLASH (256Kw)

_c_int00
LB “rts2800_ml.lib”

“user” code sections

_c_int00

main ()
{

}

2

3

4

5

1

……
……
……

* reset vector = 0x3FF16A for CPU1; 0x3FEC52 for CPU2

TMS320F2837xD Microcontroller Workshop - Dual-Core Inter-Processor Communications 11 - 1

Dual-Core Inter-Processor Communications

Introduction
This module explains the use and operation of the Inter-Processor Communications (IPC). The
IPC allows communication between the two CPU subsystems (i.e. CPU1 and CPU2).

Module Objectives

Module Objectives

Understand the fundamental
operation of Inter-Processor
Communications (IPC)

Use the IPC to transfer data between
CPU1 and CPU2

Inter-Processor Communications

11 - 2 TMS320F2837xD Microcontroller Workshop - Dual-Core Inter-Processor Communications

Chapter Topics
Dual-Core Inter-Processor Communications ... 11-1

Inter-Processor Communications .. 11-3
IPC Global Shared RAM and Message RAM ... 11-3
Interrupts and Flags .. 11-5
IPC Data Transfer ... 11-7

Lab 11: Inter-Processor Communications... 11-9

 Inter-Processor Communications

TMS320F2837xD Microcontroller Workshop - Dual-Core Inter-Processor Communications 11 - 3

Inter-Processor Communications

IPC Features

Message RAMs

 IPC flags and interrupts

 IPC command registers

Flash pump semaphore

Clock configuration semaphore

Free-running counter

Allows Communications Between the
Two CPU Subsystems

All IPC features are independent of each other

IPC Global Shared RAM and Message RAM

Global Shared RAM
 Device contains up to 16 blocks of global shared RAM

 Blocks named GS0 – GS15
 Each block size is 4K words
 Each block can configured to be used by CPU1 or CPU2

 Selected by MemCfgRegs.GSxMSEL register
 Individual memory blocks can be shared between the

CPU and DMA

Ownership
CPU1 Subsystem CPU2 Subsystem

CPU1 CPU1.DMA CPU2 CPU2.DMA

CPU1 Subsystem* R/W/Exe R/W R R

CPU2 Subsystem R R R/W/Exe R/W

* defaultNote: register lock protected

Inter-Processor Communications

11 - 4 TMS320F2837xD Microcontroller Workshop - Dual-Core Inter-Processor Communications

There are up to 16 blocks of shared RAM on F2837xD devices. These shared RAM blocks are
typically used by the application, but can also be used for transferring messages and data.

Each block can individually be owned by either CPU1 or CPU2.

CPU1 core ownership:
At reset, CPU1 owns all of the shared RAM blocks. In this configuration CPU1 core can freely
use the memory blocks. CPU1 can read, write or execute from the block and CPU1.DMA can
read or write.

On the CPU2 core, CPU2 and CPU2.DMA can only read from these blocks. Blocks owned by the
CPU1 core can be used by the CPU1 to send CPU2 messages. This is referred to as “C1toC2”.

CPU2 core ownership:

After reset, the CPU1 application can assign ownership of blocks to the CPU2 subsystem. In this
configuration, CPU2 core can freely use the blocks. CPU2 can read, write or execute from the
block and the CPU2.DMA can read or write. CPU1 core, however can only read from the block.
Blocks owned by CPU2 core can be used can be used to send messages from the CPU2 to
CPU1. This is referred to as “C2toC1”.

IPC Message RAM
 Device contains 2 blocks of Message RAM
 Each block size is 1K words
 Each block is always enabled and the

configuration is fixed
 Used to transfer messages or data between

CPU1 and CPU2

Message RAM
CPU1 Subsystem CPU2 Subsystem

CPU1 CPU1.DMA CPU2 CPU2.DMA

CPU1 to CPU2 (“C1toC2”) R/W R/W R R

CPU2 to CPU1 (“C2toC1”) R R R/W R/W

The F2837xD has two dedicated message RAM blocks. Each block is 1K words in length. Unlike
the shared RAM blocks, these blocks provide communication in one direction only and cannot be
reconfigured.

CPU1 to CPU2 “C1toC2” message RAM:
The first message RAM is the CPU1 to CPU2 or C1toC2. This block can be read or written to by
the CPU1 and read by the CPU2. CPU1 can write a message to this block and then the CPU2
can read it.

CPU2 to CPU1 “C2toC1” message RAM:
The second message RAM is the CPU2 to CPU1 or C2toC1. This block can be read or written to
by CPU2 and read by CPU1. This means CPU2 can write a message to this block and then

 Inter-Processor Communications

TMS320F2837xD Microcontroller Workshop - Dual-Core Inter-Processor Communications 11 - 5

CPU1 can read it. After the sending CPU writes a message it can inform the receiver CPU that it
is available through an interrupt or flag.

IPC Message Registers

 Provides very simple and flexible messaging
 Dedicated registers mapped to both CPU’s

 The definition (what the register content
means) is up to the application software

 TI’s IPC-Lite drivers use the IPC message
registers

Local Register
Name

Local
CPU

Remote
CPU

Remote Register
Name

IPCSENDCOM R/W R IPCRECVCOM

IPCSENDADDR R/W R IPCRECVADDR

IPCSENDDATA R/W R IPCRECVDATA

IPCREMOTEREPLY R R/W IPCLOCALREPLY

Interrupts and Flags

IPC Flags and Interrupts
 CPU1 to CPU2: 32 flags with 4 interrupts (IPC0-3)
 CPU2 to CPU1: 32 flags with 4 interrupts (IPC0-3)

Register
IPCSET Message waiting (send interrupt and/or set flag)
IPCFLG Bit is set by the “SET” register
IPCCLR Clear the flag

Requesting CPU  Set, Flag and Clear registers

Register
IPCSTS Status (reflects the FLG bit)
IPCACK Clear STS and FLG

Receiving CPU  Status and Acknowledge registers

Inter-Processor Communications

11 - 6 TMS320F2837xD Microcontroller Workshop - Dual-Core Inter-Processor Communications

When the sending CPU wants to inform the receiver that a message is ready, it can make use of
an interrupt or flag. There are identical IPC interrupt and flag resources on both CPU1 core and
CPU2 core.

4 Interrupts:
There are 4 interrupts that CPU1 can send to CPU2 (and vice-versa) through the Peripheral
Interrupt Expansion (PIE) module. Each of the interrupts has a dedicated vector within the PIE,
IPC0 – IPC3.

28 Flags:
In addition, there are 28 flags available to each of the CPU cores. These flags can be used for
messages that are not time critical or they can be used to send status back to originating
processor. The flags and interrupts can be used however the application sees fit and are not tied
to particular operation in hardware.

Registers: Set, Flag, Clear, Status and Acknowledge
The registers to control the IPC interrupts and flags are 32-bits:

Bits [3:0] = interrupt & flag
Bits [31:4] = flag only

Messaging with IPC Flags and Interrupts

CPU2 Memory MapCPU1 Memory Map

IPCCLR

IPCFLG IPCSTS

IPCACK

IPCSET

IPCCLR

IPCFLG CPU2

Set

Clear

Q
PIE

(IPC0-3)

PIE
(IPC0-3)

CPU1

Set

Clear

Q

IPCSTS

IPCACK

IPC Registers

IPCSET
IPC Registers

R/W

R/W

CPU1 to CPU2

CPU2 to CPU1

 Inter-Processor Communications

TMS320F2837xD Microcontroller Workshop - Dual-Core Inter-Processor Communications 11 - 7

IPC Data Transfer

Basic IPC Data Transfer
 Basic option – no software drivers needed

and easy to use!
Use the Message RAMs or global shared RAMs to

transfer data between processors at a known
address

Use the IPC flag registers to tell the other
processor that the data is ready

C1toC2 MSG RAM

C2toC1 MSG RAM

GSx Shared
RAM’s

CPU1 Application CPU2 Application

Message1: Write a message to
C1toC2 MSG RAM

C1TOC2IPCFLG C1TOC2IPCSTS

2: Write 1 to
C1TOC2IPCSET bit

3: sees C1TOC2IPCSTS
bit is set

4: read message

5: write 1 to
C1TOC2IPCACK bit

The F2837xD IPC is very easy to use. At the most basic level, the application does not need any
separate software drivers to communicate between processors. It can utilize the message RAM’s
and shared RAM blocks to pass data between processors at a fixed address known to both
processors. Then the sending processor can use the IPC flag registers merely to flag to the
receiving processor that the data is ready. Once the receiving processor has grabbed the data, it
will then acknowledge the corresponding IPC flag to indicate that it is ready for more messages.

As an example:
1. First, CPU1 would write a message to the CPU2 in C1toC2 MSG RAM.
2. Then the CPU1 would write a 1 to the appropriate flag bit in the C1TOC2IPCSET

register. This sets the C1TOC2IPCFLG, which also sets the C1TOC2IPCSTS register on
CPU2, letting CPU2 know that a message is available.

3. Then CPU2 sees that a bit in the C1TOC2IPCSTS register is set.
4. Next CPU2 reads the message from the C1toC2 MSG RAM and then
5. It writes a 1 to the same bit in the C1TOC2IPCACK register to acknowledge that it has

received the message. This subsequently clears the flag bit in C1TOC2IPCFLG and
C1TOC2IPCSTS.

