TMS320F2837xD Microcontroller
Workshop

Workshoi Guide and Lab Manual

Kenneth W. Schachter
Revision 2.0
January 2018

Important Notice

Important Notice

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or
to discontinue any product or service without notice, and advise customers to obtain the latest
version of relevant information to verify, before placing orders, that information being relied on is
current and complete. All products are sold subject to the terms and conditions of sale supplied at
the time of order acknowledgment, including those pertaining to warranty, patent infringement,
and limitation of liability.

Tl warrants performance of its semiconductor products to the specifications applicable at the time
of sale in accordance with TI's standard warranty. Testing and other quality control techniques
are utilized to the extent Tl deems necessary to support this warranty. Specific testing of all
parameters of each device is not necessarily performed, except those mandated by government
requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer’s applications, adequate design and
operating safeguards must be provided by the customer to minimize inherent or procedural
hazards.

Tl assumes no liability for applications assistance or customer product design. Tl does not
warrant or represent that any license, either express or implied, is granted under any patent right,
copyright, mask work right, or other intellectual property right of Tl covering or relating to any
combination, machine, or process in which such semiconductor products or services might be or
are used. TI's publication of information regarding any third party’s products or services does not
constitute TI's approval, warranty or endorsement thereof.

Copyright © 2015 — 2018 Texas Instruments Incorporated

Revision History

February 2015 — Revision 1.0
May 2015 — Revision 1.1

January 2018 — Revision 2.0

Mailing Address

Texas Instruments

C2000 Training Technical
13905 University Boulevard
Sugar Land, TX 77479

TMS320F2837xD Microcontroller Workshop - Introduction

TMS320F2837xD Microcontroller Workshop

TMS320F2837xD Microcontroller Workshop

13 TEXAS

INSTRUMENTS C2000 is trademarks of Texas Instruments.

TMS320F2837xD Microcontroller
Workshop

Texas Instruments
C2000 Technical Training

Copyright © 2018 Texas Instruments. All rights reserved.

Workshop Outline

8.

9.

Workshop Outline

. Architecture Overview
. Programming Development Environment

e Lab: Linker command file

. Peripheral Register Header Files
. Reset and Interrupts
. System Initialization

e Lab: Watchdog and interrupts

. Analog Subsystem

» Lab: Build a data acquisition system

. Control Peripherals

» Lab: Generate and graph a PWM waveform
Direct Memory Access (DMA)
» Lab: Use DMA to buffer ADC results

Control Law Accelerator (CLA)
e Lab: Use CLA to filter PWM waveform

10. System Design

* Lab: Run the code from flash memory

11. Dual-Core Inter-Processor Communications (IPC)

» Lab: Transfer data using IPC

12. Communications
13. Support Resources

TMS320F2837xD Microcontroller Workshop - Introduction

TMS320F2837xD Microcontroller Workshop

Required Workshop Materials

Required Workshop Materials

¢ http://processors.wiki.ti.com/index.php/
C2000_Multi-Day_Workshop

¢ F28379D LaunchPad auncHxL-F28379D)
¢ Install Code Composer Studio v7.3.0

¢ Run the workshop installer
F2837xD Microcontroller Workshop-2.0-Setup.exe
¢Lab Files / Solution Files

¢Workshop Manual

Development Tools

F28379D LaunchPad

prszsv JP2:GND D10: GPIO31 (blue) S1: Boot TMS320F28379D
romUSB from USB . Modes
(disables (disables D9 GP1O34 (red)
isolation) isolation) D1: Power (green) 32/34 * S3: Reset J6/J8 *
J14:
: QEP_A
>
>.= .
321 QEP B
no
Q= <
£
o J12:
M CAN

CON1:USB JP1:33v J1/33* J21 J20/319 JP4/IP5 J5/37* J13/J11
emulation/ from USB (ADC-D (Optional SMA (connects 12C
UART (disables differential connector point) 3.3V/5V
isolation) pair inputs) to J5/37)

* = BoosterPack plug-in module connector Note: F28379D - 337 pin package

iv TMS320F2837xD Microcontroller Workshop - Introduction

TMS320F2837xD Microcontroller Workshop

TMS320F28379D SW3: ADC
VREFHI
ADCC&D ADCA&B

F28379D controlCARD

A:J1-USB A:SW1-isolated emulation J8: Host/
emulation/ and UART communication Device

UART enable switch

SE

83

S5.=

E o

oc g

gg!