6. CPU1 can then send more messages using that particular flag bit.

Inter-Processor Communications

11 - 8 TMS320F2837xD Microcontroller Workshop - Dual-Core Inter-Processor Communications

IPC Software Solutions Summary
 Basic Option

No software drivers needed
Uses IPC registers only (simple message passing)

 IPC-Lite Software API Driver
Uses IPC registers only (no memory used)
 Limited to 1 IPC interrupt at a time
 Limited to 1 command/message at a time
CPU1 can use IPC-Lite to communicate with CPU2

boot ROM
Main IPC Software API Driver

Uses circular buffers message RAMs
Can queue up to 4 messages prior to processing

(configurable)
Can use multiple IPC ISRs at a time
Requires additional setup in application code prior

to use

There are three options to use the IPC on the device.

Basic option: A very simple option that does not require any drivers. This option only requires
IPC registers to implement very simple flagging of messages passed between processors.

Driver options: If the application code needs a set of basic IPC driver functions for reading or
writing data, setting/clearing bits, and function calls, then there are 2 IPC software driver solutions
provided by TI.

IPC-Lite:
• Only uses the IPC registers. No additional memory such as message RAM or shared

RAM is needed.
• Only one IPC ISR can be used at a time.
• Can only process one message at a time.
• CPU1 can use IPC lite to communicate with the CPU2 boot ROM. The CPU2 boot ROM

processes basic IPC read, write, bit manipulation, function call, and branch commands.

Main IPC Software API Driver: (This is a more feature filled IPC solution)
• Utilizes circular buffers in C2toC1 and C1toC2 message RAM’s.
• Allows application to queue up to 4 messages prior to processing (configurable).
• Allows application to use multiple IPC ISR’s at a time.
• Requires additional setup in application code prior to use.

In addition to the above, SYS/BIOS 6 will provide a new transport module to work with the shared
memory and IPC resources on the F2837x.

 Lab 11: Inter-Processor Communications

TMS320F2837xD Microcontroller Workshop - Dual-Core Inter-Processor Communications 11 - 9

Lab 11: Inter-Processor Communications
 Objective

The objective of this lab exercise is to demonstrate and become familiar with the operation of the
IPC module. We will be using the basic IPC features to send data in both directions between
CPU1 and CPU2. A typical dual-core F2837xD application consists of two separate and
completely independent CCS projects. One project is for CPU1, and the other project is for
CPU2. As in the previous lab exercises, PWM2 will be configured to provide a 50 kHz SOC
signal to ADC-A. An End-of-Conversion ISR on CPU1 will read each result and write it into a
data register in the IPC. An IPC interrupt will then be triggered on CPU2 which fetches this data
and stores it in a circular buffer. The same ISR grabs a data point from a sine table and loads it
into a different IPC register for transmission to CPU1. This triggers an interrupt on CPU1 to fetch
the sine data and write it into DAC-B. The DAC-B output is connected by a jumper wire to the
ADCINA0 pin. If the program runs as expected, the sine table and ADC results buffer on CPU2
should contain very similar data.

Lab 11: Inter-Processor Communications

...

View ADC
buffer

Code Composer
Studio

PWM2 triggers
ADC-A at 50 kHz

...

jumper
wire

IPC1

IPC0

Sine Table

ADC Results

RESULT0

ADC-A

Pin 09

DACVALS

DAC-B

IPC1_ISR
1. Reads IPC1 data

and stores in circular
buffer

2. Writes next sine
data to IPC0

CPU1 CPU2

IPC0_ISR
Reads IPC0 data and writes into DAC-B

ADCA1_ISR
Reads ADC result and writes to IPC1

Pin 11

IPCRECVADDR

IPCSENDDATA

IPCSENDADDR

IPCRECVDATA

Toggle GPIO31 LED D10 @ 5 Hz
Toggle GPIO34 LED D9 @ 1 Hz

 Procedure

Open the Projects – CPU1 & CPU2
1. Two projects named Lab11_cpu01 and Lab11_cpu02 have been created for this lab

exercise. Open both projects by clicking on Project  Import CCS Projects. The
“Import CCS Eclipse Projects” window will open then click Browse… next to the “Select
search-directory” box. Navigate to: C:\C28x\Labs\Lab11 and click OK.

Both projects will appear in the “Discovered projects” window. Click Select All and click
Finish to import the project. All build options for each project have been configured the
same as the previous lab exercise.

The files used in the CPU1 project are:

Lab 11: Inter-Processor Communications

11 - 10 TMS320F2837xD Microcontroller Workshop - Dual-Core Inter-Processor Communications

Adc.c F2837xD_Headers_nonBIOS_cpu1.cmd
CodeStartBranch.asm Gpio.c
Dac.c Lab_11_cpu1.cmd
DefaultIsr_11_cpu1.c Main_11_cpu1.c
DelayUs.asm PieCtrl.c
EPwm_11.c PieVect.c
F2837xD_Adc.c SysCtrl.c
F2837xD_GlobalVariableDefs.c Watchdog.c

The files used in the CPU2 project are:
CodeStartBranch.asm Main_11_cpu2.c
DefaultIsr_11_cpu2.c PieCtrl.c
F2837xD_GlobalVariableDefs.c PieVect.c
F2837xD_Headers_nonBIOS_cpu1.cmd SineTable.c
Lab_11_cpu2.cmd Watchdog.c

Inspect the Project – CPU1
2. Click on the project name Lab11_cpu01 in the Project Explorer window to set the project

active. Then click on the plus sign (+) to the left of Lab11_cpu01 to expand the file list.

3. Open and inspect Main_11_cpu1.c. Notice the synchronization handshake code using
IPC17 during initialization:
 //--- Wait here until CPU02 is ready

 while (IpcRegs.IPCSTS.bit.IPC17 == 0) ; // Wait for CPU02 to set IPC17

 IpcRegs.IPCACK.bit.IPC17 = 1; // Acknowledge and clear IPC17

CPU1 will start first and then wait until CPU2 releases it from the while() loop. This only
needs to be done once. In effect, CPU1 is waiting until CPU2 is ready to accept IPC
interrupts, thereby making sure that the CPUs are ready for messaging through the IPC.

4. Open and inspect DefaultIsr_11_cpu1.c. This file contains two interrupt service
routines – one (ADCA1_ISR) at PIE1.1 reads the ADC results which is sent over IPC1 to
CPU2, and the other (IPC0_ISR) at PIE1.13 reads the incoming sine table point for the DAC
which is sent over IPC0 from CPU2. Additionally, ADCA1_ISR toggles the LaunchPad LED
D9 at 1 Hz as a visual indication that it is running.

In ADCA1_ISR() the ADC result value being sent to CPU2 is written via the IPCSENDDATA
register. In IPC0_ISR() the incoming data from CPU2 for the DAC is read via the
IPCRECVADDR register. These registers are part of the IPC module and provide an easy way
to transmit single data words between CPUs without using memory.

Inspect the Project – CPU2
5. Click on the project name Lab11_cpu02 in the Project Explorer window to set the project

active. Then click on the plus sign (+) to the left of Lab11_cpu02 to expand the file list.

6. Open and inspect Main_11_cpu2.c. Notice the synchronization handshake code used to
release CPU1 from its while() loop:
 //--- Let CPU1 know that CPU2 is ready

 IpcRegs.IPCSET.bit.IPC17 = 1; // Set IPC17 to release CPU1

7. Open and inspect DefaultIsr_11_cpu2.c. This file contains a single interrupt service
routine – (IPC1_ISR) at PIE1.14 reads the incoming ADC results which is sent over IPC1
from CPU1, and writes the next sine table point for the DAC which is sent over IPC0 to
CPU1. Additionally, IPC1_ISR toggles the LaunchPad LED D10 at 5 Hz as a visual
indication that it is running.

 Lab 11: Inter-Processor Communications

TMS320F2837xD Microcontroller Workshop - Dual-Core Inter-Processor Communications 11 - 11

In IPC1_ISR() the incoming ADC result value from CPU1 is read via the IPCRECVDATA
register, and the sine data to CPU1 is written via the IPCSENDADDR register. The
IPCSENDDATA and IPCRECVDATA registers are mapped to the same address on each CPU,
as are the IPCSENDADDR and IPCRECVADDR registers.

Jumper Wire Connection
8. Using a jumper wire, connect the ADCINA0 (header J3, pin #30) to DACB (header J7, pin

#70) on the LaunchPad. Refer to the following diagram for the pins that need to be
connected.

Build and Load the Project
9. In the Project Explorer window click on the Lab11_cpu01 project to set it active. Then click

the Build button and watch the tools run in the Console window. Check for any errors in the
Problems window. Repeat this step for the Lab11_cpu02 project.

10. Again, in the Project Explorer window click on the Lab11_cpu01 project to set it active. Click
on the Debug button (green bug). A Launching Debug Session window will open. Select
only CPU1 to load the program on (i.e. uncheck CPU2), and then click OK. The CCS Debug
perspective view should open, then CPU1 will connect to the target and the program will load
automatically.

11. The Debug window reflects the current status of CPU1 and CPU2.

Notice that CPU1 is currently connected and CPU2 is “Disconnected”. This means that CCS
has no control over CPU2 thus far; it is freely running from the view of CCS. Of course CPU2
is under control of CPU1 and since we have not executed an IPC command yet, CPU2 is
stopped by an “Idle” mode instruction in the Boot ROM.

12. Next, we need to connect to and load the program on CPU2. Right-click at the line “Texas
Instruments XDS100v2 USB Emulator_0/C28xx_CPU2” and select Connect Target.

13. With the line “Texas Instruments XDS100v2 USB Emulator_0/C28xx_CPU2” still highlighted,
load the program:

Lab 11: Inter-Processor Communications

11 - 12 TMS320F2837xD Microcontroller Workshop - Dual-Core Inter-Processor Communications

Run  Load  Load Program…

Browse to the file: C:\C28x\Labs\Lab11\cpu02\Debug\Lab11_cpu02.out and select
OK to load the program.

14. Again, with the line “Texas Instruments XDS100v2 USB Emulator_0/C28xx_CPU1”
highlighted, set the bootloader mode using the menu bar by clicking:

Scripts  EMU Boot Mode Select  EMU_BOOT_SARAM

Use the same procedure above to set the bootloader mode for CPU2. If the device has been
power cycled between lab exercises, or within this lab exercise, be sure to configure the boot
mode to EMU_BOOT_SARAM using the Scripts menu for both CPU1 and CPU2.

Run the Code
15. In the Debug window, click on the line “Texas Instruments XDS100v2 USB

Emulator_0/C28xx_CPU1”. Run the code on CPU1 by clicking the green Resume button. At
this point CPU1 is waiting for CPU2 to be ready.

16. In the Debug window, click on the line “Texas Instruments XDS100v2 USB
Emulator_0/C28xx_CPU2”. As before, run the code on CPU2 by clicking the Resume button.
Using the IPC17, CPU2 communicates to CPU1 that it is now ready. On the LaunchPad,
LED D9 connected to CPU1 should be blinking at approximately 1 Hz and LED D10
connected to CPU2 should be blinking at approximately 5 Hz.

17. In the Debug window select CPU1. Halt the CPU1 code after a few seconds by clicking on
the Suspend button.

18. Then in the Debug window select CPU2. Halt the CPU2 code by using the same procedure.

View the ADC Results
19. Open and setup a graph to plot a 50-point window of the ADC results buffer.

Click: Tools  Graph  Single Time and set the following values:

Acquisition Buffer Size 50

DSP Data Type 16-bit unsigned integer

Sampling Rate (Hz) 50000

Start Address AdcBuf

Display Data Size 50

Time Display Unit sample

Select OK to save the graph options.

20. If the IPC communications is working, the ADC results buffer on CPU2 should contain the
sine data transmitted from the look-up table. The graph view should look like:

 Lab 11: Inter-Processor Communications

TMS320F2837xD Microcontroller Workshop - Dual-Core Inter-Processor Communications 11 - 13

Run the Code - Real-Time Emulation Mode
21. We will now run the code in real-time emulation mode. Enable the graph window for

continuous refresh. On the graph window toolbar, left-click on “Enable Continuous
Refresh” (the yellow icon with the arrows rotating in a circle over a pause sign). This will
allow the graph to continuously refresh in real-time while the program is running.

22. In the Debug window highlight the line “Texas Instruments XDS100v2 USB
Emulator_0/C28xx_CPU1”. Run the code on CPU1 in real-time mode by clicking:

Scripts  Realtime Emulation Control  Run_Realtime_with_Reset

23. Next, in the Debug window highlight the line “Texas Instruments XDS100v2 USB
Emulator_0/C28xx_CPU2”. Run the code on CPU2 in real-time mode by using the same
procedure above.

The graph should now be updating in real-time.

24. Carefully remove and replace the jumper wire from the DACB output (header J7, pin #70) to
the ADCINA0 input (header J3, pin #30). The ADC results graph should disappear and be
replaced by a flat line when the jumper wire is removed. This shows that the sine data is
being transmitted over IPC0 to CPU1, and (after being sent from DAC to ADC) received from
CPU1 over IPC1.

25. Now we will view the IPC registers while the code is running in real-time emulation mode on
CPU1 and CPU2. Open Main_11_cpu1.c (or Main_11_cpu2.c), highlight the “IpcRegs”
structure and right click, then select Add Watch Expression… and click OK. Enable the
Expressions window for continuous refresh.

26. In the Debug window highlight the line “Texas Instruments XDS100v2 USB
Emulator_0/C28xx_CPU1”. Then in the Expressions window open “IpcRegs”, scroll down
and notice the IPCSENDDATA and IPCRECVADDR registers is updating, as expected for
CPU1. Also, notice that IPCSENDADDR and IPCRECVDATA registers, as well as the graph
(ADC buffer) are not updated on CPU1.

27. In the Debug window highlight the line “Texas Instruments XDS100v2 USB
Emulator_0/C28xx_CPU2”. Then in the Expressions window open “IpcRegs”, scroll down
and notice the IPCRECVDATA and IPCSENDADDR registers, and the graph is updating, as
expected for CPU2. Likewise, notice that IPCRECVADDR and IPCSENDDATA registers are
not updated on CPU2.

28. Again, in the Debug window highlight the line “Texas Instruments XDS100v2 USB
Emulator_0/C28xx_CPU1”. Fully halt the code on CPU1 in real-time mode by clicking:

Scripts  Realtime Emulation Control  Full_Halt

29. Next, fully halt the code on CPU2 in real-time mode by using the same procedure.

Terminate Debug Session and Close Project
30. Terminate the active debug session using the Terminate button. This will close the

debugger and return Code Composer Studio to the CCS Edit perspective view.

31. Next, close the Lab11_cpu01 and Lab11_cpu02 projects by right-clicking on each project
in the Project Explorer window and select Close Project.

Lab 11: Inter-Processor Communications

11 - 14 TMS320F2837xD Microcontroller Workshop - Dual-Core Inter-Processor Communications

End of Exercise

TMS320F2837xD Microcontroller Workshop - Communications 12 - 1

Communications

Introduction
The TMS320C28x contains features that allow several methods of communication and data
exchange between the C28x and other devices. Many of the most commonly used
communications techniques are presented in this module.

The intent of this module is not to give exhaustive design details of the communication
peripherals, but rather to provide an overview of the features and capabilities. Once these
features and capabilities are understood, additional information can be obtained from various
resources such as documentation, as needed. This module will cover the basic operation of the
communication peripherals, as well as some basic terms and how they work.

Module Objectives

Module Objectives

Serial Peripheral Interface (SPI)
Serial Communication Interface (SCI)

Multichannel Buffered Serial Port (McBSP)

 Inter-Integrated Circuit (I2C)

Universal Serial Bus (USB)

Controller Area Network (CAN)

Note: Up to 3 SPI modules, 4 SCI modules, 2 McBSP modules, 2 I2C modules,
1 USB module, and 2 CAN modules are available on the F28x7x devices

The F2837xD dual-core MCU includes numerous communications peripherals that extend the
connectivity of the device. There are up to three Serial Peripheral Interface (SPI) modules, four
Serial Communication Interface (SCI) modules, two Multi-channel Buffered Serial Port (McBSP)
modules, two Inter-Integrated Circuit (I2C) modules, two Controller Area Network (CAN) modules,
one Universal Serial Bus (USB) module, and one Universal Parallel Port (uPP) module. These
peripherals can be assigned to either the CPU1 subsystem or the CPU2 subsystem, except for
the USB and uPP which is dedicated to only the CPU1 subsystem.

Communications Techniques

12 - 2 TMS320F2837xD Microcontroller Workshop - Communications

Chapter Topics
Communications ... 12-1

Communications Techniques .. 12-3
Serial Peripheral Interface (SPI) ... 12-4

SPI Summary .. 12-7
Serial Communications Interface (SCI) ... 12-8

Multiprocessor Wake-Up Modes ... 12-10
SCI Summary .. 12-12

Multichannel Buffered Serial Port (McBSP) .. 12-13
Definition: Bit, Word, and Frame ... 12-14
Multi-Channel Selection .. 12-15
McBSP Summary .. 12-15

Inter-Integrated Circuit (I2C) ... 12-16
I2C Operating Modes and Data Formats .. 12-17
I2C Summary .. 12-18

Universal Serial Bus (USB) ... 12-19
USB Communication ... 12-20
Enumeration .. 12-20
F28x USB Hardware ... 12-21
USB Controller Summary .. 12-21

Controller Area Network (CAN) ... 12-22
CAN Bus and Node ... 12-23
Principles of Operation .. 12-24
Message Format and Block Diagram .. 12-25
CAN Summary .. 12-26

 Communications Techniques

TMS320F2837xD Microcontroller Workshop - Communications 12 - 3

Communications Techniques
Several methods of implementing a TMS320C28x communications system are possible. The
method selected for a particular design should reflect the method that meets the required data
rate at the lowest cost. Various categories of interface are available and are summarized in the
learning objective slide. Each will be described in this module.

Synchronous vs. Asynchronous

 Synchronous
 Short distances (on-board)
 High data rate
 Explicit clock

 Asynchronous
 longer distances
 Lower data rate (≈ 1/8 of SPI)
 Implied clock (clk/data mixed)
 Economical with reasonable

performance

C28x

U2

PCB

Port

C28x

PCB

Port
Destination

Serial ports provide a simple, hardware-efficient means of high-level communication between
devices. Like the GPIO pins, they may be used in stand-alone or multiprocessing systems.

In a multiprocessing system, they are an excellent choice when both devices have an available
serial port and the data rate requirement is relatively low. Serial interface is even more desirable
when the devices are physically distant from each other because the inherently low number of
wires provides a simpler interconnection.

Serial ports require separate lines to implement, and they do not interfere in any way with the
data and address lines of the processor. The only overhead they require is to read/write new
words from/to the ports as each word is received/transmitted. This process can be performed as
a short interrupt service routine under hardware control, requiring only a few cycles to maintain.

The C28x family of devices have both synchronous and asynchronous serial ports. Detailed
features and operation will be described next.