33

S3,

8z

X @© o

SW2: ADC
VREFHI

LED LD2: LED LDS3:
GPIO31 (red) GPIO34 (red) s. HSD
card
LED
LD1:
Power
(green)
J2-J7: USB SW1: Boot
PHY connection Modes
enable jumpers
Note: F28379D — 337 BGA

controlCARD Docking Station

TEXAS INSTRUMENTS

controlCARD Docking Station lIH]n

TMS320F2837xD Microcontroller Workshop - Introduction

TMS320F2837xD Microcontroller Workshop

TMS320F28x7x Device Comparison

TMS320F28x7x Device Comparison

F2807x F2837xS F2837xD
C28x CPUs 1 1 2
Clock 120 MHz 200 MHz 200 MHz
Flash / RAM / OTP 256Kw / 50Kw / 2Kw 512Kw / 82Kw / 2Kw 512Kw / 102Kw / 2Kw
On-chip Oscillators v v v
Watchdog Timer 4 4 v (each CPU)
ADC Three 12-bit Four 12/16-bit Four 12/16-bit
Buffered DAC 3] 3 3
Analog COMP w/DAC v 4 4
FPU v 4 v’ (each CPU)
6-Channel DMA v v v’ (each CPU)
CLA v v v’ (each CPU)
VCU / TMU -1V vIv v | ¥ (each CPU)
ePWM / HRPWM viIY vIY vIv
eCAP / HRCAP V- vi- v -
eQEP v v v
SCI/SPI/12C YIVIY VIviIiY IVIY
CAN /McBSP / USB vIvIY VIviv VIYIV
uPP 4 Y
EMIF 1 2 2

TMS320F28x7x Block Diagrams

| eounewn |

o] 16-112-bit ADC
xd

ot
Ranen

owfcosrg | Ber

- Eewuarie — &

®
la— eruns —| 2

CPUZCLAT Bas

Vi

TMS320F2837xD Microcontroller Workshop - Introduction

TMS320F2837xD Microcontroller Workshop

F2837xS — Single-Core Block Diagram

[rrr—
Mo Combret |‘—| 0¥ Mux

.08 RAM IHatE

D1 A TR

CPULCLAY Bus.

E——
Bt o
£
5
fe—emzn

VEMCPUT

[Cervreca | o[0] | [cescru
—_ FPU
THU

12-bit ADC
x3

,+ m
1

Es

935

Ll

TMS320F2837xD Microcontroller Workshop - Introduction Vii

TMS320F2837xD Microcontroller Workshop

viii TMS320F2837xD Microcontroller Workshop - Introduction

Architecture Overview

Introduction

This architectural overview introduces the basic architecture of the C2000™ family of
microcontrollers from Texas Instruments. The F28x7x series adds a new level of high
performance processing ability. The C2000™ is ideal for applications combining digital signal
processing, microcontroller processing, efficient C code execution, and operating system tasks.

Unless otherwise noted, the terms C28x and F28x7x refer to TMS320F28x7x devices throughout
the remainder of these notes. For specific details and differences please refer to the device data
sheet, user’s guide, and technical reference manual.

Module Objectives

When this module is complete, you should have a basic understanding of the F28x7x architecture
and how all of its components work together to create a high-end, uniprocessor control system.