Serial Peripheral Interface (SPI)

12 - 4 TMS320F2837xD Microcontroller Workshop - Communications

Serial Peripheral Interface (SPI)
The SPI is a high-speed synchronous serial port that shifts a programmable length serial bit
stream into and out of the device at a programmable bit-transfer rate. It is typically used for
communications between processors and external peripherals, and it has a 16-level deep receive
and transmit FIFO for reducing servicing overhead. During data transfers, one SPI device must
be configured as the transfer MASTER, and all other devices configured as SLAVES. The
master drives the transfer clock signal for all SLAVES on the bus. SPI communications can be
implemented in any of three different modes:

• MASTER sends data, SLAVES send dummy data

• MASTER sends data, one SLAVE sends data

• MASTER sends dummy data, one SLAVE sends data

In its simplest form, the SPI can be thought of as a programmable shift register. Data is shifted in
and out of the SPI through the SPIDAT register. Data to be transmitted is written directly to the
SPIDAT register, and received data is latched into the SPIBUF register for reading by the CPU.
This allows for double-buffered receive operation, in that the CPU need not read the current
received data from SPIBUF before a new receive operation can be started. However, the CPU
must read SPIBUF before the new operation is complete of a receiver overrun error will occur. In
addition, double-buffered transmit is not supported: the current transmission must be complete
before the next data character is written to SPIDAT or the current transmission will be corrupted.

The Master can initiate a data transfer at any time because it controls the SPICLK signal. The
software, however, determines how the Master detects when the Slave is ready to broadcast.

SPI Data Flow

Simultaneous transmits and receive
SPI Master provides the clock signal

SPI Shift Register

SPI Device #1 - Master SPI Device #2 - Slave

shift shift

clock

SPI Shift Register

 Serial Peripheral Interface (SPI)

TMS320F2837xD Microcontroller Workshop - Communications 12 - 5

SPI Block Diagram

SPIRXBUF.15-0

SPIDAT.15-0

SPICLK

SPISOMI

SPISIMO

LSPCLK baud
rate

clock
polarity

clock
phase

C28x - SPI Master Mode Shown

SPITXBUF.15-0

LSBMSB

TX FIFO_0

TX FIFO_3

RX FIFO_0

RX FIFO_3

SPI Transmit / Receive Sequence
1. Slave writes data to be sent to its shift register (SPIDAT)

2. Master writes data to be sent to its shift register (SPIDAT or SPITXBUF)

3. Completing Step 2 automatically starts SPICLK signal of the Master

4. MSB of the Master’s shift register (SPIDAT) is shifted out, and LSB of the Slave’s shift
register (SPIDAT) is loaded

5. Step 4 is repeated until specified number of bits are transmitted

6. SPIDAT register is copied to SPIRXBUF register

7. SPI INT Flag bit is set to 1

8. An interrupt is asserted if SPI INT ENA bit is set to 1

9. If data is in SPITXBUF (either Slave or Master), it is loaded into SPIDAT and transmission
starts again as soon as the Master’s SPIDAT is loaded

Serial Peripheral Interface (SPI)

12 - 6 TMS320F2837xD Microcontroller Workshop - Communications

Since data is shifted out of the SPIDAT register MSB first, transmission characters of less than 16
bits must be left-justified by the CPU software prior to be written to SPIDAT.

Received data is shifted into SPIDAT from the left, MSB first. However, the entire sixteen bits of
SPIDAT is copied into SPIBUF after the character transmission is complete such that received
characters of less than 16 bits will be right-justified in SPIBUF. The non-utilized higher
significance bits must be masked-off by the CPU software when it interprets the character. For
example, a 9 bit character transmission would require masking-off the 7 MSB’s.

SPI Data Character Justification

 Programmable data
length of 1 to 16 bits

 Transmitted data of less
than 16 bits must be left
justified
MSB transmitted first

 Received data of less
than 16 bits are right
justified

 User software must
mask-off unused MSB’s

11001001XXXXXXXX

XXXXXXXX11001001

SPIDAT - Processor #1

SPIDAT - Processor #2

 Serial Peripheral Interface (SPI)

TMS320F2837xD Microcontroller Workshop - Communications 12 - 7

SPI Summary

SPI Summary

Synchronous serial communications
Two wire transmit or receive (half duplex)
Three wire transmit and receive (full duplex)

Software configurable as master or slave
C28x provides clock signal in master mode

Data length programmable from 1-16 bits
125 different programmable baud rates

Serial Communications Interface (SCI)

12 - 8 TMS320F2837xD Microcontroller Workshop - Communications

Serial Communications Interface (SCI)
The SCI is a two-wire asynchronous serial port (also known as a UART) that supports
communications between the processor and other asynchronous peripherals that use the
standard non-return-to-zero (NRZ) format. A receiver and transmitter 16-level deep FIFO is used
to reduce servicing overhead. The SCI transmit and receive registers are both double-buffered to
prevent data collisions and allow for efficient CPU usage. In addition, the C28x SCI is a full
duplex interface which provides for simultaneous data transmit and receive. Parity checking and
data formatting is also designed to be done by the port hardware, further reducing software
overhead.

SCI Pin Connections

Transmitter-data
buffer register

SCI Device #1

SCIRXD

SCITXD SCITXD

SCIRXD

SCI Device #2

8

Receiver-data
buffer register

8

Transmitter-data
buffer register

Receiver
shift register

Transmitter
shift register

8

Receiver-data
buffer register

Receiver
shift register

Transmitter
shift register

8

(Full Duplex Shown)

RX FIFO_0

RX FIFO_16

RX FIFO_0

RX FIFO_16

TX FIFO_0

TX FIFO_16

TX FIFO_0

TX FIFO_16

 Serial Communications Interface (SCI)

TMS320F2837xD Microcontroller Workshop - Communications 12 - 9

SCI Data Format

This bit present only in Address-bit mode

NRZ (non-return to zero) format

Communications Control Register (ScixRegs.SCICCR)

0 = 1 Stop bit
1 = 2 Stop bits

0 = Odd
1 = Even

0 = Disabled
1 = Enabled

0 = Disabled
1 = Enabled

0 = Idle-line mode
1 = Addr-bit mode

of data bits = (binary + 1)
e.g. 110b gives 7 data bits

Stop
Bits

Even/Odd
Parity

Parity
Enable

Loopback
Enable

Addr/Idle
Mode

SCI
Char2

SCI
Char1

SCI
Char0

7 6 5 4 3 2 1 0

Start LSB 2 3 4 5 6 7 MSB Addr/
Data Parity Stop 1 Stop 2

The basic unit of data is called a character and is 1 to 8 bits in length. Each character of data is
formatted with a start bit, 1 or 2 stop bits, an optional parity bit, and an optional address/data bit.
A character of data along with its formatting bits is called a frame. Frames are organized into
groups called blocks. If more than two serial ports exist on the SCI bus, a block of data will
usually begin with an address frame which specifies the destination port of the data as
determined by the user’s protocol.

The start bit is a low bit at the beginning of each frame which marks the beginning of a frame.
The SCI uses a NRZ (Non-Return-to-Zero) format which means that in an inactive state the
SCIRX and SCITX lines will be held high. Peripherals are expected to pull the SCIRX and SCITX
lines to a high level when they are not receiving or transmitting on their respective lines.

When configuring the SCICCR, the SCI port should first be held in an inactive state. This is
done using the SW RESET bit of the SCI Control Register 1 (SCICTL1.5). Writing a 0 to this bit
initializes and holds the SCI state machines and operating flags at their reset condition. The
SCICCR can then be configured. Afterwards, re-enable the SCI port by writing a 1 to the SW
RESET bit. At system reset, the SW RESET bit equals 0.

Serial Communications Interface (SCI)

12 - 10 TMS320F2837xD Microcontroller Workshop - Communications

SCI Data Timing
 Start bit valid if 4 consecutive SCICLK periods of

zero bits after falling edge
 Majority vote taken on 4th, 5th, and 6th SCICLK cycles

Start Bit LSB of Data

Majority
Vote

Falling Edge Detected

SCIRXD

SCICLK
(Internal)

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2

Note: 8 SCICLK periods per data bit

Multiprocessor Wake-Up Modes

Multiprocessor Wake-Up Modes

 Allows numerous processors to be hooked
up to the bus, but transmission occurs
between only two of them

 Idle-line or Address-bit modes
 Sequence of Operation

1. Potential receivers set SLEEP = 1, which disables RXINT except
when an address frame is received

2. All transmissions begin with an address frame

3. Incoming address frame temporarily wakes up all SCIs on bus

4. CPUs compare incoming SCI address to their SCI address

5. Process following data frames only if address matches

 Serial Communications Interface (SCI)

TMS320F2837xD Microcontroller Workshop - Communications 12 - 11

Idle-Line Wake-Up Mode
 Idle time separates blocks of frames

 Receiver wakes up when SCIRXD high for 10 or
more bit periods

 Two transmit address methods

 Deliberate software delay of 10 or more bits

 Set TXWAKE bit to automatically leave exactly 11 idle bits

Last Data ST SPST DataSCIRXD/
SCITXD

Block of Frames

SP SP Last DataST AddrSP

Idle
Period
10 bits

or greater

Idle
Period
10 bits

or greater

Address frame
follows 10 bit
or greater idle

1st data frame

SPST Addr

Idle periods
of less than

10 bits

Address-Bit Wake-Up Mode
 All frames contain an extra address bit

 Receiver wakes up when address bit detected

 Automatic setting of Addr/Data bit in frame by setting
TXWAKE = 1 prior to writing address to SCITXBUF

Last Data STST DataSCIRXD/
SCITXD

Block of Frames

SP SP Last DataST AddrSP

Idle Period
length of no
significance

First frame within
block is Address.

ADDR/DATA
bit set to 1

1st data frame

0 1 0 0 SPST Addr 1SP

no additional
idle bits needed
beyond stop bits

The SCI interrupt logic generates interrupt flags when it receives or transmits a complete
character as determined by the SCI character length. This provides a convenient and efficient
way of timing and controlling the operation of the SCI transmitter and receiver. The interrupt flag
for the transmitter is TXRDY (SCICTL2.7), and for the receiver RXRDY (SCIRXST.6). TXRDY is

Serial Communications Interface (SCI)

12 - 12 TMS320F2837xD Microcontroller Workshop - Communications

set when a character is transferred to TXSHF and SCITXBUF is ready to receive the next
character. In addition, when both the SCIBUF and TXSHF registers are empty, the TX EMPTY
flag (SCICTL2.6) is set. When a new character has been received and shifted into SCIRXBUF,
the RXRDY flag is set. In addition, the BRKDT flag is set if a break condition occurs. A break
condition is where the SCIRXD line remains continuously low for at least ten bits, beginning after
a missing stop bit. Each of the above flags can be polled by the CPU to control SCI operations,
or interrupts associated with the flags can be enabled by setting the RX/BK INT ENA
(SCICTL2.1) and/or the TX INT ENA (SCICTL2.0) bits active high.

Additional flag and interrupt capability exists for other receiver errors. The RX ERROR flag is the
logical OR of the break detect (BRKDT), framing error (FE), receiver overrun (OE), and parity
error (PE) bits. RX ERROR high indicates that at least one of these four errors has occurred
during transmission. This will also send an interrupt request to the CPU if the RX ERR INT ENA
(SCICTL1.6) bit is set.

SCI Summary

SCI Summary

 Asynchronous communications format
 65,000+ different programmable baud rates
 Two wake-up multiprocessor modes

 Idle-line wake-up & Address-bit wake-up

 Programmable data word format
 1 to 8 bit data word length
 1 or 2 stop bits
 even/odd/no parity

 Error Detection Flags
 Parity error; Framing error; Overrun error; Break detection

 Transmit FIFO and receive FIFO
 Individual interrupts for transmit and receive

 Multichannel Buffered Serial Port (McBSP)

TMS320F2837xD Microcontroller Workshop - Communications 12 - 13

Multichannel Buffered Serial Port (McBSP)

McBSP Block Diagram

16
DXR2 TX Buffer

XSR2

16
DXR1 TX Buffer

XSR1

16

DRR2 RX Buffer

RBR2 Register

16

DRR1 RX Buffer

RBR1 Register

16

RSR2

16

RSR1

MDXx

MDRx

MFSXx

MFSRx

MCLKXx

MCLKRx

Peripheral / DMA Bus

Peripheral / DMA Bus

16

16

16

16

CPU

The McBSP provides a high-speed direct interface to codecs, analog interface chips (AICs), and
other serially connected A/D and D/A devices. It has double-buffered transmission and triple-
buffered reception for supporting continuous data streams. There are 128 channels for
transmission and reception, and data size selections of 8, 12, 16, 20, 24, and 32 bits, along with
µ-law and A-law companding.

Multichannel Buffered Serial Port (McBSP)

12 - 14 TMS320F2837xD Microcontroller Workshop - Communications

Definition: Bit, Word, and Frame

Definition: Bit and Word

CLK

b7 b6 b5 b4 b3 b2 b1 b0

Word

FS

a1 a0

Bit

D

 “Word” or “channel” contains
number of bits (8, 12, 16, 20, 24, 32)

 “Bit” - one data bit per serial clock period

Definition: Word and Frame

 “Frame” - contains one or multiple words

w0 w1 w2 w3 w4 w5 w6 w7

Frame
Word

w6 w7D

FS

 Number of words per frame: 1-128

 Multichannel Buffered Serial Port (McBSP)

TMS320F2837xD Microcontroller Workshop - Communications 12 - 15

Multi-Channel Selection

Multi-Channel Selection
Ch0-0
Ch0-1

Ch5-0
Ch5-1

Ch27-0
Ch27-1

 Multi-channel mode controlled primarily via two registers:

MCR
Multi-channel Control Reg

(enables Mc-mode)

R/XCER (A-H)
Rec/Xmt Channel Enable Regs

(enable/disable channels)

 Up to 128 channels can be enabled/disabled

C
O
D
E
C

M
c
B
S
P

Frame TDM Bit Stream

Ch0Ch1Ch31 ...0

Ch0Ch1Ch31 ...1

Transmit
&

Receive
only selected

Channels

Multi-channel

 Allows multiple channels (words) to be independently selected for transmit
and receive (e.g. only enable Ch0, 5, 27 for receive, then process via CPU)

 The McBSP keeps time sync with all channels, but only “listens” or “talks”
if the specific channel is enabled (reduces processing/bus overhead)

McBSP Summary

McBSP Summary
 Independent clocking and framing for

transmit and receive
 Internal or external clock and frame sync
Data size of 8, 12, 16, 20, 24, or 32 bits
TDM mode - up to 128 channels
Used for T1/E1 interfacing

m-law and A-law companding
SPI mode
Direct Interface to many codecs
Can be serviced by the DMA

Inter-Integrated Circuit (I2C)

12 - 16 TMS320F2837xD Microcontroller Workshop - Communications

Inter-Integrated Circuit (I2C)

Inter-Integrated Circuit (I2C)
 Philips I2C-bus specification compliant, version 2.1
 Data transfer rate from 10 kbps up to 400 kbps
 Each device can be considered as a Master or Slave
 Master initiates data transfer and generates clock signal
 Device addressed by Master is considered a Slave
 Multi-Master mode supported
 Standard Mode – send exactly n data values (specified in register)
 Repeat Mode – keep sending data values (use software to initiate a

stop or new start condition)

28x
I2C

I2C
Controller

I2C
EPROM

28x
I2C

. .

.
Pull-up

Resistors

VDD

Serial Data (SDA)
Serial Clock (SCL)

The I2C provides an interface between devices that are compliant I2C-bus specification version
2.1 and connect using an I2C-bus. External components attached to the 2-wire serial bus can
transmit or receive 1 to 8-bit data to or from the device through the I2C module.

I2C Block Diagram

TX FIFO

RX FIFO

I2CDXR

I2CDRR

I2CXSR

I2CRSR

Clock
Circuits

SDA

SCL

 Inter-Integrated Circuit (I2C)

TMS320F2837xD Microcontroller Workshop - Communications 12 - 17

I2C Operating Modes and Data Formats

I2C Operating Modes

Operating Mode Description

Slave-receiver mode Module is a slave and receives data from a master
(all slaves begin in this mode)

Slave-transmitter mode Module is a slave and transmits data to a master
(can only be entered from slave-receiver mode)

Master-receiver mode Module is a master and receives data from a slave
(can only be entered from master-transmit mode)

Master-transmitter mode Module is a master and transmits to a slave
(all masters begin in this mode)

I2C Serial Data Formats

S Slave Address R/W ACK Data DataACK ACK P
1 7 1 1 n 1 n 1 1
7-Bit Addressing Format

S 11110AA R/W ACK AAAAAAAA DataACK ACK P
1 7 1 1 8 1 n 1 1
10-Bit Addressing Format

S Data ACK Data DataACK ACK P
1 n 1 n 1 n 1 1
Free Data Format

R/W = 0 – master writes data to addressed slave
R/W = 1 – master reads data from the slave
n = 1 to 8 bits
S = Start (high-to-low transition on SDA while SCL is high)
P = Stop (low-to-high transition on SDA while SCL is high)

Inter-Integrated Circuit (I2C)

12 - 18 TMS320F2837xD Microcontroller Workshop - Communications

I2C Arbitration
 Arbitration procedure invoked if two or more master-

transmitters simultaneously start transmission
 Procedure uses data presented on serial data bus (SDA) by

competing transmitters
 First master-transmitter which drives SDA high is overruled

by another master-transmitter that drives SDA low
 Procedure gives priority to the data stream with the lowest

binary value

1 0

1 0 0 1 0 1

1 0 0 1 0 1

SCL

SDA

Data from
device #1

Data from
device #2

Device #1 lost arbitration
and switches to slave-

receiver mode

Device #2
drives SDA

I2C Summary

I2C Summary

Compliance with Philips I2C-bus
specification (version 2.1)

7-bit and 10-bit addressing modes
Configurable 1 to 8 bit data words
Data transfer rate from 10 kbps up to

400 kbps
Transmit FIFO and receive FIFO

 Universal Serial Bus (USB)

TMS320F2837xD Microcontroller Workshop - Communications 12 - 19

Universal Serial Bus (USB)

Universal Serial Bus (USB) Controller
 Complies with USB 2.0 Implementers Forum certification standards
 Full-speed (12 Mbps) operation in Device mode; Full- /low-speed

(12 Mbps / 1.5 Mbps) operation in Host mode
 Integrated PHY
 Thirty-two endpoints

 One dedicated control IN endpoint and one dedicated control OUT
endpoint

 Fifteen configurable IN endpoints and fifteen configurable OUT
endpoints

The USB operates as a full-speed function controller during point-to-point communications with a
USB host. It complies with the USB 2.0 standard, and a dynamically sizeable FIFO supports
queuing of multiple packets.

USB
 Formed by the USB Implementers Forum (USB-IF)

 http://www.usb.org
 USB-IF has defined standardized interfaces for

common USB application, known as Device Classes
 Human Interface Device (HID)
 Mass Storage Class (MSC)
 Communication Device Class (CDC)
 Device Firmware Upgrade (DFU)

 Refer to USB-IF Class Specifications for more information

 USB is:
 Differential
 Asynchronous
 Serial
 NRZI Encoded
 Bit Stuffed

 USB is a HOST centric bus!