Module Objectives

¢ Review the F28x7x block diagram and
device features

¢ Describe the F28x7x bus structure
and memory map

¢ Identify the various memory blocks on
the F28x7x

¢ ldentify the peripherals available on
the F28x7x

TMS320F2837xD Microcontroller Workshop - Architecture Overview 1-1

Introduction to the TMS320F28x7x

Chapter Topics

ATCNITECTUIE OVEIVIBW ...t ii ittt ettt e e e oo e b et e e e e e e s bbb bt e e e e e e s e sanbbeaeeaaaeeaaanne 1-1
INtroduction t0 the TMSS20F28X7Xcceiiaiiiiiiiieiea e e ettt ettt e e e et e e e e e e s nanbeeeaaae s 1-3
(09243)@l 10101 g F= VI =10 £ 1 o RSOSSN 1-4
C28x CPU + FPU + VCU + TMU and CLA ...ttt 1-5
S o =Tot = U [1S3 (0 o3 1 o] g SRR 1-6
(O U T oY 1] = RSO PEER 1-7
C28x CPU + FPU + VCU + TMU PIPEIINE ..coeeiiiiiiiiiiei ettt 1-8
Peripheral Write-Read ProteCtion ... 1-9
=T 0 o] PSSPt 1-10
Y [T g gTo] 4 VLY = o IO T PP U TP PO P PP OPPPPPPPPPPPPPPPIRY 1-10
Dual Code Security MOAUIE (DCSM)eiiiiiiiiiiiiiiii ettt e e e 1-11
PEIIPNEIAIS ...ttt ettt e e e e et e e e e e e s e aanb b e e e e e e e e e e aanes 1-11
Fast INterrupt RESPONSE IMANAGETuuuuuuiruuurirunirirueieeueereesteeeaeesssesesrsssssaessrsssssssrssersrensssnssnnes 1-12
MEALN ACCEIETALOIS ..ottt e e e e e sttt e e e e e e s nbbbe e e e e e e e e annneneeas 1-13
Viterbi / Complex Math Unit (VCU-) ..coeeoiiiiiiieecee e e e 1-13
Trigonometric Math UNit (TMU)........uuiiiiiiiiiiiiiece et e e s e e e e e nbee e e e e e e s snneneees 1-14
ON-Chip Safety FEALUIES ...t e e e e e e e e e e e e e e e ane 1-15
SUIMIMIBIY etttk 5 5555555555555 5555555555555 et s s e e e s s ennnn e 1-16

TMS320F2837xD Microcontroller Workshop - Architecture Overview

Introduction to the TMS320F28x7x

Introduction to the TMS320F28x7x

The TMS320F37xD, TMS320F37xS, and TMS320F07x, collectively referred to as the
TMS320F28x7x or F28x7x, are device members of the C2000™ microcontroller (MCU) product
family. These devices are most commonly used within embedded control applications. Even
though the topics presented in this workshop are based on the TMS320F2837xD dual-core
device series, most all of the topics are fully applicable to the TMS320F2837xS and
TMS320F2807x single-core device series. The F2837xD dual-core MCU design is based on the
T1 32-bit C28x CPU architecture. Each core is identical with access to its own local RAM and
flash memory, as well as globally shared RAM memory. Sharing information between the two
CPU cores is accomplished with an Inter-Processor Communications (IPC) module. Additionally,
each core shares access to a common set of highly integrated analog and control peripherals,
providing a complete solution for demanding real-time high-performance signal processing
applications, such as digital power, industrial drives, inverters, and motor control.

TMS320F28x7x Core Block Diagram
Program Bus

N = T

Boot Sectored RAM DMA P

ROM 6 Ch.
IDMA Bus pa ADC
CLA Bus DAC
) EMIF|

!] y EEEE o

PIE McBSP
32x32 bit | |R-M-W T™U ll\;}terrupt
Multiplier| [Atomic cLa| [Manager 12C
FPU ALU |[VCU <

3
--------- n E
IRegisterLus I ,lv_il | 32-bit |
i CAN 2.0B
cPU Timers| | | [-—{LCAN20B J—
. ﬁi USB 2.0 |<—»

Data Bus GPIO

The above block diagram represents an overview of all device features and is not specific to any
one device. The F28x7x device is designed around a multibus architecture, also known as a
modified Harvard architecture. This can be seen in the block diagram by the separate program
bus and data bus, along with the link between the two buses. This type of architecture greatly
enhances the performance of the device.

In the upper left area of the block diagram is the memory section, which consists of the boot
ROM, sectored flash, and RAM. Also, notice that the six-channel DMA has its own set of buses.

In the lower left area of the block diagram is the execution section, which consists of a 32-bit by
32-bit hardware multiplier, a read-modify-write atomic ALU, a floating-point unit, a trigonometric
math unit, and a Viterbi complex math CRC unit. The control law accelerator (CLA) is an
independent and separate unit that has its own set of buses.

The peripherals are grouped on the right side of the block diagram. The upper set is the control
peripherals, which consists of the ePWM, eCAP, eQEP, and ADC. The lower set is the

TMS320F2837xD Microcontroller Workshop - Architecture Overview 1-3

Introduction to the TMS320F28x7x

communication peripherals and consists of the multichannel buffered serial port, 12C, SCI, SPI,
CAN, and USB.

The PIE block, or Peripheral Interrupt Expansion block, manages the interrupts from the
peripherals. In the bottom right corner is the general-purpose 1/0. The CPU has a watchdog
module and three 32-bit general-purpose timers are available. Also, the device features an
external memory interface, as shown on the left side.

C28x Internal Bussing

As with many high performance microcontrollers, multiple busses are used to move data between
the memory blocks, peripherals, and the CPU. The C28x memory bus architecture consists of six
buses (three address and three data):

e A program read bus (22-bit address line and 32-bit data line)
e A dataread bus (32-bit address line and 32-bit data line)
e A data write bus (32-bit address line and 32-bit data line)

C28x CPU Internal Bus Structure
Program Program Address Bus (22) '
[_pPc |
Program-read Data Bus (32)
Decoder I T
Data-read Address Bus (32) Program
7 | T Memory
| Data-read Data Bus (32)
Registers Execution Debug
ARAU_]| | mipvasgaa| RM-W (| _TMU
E Atomic TRO-TR7 Real-Time Data
"DP |@x| ALU ALU VCU ITAG Memory
XT VROVRE| ||| Emulation
XARO P FPU | CLA
XAR7 ACC _ ||ROH-R7H||MR0-MR3
| Register Bus / Result Bus | Peripherals
]]
[; Data/Program-write Data Bus (32)
| Data-write Address Bus (32)

The 32-bit-wide data busses provide single cycle 32-bit operations. This multiple bus architecture
(Harvard Bus Architecture) enables the C28x to fetch an instruction, read a data value and write a
data value in a single cycle. All peripherals and memory blocks are attached to the memory bus
with prioritized memory accesses.

TMS320F2837xD Microcontroller Workshop - Architecture Overview

C28x CPU + FPU + VCU + TMU and CLA

C28x CPU + FPU + VCU + TMU and CLA

The C28x is a highly integrated, high performance solution for demanding control applications.
The C28x is a cross between a general purpose microcontroller and a digital signal processor
DSP), balancing the code density of a RISC processor and the execution speed of a DSP with
the architecture, firmware, and development tools of a microcontroller.

The DSP features include a modified Harvard architecture and circular addressing. The RISC
features are single-cycle instruction execution, register-to-register operations, and a modified
Harvard architecture. The microcontroller features include ease of use through an intuitive
instruction set, byte packing and unpacking, and bit manipulation.

C28x CPU + FPU + VCU + TMU and CLA

¢ MCU/DSP balancing code density &
execution time

16-bit instructions for improved code density
32-bit instructions for improved execution time

Program Bus

CLABus # 32-bit fixed-point CPU + FPU
¢ 32x32 fixed-point MAC, doubles as dual
16x16 MAC

¢ |EEE Single-precision floating point
hardware and MAC

¢ Floating-point simplifies software

=

32x32 bit [|R-M-W
Multiplier| |Atomic

FPU || ALU development and boosts performance
{ ! + Viterbi, Complex Math, CRC Unit (VCU)
Register Bus 3 adds support for Viterbi decode, complex
CPU | 32:bit math and CRC operations

Timers ¢ Parallel processing Control Law Accelerator

! (CLA) adds IEEE Single-precision 32-bit
J Data Bus floating point math operations
¢ CLA algorithm execution is independent of
the main CPU

¢ Trigonometric operations supported by TMU
¢ Fast interrupt service time
Single cycle read-modify-write instructions

The C28x design supports an efficient C engine with hardware that allows the C compiler to
generate compact code. Multiple busses and an internal register bus allow an efficient and
flexible way to operate on the data. The architecture is also supported by powerful addressing
modes, which allow the compiler as well as the assembly programmer to generate compact code
that is almost one to one corresponded to the C code.

The C28x is as efficient in DSP math tasks as it is in system control tasks. This efficiency
removes the need for a second processor in many systems, though the F2837xD is a dual-core
device for even higher performance. The 32 x 32-bit multiply-accumulate (MAC) capabilities can
also support 64-bit processing, enable the C28x to efficiently handle higher numerical resolution
calculations that would otherwise demand a more expensive solution. Along with this is the
capability to perform two 16 x 16-bit multiply accumulate instructions simultaneously or Dual
MACs (DMAC). The devices also feature floating-point units.

The addition of the Floating-Point Unit (FPU) to the fixed-point CPU core enables support for
hardware IEEE-754 single-precision floating-point format operations. The FPU adds an extended
set of floating-point registers and instructions to the standard C28x architecture, providing
seamless integration of floating-point hardware into the CPU.