Universal Serial Bus (USB)

12 - 20 TMS320F2837xD Microcontroller Workshop - Communications

USB Communication

USB Communication
 A component on the bus is either a…

Host (the master)
Device (the slave) – also known as peripheral or

function
Hub (neither master nor slave; allows for expansion)

 Communication model is heavily master/slave
 As opposed to peer-to-peer/networking (i.e. 1394/Firewire)

Master runs the entire bus
 Only the master keeps track of other devices on bus
 Only the master can initiate transactions

 Slave simply responds to host commands
 This makes USB simpler, and cheaper to

implement

Enumeration

Enumeration

 USB is universal because of Enumeration
 Process in which a Host attempts to identify a Device

 If no device attached to a downstream port,
then the port sees Hi-Z

When full-speed device is attached, it pulls up
D+ line

When the Host see a Device, it polls for
descriptor information
 Essentially asking, “what are you?”

 Descriptors contain information the host can
use to identify a driver

 Universal Serial Bus (USB)

TMS320F2837xD Microcontroller Workshop - Communications 12 - 21

F28x USB Hardware

USB Hardware
 The USB controller requires a total of three signals (D+, D-, and

VBus) to operate in device mode and two signals (D+, D-) to operate
in embedded host mode

 VBus implemented in software using external interrupt or polling
 GPIOs are NOT 5V tolerant
 To make them tolerant use 100kΩ and internal device ESD diode clamps

Note: (1) VBus sensing is only required in self-powered applications
(2) Device pins D+ and D- have special buffers to support the high speed requirements

of USB; therefore their position on the device is not user-selectable

USB Controller Summary

USB Controller Summary

 Complies with USB 2.0 specifications

 Full-speed (12 Mbps) Device controller

 Full- /Low-speed (12 Mbps/1.5 Mbps) Host
controller

 The DMA controller may be used to read and
write the USB FIFOs via software triggering

 Full software library with application examples
is provided within C2000Ware™

Controller Area Network (CAN)

12 - 22 TMS320F2837xD Microcontroller Workshop - Communications

Controller Area Network (CAN)
Controller Area Network (CAN)

A Multi-Master Serial Bus System

 CAN 2.0B Standard
 High speed (up to 1 Mbps)
 Add a node without disturbing the bus (number of nodes not

limited by protocol)
 Less wires (lower cost, less maintenance, and more reliable)
 Redundant error checking (high reliability)
 No node addressing (message identifiers)
 Broadcast based signaling

C

ED

A
B

The CAN module is a serial communications protocol that efficiently supports distributed real-time
control with a high level of security. It supports bit-rates up to 1 Mbit/s and is compliant with the
CAN 2.0B protocol specification.

CAN does not use physical addresses to address stations. Each message is sent with an
identifier that is recognized by the different nodes. The identifier has two functions – it is used for
message filtering and for message priority. The identifier determines if a transmitted message
will be received by CAN modules and determines the priority of the message when two or more
nodes want to transmit at the same time.

 Controller Area Network (CAN)

TMS320F2837xD Microcontroller Workshop - Communications 12 - 23

CAN Bus and Node

CAN Bus
 Two wire differential bus (usually twisted pair)
Max. bus length depend on transmission rate

 40 meters @ 1 Mbps

CAN
NODE B

CAN
NODE A

CAN
NODE C

CAN_H

CAN_L
120Ω120Ω

The MCU communicates to the CAN Bus using a transceiver. The CAN bus is a twisted pair wire
and the transmission rate depends on the bus length. If the bus is less than 40 meters the
transmission rate is capable up to 1 Mbit/second.

CAN Node
Wired-AND Bus Connection

RXTX

CAN Controller
(e.g. TMS320F28xxx)

CAN_L

CAN_H

120W120W

CAN Transceiver
(e.g. TI SN65HVD23x)

Controller Area Network (CAN)

12 - 24 TMS320F2837xD Microcontroller Workshop - Communications

Principles of Operation

Principles of Operation
 Data messages transmitted are identifier based, not

address based
 Content of message is labeled by an identifier that is

unique throughout the network
 (e.g. rpm, temperature, position, pressure, etc.)

 All nodes on network receive the message and each
performs an acceptance test on the identifier

 If message is relevant, it is processed (received);
otherwise it is ignored

 Unique identifier also determines the priority of the
message
 (lower the numerical value of the identifier, the higher the

priority)
 When two or more nodes attempt to transmit at the

same time, a non-destructive arbitration technique
guarantees messages are sent in order of priority
and no messages are lost

Non-Destructive Bitwise Arbitration

 Bus arbitration resolved via arbitration with
wired-AND bus connections
Dominate state (logic 0, bus is high)
Recessive state (logic 1, bus is low)

Node A wins
arbitration

CAN Bus

Node A

Node B

Node C

Start
Bit

Node B loses
arbitration

Node C loses
arbitration

 Controller Area Network (CAN)

TMS320F2837xD Microcontroller Workshop - Communications 12 - 25

Message Format and Block Diagram

CAN Message Format
 Data is transmitted and received using Message Frames
 8 byte data payload per message
 Standard and Extended identifier formats

 Standard Frame: 11-bit Identifier (CAN v2.0A)

 Extended Frame: 29-bit Identifier (CAN v2.0B)

11-bit
Identifier

R
T
R

S
O
F

I
D
E

r0 DLC 0…8 Bytes Data CRC ACK
E
O
F

Arbitration
Field

Control
Field Data Field

Control
Field

11-bit
Identifier

R
T
R

S
O
F

I
D
E

r0 DLC 0…8 Bytes Data CRC ACKr1
18-bit

Identifier
S
R
R

E
O
F

Arbitration Field Data Field

The MCU CAN module is a full CAN Controller. It contains a message handler for transmission
and reception management, and frame storage. The specification is CAN 2.0B Active – that is,
the module can send and accept standard (11-bit identifier) and extended frames (29-bit
identifier).

CAN Block Diagram

SN65HVD23x
3.3-V CAN Transceiver

CAN Bus

Message
RAM

32
Message
Objects

CAN Core

Message
RAM

Interface
Message Handler

Register and Message
Object Access (Ifx)

Module Interface

CAN_RXCAN_TX

Test
Modes
Only

CAN

CPU Bus (8, 16 or 32-bit)

Controller Area Network (CAN)

12 - 26 TMS320F2837xD Microcontroller Workshop - Communications

The CAN controller module contains 32 mailboxes for objects of 0 to 8-byte data lengths:
• configurable transmit/receive mailboxes

• configurable with standard or extended indentifier

The CAN module mailboxes are divided into several parts:
• MID – contains the identifier of the mailbox

• MCF (Message Control Field) – contains the length of the message (to transmit or
receive) and the RTR bit (Remote Transmission Request – used to send remote
frames)

• MDL and MDH – contains the data

The CAN module contains registers which are divided into five groups:

• Control & Status Registers

• Local Acceptance Masks

• Message Object Time Stamps

• Message Object Timeout

• Mailboxes

CAN Summary

CAN Summary

 Fully compliant with CAN standard v2.0B
 Supports data rates up to 1 Mbps
 Thirty-two message objects

Configurable as receive or transmit
Configurable with standard or extended identifier
 Programmable receive mask
Uses 32-bit time stamp on messages
 Programmable interrupt scheme (two levels)
 Programmable alarm time-out

 Programmable wake-up on bus activity
 Two interrupt lines
 Self-test mode

TMS320F2837xD Microcontroller Workshop - Support Resources 13 - 1

Support Resources

Introduction
This module contains various references to support the development process.

Module Objectives

Module Objectives

TI Workshops Download Site
Documentation Resources
C2000Ware™
TI Development Tools
Additional Resources

Product Information Center
On-line support

TI Support Resources

13 - 2 TMS320F2837xD Microcontroller Workshop - Support Resources

Chapter Topics
Support Resources ... 13-1

TI Support Resources ... 13-3
C2000 Workshop Download Wiki ... 13-3
Documentation Resources .. 13-4
C2000Ware™ ... 13-4
C2000 Experimenter’s Kit ... 13-5
F28335 Peripheral Explorer Kit ... 13-6
C2000 LaunchPad Evaluation Kit ... 13-7
C2000 controlCARD Application Kits .. 13-8
XDS100 / XDS200 Class JTAG Debug Probes .. 13-9
Product Information Resources .. 13-10

 TI Support Resources

TMS320F2837xD Microcontroller Workshop - Support Resources 13 - 3

TI Support Resources

C2000 Workshop Download Wiki

C2000 Workshop Download Wiki

http://www.ti.com/hands-on-training

At the C2000 Workshop Download Wiki you will find all of the materials for the C2000 One-day
and Multi-day Workshops, as well as the C2000 archived workshops, which include support for
the following device families:

• F2407
• F2812
• F2808
• F28335
• F28027
• F28035
• F28069
• F28M35x

TI Support Resources

13 - 4 TMS320F2837xD Microcontroller Workshop - Support Resources

Documentation Resources

Documentation Resources
 Data Sheet

Contains device electrical characteristics and
timing specifications

Key document for hardware engineers
 Silicon Errata

Contains deviations from original specifications
 Includes silicon revision history

 Technical Reference Manual (TRM)
Contains architectural descriptions and

register/bit definitions
Key document for firmware engineers

Workshop Materials
Hands-on device training materials
 For hardware and software engineers

Documentation resources can be found at
www.ti.com/c2000

C2000Ware™

C2000Ware™

Directory Structure

Resource Explorer

C2000Ware for C2000 microcontrollers is a cohesive set of software infrastructure, tools, and
documentation that is designed to minimize system development time. It includes device-specific

 TI Support Resources

TMS320F2837xD Microcontroller Workshop - Support Resources 13 - 5

drivers and support software, as well as system application examples. C2000Ware provides the
needed resources for development and evaluation. It can be downloaded from the TI website.

C2000 Experimenter’s Kit

C2000 Experimenter Kit

 Experimenter Kits include
 controlCARD
 USB docking station
 C2000 applications software with

example code and full hardware
details available in C2000Ware

 Code Composer Studio (download)

 Docking station features
 Access to controlCARD signals
 Breadboard areas
 On-board USB JTAG debug probe

 JTAG debug probe not required

 Available through TI authorized
distributors and the TI store

 Part Number:
 TMDSDOCK28379D
 TMDSDOCK28069
 TMDSDOCK28035
 TMDSDOCK28027
 TMDSDOCK28335
 TMDSDOCK2808
 TMDSDOCKH52C1
JTAG debug probe required for:
 TMDSDOCK28343
 TMDSDOCK28346-168

The C2000 Experimenter Kits is a tool for device exploration and initial prototyping. These kits
are complete, open source, evaluation and development tools where the user can modify both the
hardware and software to best fit their needs.

The various Experimenter’s Kits shown on this slide include a specific controlCARD and Docking
Station. The docking station provides access to all of the controlCARD signals with two
prototyping breadboard areas and header pins, allowing for development of custom solutions.
Most have on-board USB JTAG emulation capabilities and no external debug probe or power
supply is required. However, where noted, the kits based on a DIMM-168 controlCARD include a
5-volt power supply and require an external JTAG debug probe.

TI Support Resources

13 - 6 TMS320F2837xD Microcontroller Workshop - Support Resources

F28335 Peripheral Explorer Kit

F28335 Peripheral Explorer Kit
 Experimenter Kit includes

 F28335 controlCARD
 Peripheral Explorer baseboard
 C2000 applications software with

example code and full hardware details
available in C2000Ware

 Code Composer Studio (download)

 Peripheral Explorer features
 ADC input variable resistors
 GPIO hex encoder & push buttons
 eCAP infrared sensor
 GPIO LEDs, I2C & CAN connection
 Analog I/O (AIC+McBSP)

 On-board USB JTAG debug probe
 JTAG debug probe not required

 Available through TI authorized
distributors and the TI storeTMDSPREX28335

The C2000 Peripheral Explorer Kit is a learning tool for new C2000 developers and university
students. The kit includes a peripheral explorer board and a controlCARD with the
TMS320F28335 microcontroller. The board includes many hardware-based peripheral
components for interacting with the various peripherals common to C2000 microcontrollers, such
as the ADC, PWMs, eCAP, I2C, CAN, SPI and McBSP. A teaching ROM is provided containing
presentation slides, a learning textbook, and laboratory exercises with solutions.

 TI Support Resources

TMS320F2837xD Microcontroller Workshop - Support Resources 13 - 7

C2000 LaunchPad Evaluation Kit

C2000 LaunchPad Evaluation Kit
 Low-cost evaluation kit

 F28027 and F28379D standard
versions

 F28027F version with InstaSPIN-FOC
 F28069M version with InstaSPIN-

MOTION
 Various BoosterPacks available
 On-board JTAG debug probe

 JTAG debug probe not required
 Access to LaunchPad signals
 C2000 applications software

with example code and full
hardware details in available in
C2000Ware

 Code Composer Studio (download)

 Available through TI authorized
distributors and the TI store

 Part Number:
 LAUNCHXL-F28027
 LAUNCHXL-F28027F
 LAUNCHXL-F28069M
 LAUNCHXL-F28379D

The C2000 LaunchPads are low-cost, powerful evaluation platforms which are used to develop
real-time control systems based on C2000 microcontrollers. Various LaunchPads are available
and developers can find a LaunchPad with the required performance and feature mix for any
application. The C2000 BoosterPacks expand the power of the LaunchPads with application-
specific plug-in boards, allowing developers to design full solutions using a LaunchPad and
BoosterPack combination.

TI Support Resources

13 - 8 TMS320F2837xD Microcontroller Workshop - Support Resources

C2000 controlCARD Application Kits

C2000 controlCARD Application Kits
 Developer’s Kit for – Motor Control,

Digital Power, etc. applications
 Kits includes

 controlCARD and application specific
baseboard

 Code Composer Studio (download)
 Software download includes

 Complete schematics, BOM, gerber
files, and source code for board and
all software

 Quickstart demonstration GUI for
quick and easy access to all board
features

 Fully documented software specific to
each kit and application

 See www.ti.com/c2000 for other kits
and more details

 Available through TI authorized
distributors and the TI store

The C2000 Application Kits demonstrate the full capabilities of the C2000 microcontroller in a
specific application. The kits are complete evaluation and development tools where the user can
modify both the hardware and software to best fit their needs. Each kit uses a device specific
controlCARD and a specific application board. All kits are completely open source with full
documentation and are supplied with complete schematics, bill of materials, board design details,
and software. Visit the TI website for a complete list of available Application Kits.

 TI Support Resources

TMS320F2837xD Microcontroller Workshop - Support Resources 13 - 9

XDS100 / XDS200 Class JTAG Debug Probes

XDS100 / XDS200 Class JTAG Debug
Probes

 Blackhawk
 USB100v2

 Blackhawk
 USB200

 Spectrum Digital
 XDS200

www.blackhawk-dsp.com www.spectrumdigital.com

 Spectrum Digital
 XDS100v2

The JTAG debug probes are used during development to program and communicate with the
C20000 microcontroller. While almost all C2000 development tool include emulation capabilities,
after you have developed your own target board an external debug probe will be needed.
Various debug probes are available with different features and at different price points. Shown
here are popular debug probes from two manufacturers.

TI Support Resources

13 - 10 TMS320F2837xD Microcontroller Workshop - Support Resources

Product Information Resources

For More Information . . .
 USA – Product Information Center (PIC)

 Phone: 800-477-8924 or 512-434-1560
 E-mail: support@ti.com

 TI E2E Community (videos, forums, blogs)
 http://e2e.ti.com

 Embedded Processor Wiki
 http://processors.wiki.ti.com

 TI Training
 http://training.ti.com

 TI store
 http://store.ti.com

 TI website
 http://www.ti.com

For more information and support, contact the product information center, visit the TI E2E
community, embedded processor Wiki, TI training web page, TI eStore, and the TI website.

TMS320F2837xD Microcontroller Workshop - Appendix Appendix A A - 1

Appendix A – F28379D Experimenter Kit

Overview
This appendix provides a quick reference and mapping of the header pins used on the F28379D
LaunchPad and F28379D Experimenter Kit. This allows either development board to be used
with the workshop.

F28379D Experimenter Kit

A - 2 TMS320F2837xD Microcontroller Workshop – Appendix A

Chapter Topics
Appendix A – F28379D Experimenter Kit .. A-1

F28379D Experimenter Kit ..A-3
Initial Hardware Setup ...A-3
Docking Station and LaunchPad Pin Mapping..A-3
controlCARD and LaunchPad LED Mapping ..A-4
Stand-Alone Operation (No Emulator) ..A-4

 F28379D Experimenter Kit

TMS320F2837xD Microcontroller Workshop – Appendix A A - 3

F28379D Experimenter Kit

Initial Hardware Setup
• F28379D Experimenter Kit:

Insert the F28379D controlCARD into the Docking Station connector slot. Using the two (2)
supplied USB cables – plug the USB Standard Type A connectors into the computer USB ports
and plug the USB Mini-B connectors as follows:

• A:J1 on the controlCARD (left side) – isolated XDS100v2 JTAG emulation
• J17 on the Docking Station – board power

On the Docking Station move switch S1 to the “USB-ON” position. This will power the Docking
Station and controlCARD using the power supplied by the computer USB port. Additionally, the
other computer USB port will power the on-board isolated JTAG emulator and provide the JTAG
communication link between the device and Code Composer Studio.

Docking Station and LaunchPad Pin Mapping

Function Docking Station LaunchPad

ADCINA0 ANA header, Pin # 09 J3-30

GND GND J2-20 (GND)

GPIO19 Pin # 73 J1-3

GPIO18 Pin # 71 J1-4

DACOUTB ANA header, Pin # 11 J7-70

PWM1A Pin # 49 J4-40

ECAP1 (via Input X-bar) Pin # 75 (GPIO24) J4-34 (GPIO24)

F28379D Experimenter Kit

A - 4 TMS320F2837xD Microcontroller Workshop – Appendix A

controlCARD and LaunchPad LED Mapping

Function controlCARD LaunchPad

LED – Power LED LD1 (green) LED D1 (green)

LED – GPIO31 LED LD2 (red) LED D10 (blue)

LED – GPIO34 LED LD3 (red) LED D9 (red)

Stand-Alone Operation (No Emulator)
When the device is in stand-alone boot mode, the state of GPIO72 and GPIO84 pins are used to
determine the boot mode. On the controlCARD switch SW1 controls the boot options for the
F28379D device. Check that switch SW1 positions 1 and 2 are set to the default “1 – on” position
(both switches up). This will configure the device (in stand-alone boot mode) to GetMode. Since
the OTP_KEY has not been programmed, the default GetMode will be boot from flash. Details of
the switch positions can be found in the controlCARD information guide.

	TMS320F2837xD Microcontroller Workshop
	Important Notice
	Revision History

	TMS320F2837xD Microcontroller Workshop
	Workshop Outline
	Required Workshop Materials
	Development Tools
	TMS320F28x7x Device Comparison
	TMS320F28x7x Block Diagrams

	C28xm01.pdf
	Architecture Overview
	Introduction to the TMS320F28x7x
	C28x Internal Bussing

	C28x CPU + FPU + VCU + TMU and CLA
	Special Instructions
	CPU Pipeline
	C28x CPU + FPU + VCU + TMU Pipeline
	Peripheral Write-Read Protection

	Memory
	Memory Map
	Dual Code Security Module (DCSM)
	Peripherals

	Fast Interrupt Response Manager
	Math Accelerators
	Viterbi / Complex Math Unit (VCU-II)
	Trigonometric Math Unit (TMU)

	On-Chip Safety Features
	Summary

	C28xm02.pdf
	Programming Development Environment
	Code Composer Studio
	Software Development and COFF Concepts
	Code Composer Studio
	Edit and Debug Perspective (CCSv7)
	Target Configuration
	CCSv7 Project
	Creating a New CCSv7 Project
	CCSv7 Build Options – Compiler / Linker
	CCS Debug Environment

	Creating a Linker Command File
	Sections
	Program Code (.text)
	Constants (.cinit – initialized data)
	Variables (.ebss – uninitialized data)

	Linker Command Files (.cmd)
	Memory-Map Description
	Section Placement
	Summary: Linker Command File

	Lab File Directory Structure
	Lab 2: Linker Command File
	Start Code Composer Studio and Open a Workspace
	Setup Target Configuration
	Create a New Project
	Project Build Options
	Linker Command File – Lab2.cmd
	Build and Load the Project
	Debug Environment Windows
	Single-stepping the Code
	Terminate Debug Session and Close Project
	End of Exercise

	C28xm03.pdf
	Peripherial Registers Header Files
	Register Programming Model
	Traditional and Structure Approach to C Coding
	Naming Conventions
	F2837xD C-Code Header Files
	Global Variable Definitions File
	Mapping Structures to Memory
	Linker Command File
	Peripheral Specific Routines

	Summary

	C28xm04.pdf
	Reset and Interrupts
	Reset and Boot Process
	Reset - Bootloader
	Emulation Boot Mode
	Stand-Alone Boot Mode
	Reset Code Flow – Summary
	Emulation Boot Mode using Code Composer Studio GEL
	Getting to main()
	Peripheral Software Reset Registers

	Interrupts
	Interrupt Processing
	Interrupt Flag Register (IFR)
	Interrupt Enable Register (IER)
	Interrupt Global Mask Bit (INTM)
	Peripheral Interrupt Expansion (PIE)
	PIE Block Initialization
	Interrupt Signal Flow – Summary
	F2837xD Dual-Core Interrupt Structure
	Interrupt Response and Latency

	C28xm05.pdf
	System Initialization
	Oscillator/PLL Clock Module
	F2837xD Dual-Core System Clock

	Watchdog Timer
	General Purpose Digital I/O
	GPIO Input X-Bar
	GPIO Output X-Bar

	External Interrupts
	Low Power Modes
	Register Protection
	Lab 5: System Initialization
	Create a New Project
	Project Build Options
	Modify Memory Configuration
	Setup System Initialization
	Build and Load
	Run the Code – Watchdog Reset Disabled
	Run the Code – CCS Issued CPU Reset
	Run the Code – Watchdog Reset Enabled (Hardware Reset)
	Setup PIE Vector for Watchdog Interrupt
	Build and Load
	Run the Code – Watchdog Interrupt
	Terminate Debug Session and Close Project
	End of Exercise

	C28xm06.pdf
	Analog Subsystem
	Analog-to-Digital Converter (ADC)
	ADC Block and Functional Diagrams
	ADC Triggering
	ADC Conversion Priority
	Post Processing Block
	ADC Clocking Flow
	ADC Registers
	Signed Input Voltages
	ADC Calibration and Reference

	Comparator Subsystem (CMPSS)
	Comparator Subsystem Block Diagram

	Digital-to-Analog Converter (DAC)
	Buffered DAC Block Diagram

	Sigma Delta Filter Module (SDFM)
	SDFM Block Diagram

	Lab 6: Analog-to-Digital Converter
	Notes
	Open the Project
	Setup ADC Initialization and Enable Core/PIE Interrupts
	Build and Load
	Run the Code
	Using Real-time Emulation
	Setup DAC to Generate a Sine Waveform
	Terminate Debug Session and Close Project
	Optional Exercise
	If you finish early, you might want to experiment with the code by observing the effects of changing the OFFTRIM value. Open a watch window to the AdcaRegs.ADCOFFTRIM register and change the OFFTRIM value. If you did not get 0x0000 in step 11, you c...
	End of Exercise

	C28xm07.pdf
	Control Peripherals
	PWM Review
	ePWM
	ePWM Time-Base Sub-Module
	ePWM Compare Sub-Module
	ePWM Action Qualifier Sub-Module
	Asymmetric and Symmetric Waveform Generation using the ePWM
	PWM Computation Example
	ePWM Dead-Band Sub-Module
	ePWM Chopper Sub-Module
	ePWM Trip-Zone and Digital Compare Sub-Modules
	ePWM Event-Trigger Sub-Module
	High Resolution PWM (HRPWM)

	eCAP
	eQEP
	Lab 7: Control Peripherals
	Open the Project
	Setup Shared I/O and ePWM1
	Build and Load
	Run the Code – PWM Waveform
	Frequency Domain Graphing Feature of Code Composer Studio
	Setup eCAP1 to Measure Width of Pulse
	Build and Load
	Run the Code – Pulse Width Measurement
	Optional Exercise – Modulate the PWM Waveform
	Terminate Debug Session and Close Project
	End of Exercise

	C28xm08.pdf
	Direct Memory Access
	Direct Memory Access (DMA)
	Basic Operation
	DMA Examples
	Channel Priority Modes
	DMA Throughput
	DMA Registers

	Lab 8: Servicing the ADC with DMA
	Open the Project
	Inspect Lab_8.cmd
	Setup DMA Initialization
	Setup PIE Interrupt for DMA
	Build and Load
	Run the Code – Test the DMA Operation
	Terminate Debug Session and Close Project
	End of Exercise

	C28xm09.pdf
	Control Law Accelerator
	Control Law Accelerator (CLA)
	CLA Block Diagram
	CLA Memory and Register Access
	CLA Tasks
	CLA Control and Execution Registers
	CLA Registers
	CLA Initialization
	CLA Task Programming
	CLA C Language Implementation and Restrictions
	CLA Assembly Language Implementation
	CLA Code Debugging

	Lab 9: CLA Floating-Point FIR Filter
	Open the Project
	Enabling CLA Support in CCS
	Inspect Lab_9.cmd
	Setup CLA Initialization
	Setup PIE Interrupt for CLA
	Build and Load
	Run the Code – Test the CLA Operation (Tasks in C)
	Change Task 1 to FIR Filter in Assembly
	Build and Load
	Run the Code – Test the CLA Operation (Tasks in C and ASM)
	Change All Tasks to Assembly
	Build and Load
	Run the Code – Test the CLA Operation (Tasks in ASM)
	Terminate Debug Session and Close Project
	End of Exercise

	Lab 9 Reference: Low-Pass FIR Filter

	C28xm10.pdf
	System Design
	Emulation and Analysis Block
	External Memory Interface (EMIF)
	Flash Configuration and Memory Performance
	Flash Programming
	Dual Code Security Module (DCSM)
	Lab 10: Programming the Flash
	Open the Project
	Link Initialized Sections to Flash
	Copying Interrupt Vectors from Flash to RAM
	Initializing the Flash Control Registers
	Dual Code Security Module and Passwords
	Executing from Flash after Reset
	Initializing the CLA
	Build – Lab.out
	Programming the On-Chip Flash Memory
	Running the Code – Using CCS
	Terminate Debug Session and Close Project
	Running the Code – Stand-alone Operation (No Emulator)
	End of Exercise

	Lab 12 Reference: Programming the Flash

	C28xm11.pdf
	Dual-Core Inter-Processor Communications
	Inter-Processor Communications
	IPC Global Shared RAM and Message RAM
	Interrupts and Flags
	IPC Data Transfer

	Lab 11: Inter-Processor Communications
	Open the Projects – CPU1 & CPU2
	Inspect the Project – CPU1
	Inspect the Project – CPU2
	Jumper Wire Connection
	Build and Load the Project
	Run the Code
	View the ADC Results
	Terminate Debug Session and Close Project
	End of Exercise

	C28xm12.pdf
	Communications
	Communications Techniques
	Serial Peripheral Interface (SPI)
	SPI Transmit / Receive Sequence
	SPI Summary

	Serial Communications Interface (SCI)
	Multiprocessor Wake-Up Modes
	SCI Summary

	Multichannel Buffered Serial Port (McBSP)
	Definition: Bit, Word, and Frame
	Multi-Channel Selection
	McBSP Summary

	Inter-Integrated Circuit (I2C)
	I2C Operating Modes and Data Formats
	I2C Summary

	Universal Serial Bus (USB)
	USB Communication
	Enumeration
	F28x USB Hardware
	USB Controller Summary

	Controller Area Network (CAN)
	CAN Bus and Node
	Principles of Operation
	Message Format and Block Diagram
	CAN Summary

	C28xm13.pdf
	Support Resources
	TI Support Resources
	C2000 Workshop Download Wiki
	Documentation Resources
	C2000Ware™
	C2000 Experimenter’s Kit
	F28335 Peripheral Explorer Kit
	C2000 LaunchPad Evaluation Kit
	C2000 controlCARD Application Kits
	XDS100 / XDS200 Class JTAG Debug Probes
	Product Information Resources

	C28xmA.pdf
	Appendix A – F28379D Experimenter Kit
	F28379D Experimenter Kit
	Initial Hardware Setup
	Docking Station and LaunchPad Pin Mapping
	controlCARD and LaunchPad LED Mapping
	Stand-Alone Operation (No Emulator)