TMS320F2837xD Microcontroller Workshop - Architecture Overview 1-5

C28x CPU + FPU + VCU + TMU and CLA

Special Instructions

C28x Atomic Read/Modify/Write

Atomic Instructions Benefits

[[

LOAD ¢ Simpler programming
READ

¢ Smaller, faster code

[Registers ALU / MPY | | Mem

¢ Uninterruptible (Atomic)

WRITE
STORE ¢ More efficient compiler
Standard Load/Store Atomic Read/Modify/Write

DINT - h
MOV AL , *XAR2 AND XAR2,#1234
AND AL ,#1234h

2 2 1 I
MOV *XAR2.AL words / 1 cycles
EINT

6 words / 6 cycles

Note: Example shows non-atomic assembly instructions vs. atomic assembly instruction; Compiler intrinsics can
be used for generating the atomic assembly instructions if the user needs guaranteed atomicity at the C level

Atomic instructions are a group of small common instructions which are non-interuptable. The
atomic ALU capability supports instructions and code that manages tasks and processes. These
instructions usually execute several cycles faster than traditional coding.

TMS320F2837xD Microcontroller Workshop - Architecture Overview

C28x CPU + FPU + VCU + TMU and CLA

CPU Pipeline

C28x CPU Pipeline

A |F1iF2 D1 D[RiiR,| E|W 8-stage pipeline
B FiiF, |DyiD,| RiiR| E|W
c FiiF DDyl R Ry E
""""" F,iF,|D, D,|R|R,| E[W
D R e Il b __E&GAccess
E FiiFo |Dy| Do) Rii Ryl B W --""2" same address
F F15F2 D, | D, Rli R,| E W
G Fi|F,|D;i Dy R,| “{R,| E|W
T F,[F,[D Dl [RiR,| E[W
F1: Instruction Address
F2: Instruction Content Protected Pipeline
D1: Decode Instruction . .
D2: Resolve Operand Addr ¢ Order of results are as written in
R1: Operand Address source code

R2: Get Operand
E: CPU doing “real” work .
W: store content to memory the pipeline

¢ Programmer need not worry about

The C28x uses a special 8-stage protected pipeline to maximize the throughput. This protected
pipeline prevents a write to and a read from the same location from occurring out of order.

This pipelining also enables the C28x CPU to execute at high speeds without resorting to
expensive high-speed memories. Special branch-look-ahead hardware minimizes the latency for
conditional discontinuities. Special store conditional operations further improve performance.
With the 8-stage pipeline most operations can be performed in a single cycle.

TMS320F2837xD Microcontroller Workshop - Architecture Overview 1-7

C28x CPU + FPU + VCU + TMU and CLA

C28x CPU + FPU + VCU + TMU Pipeline
C28x CPU + FPU + VCU + TMU Pipeline

Fegch Decode Relad Exe Write
F28x Pipeline | F; {F, [Dy i Dy | Ryi Ry| E| W
1l i
FPU Instruction D | R| E|E/W

4 |

VCU / TMU Instruction D| R|E|E/W

Load |«

Store |«

0 delay slot instruction
1 delay slot instruction

Floating-point math operations, conversions between integer and floating-
point formats, and complex MPY/MAC require 1 delay slot — everything else
does not require a delay slot (load, store, max, min, absolute, negative, etc.)

¢ Floating Point Unit, VCU and TMU has an unprotected pipeline

¢ i.e. FPU/VCU/TMU can issue an instruction before previous instruction has
written results

¢ Compiler prevents pipeline conflicts
¢ Assembler detects pipeline conflicts

¢ Performance improvement by placing non-conflicting
instructions in floating-point pipeline delay slots

Floating-point unit (FPU), VCU and TMU operations are not pipeline protected. Some
instructions require delay slots for the operation to complete. This can be accomplished by insert
NOPs or other non-conflicting instructions between operations.

In the user’s guide, instructions requiring delay slots have a ‘p’ after their cycle count. The 2p
stands for 2 pipelined cycles. A new instruction can be started on each cycle. The result is valid
only 2 instructions later.

Three general guideslines for the FPU/VCU/TMU pipeline are:

Math MPYF32, ADDF32, 2p cycles
SUBF32, MACF32, One delay slot
VCMPY

Conversion 116 TOF32, F32TOI16, 2p cycles
F32TOI16R, etc... One delay slot

Everything else* Load, Store, Compare, Single cycle
Min, Max, Absolute and No delay slot
Negative value

* Note: MOV32 between FPU and CPU registers is a special case.

TMS320F2837xD Microcontroller Workshop - Architecture Overview

C28x CPU + FPU + VCU + TMU and CLA

Peripheral Write-Read Protection

Peripheral Write-Read Protection

Suppose you need to write to a peripheral register and
then read a different register for the same peripheral
(e.g., write to control, read from status register)?

¢ CPU pipeline protects W-R order for the same address
¢ Write-Read protection mechanism protects W-R order
for different addresses

¢ The following address ranges have Write-Read Protection:
Block Protected Zone 1 (0x0000 4000 to 0x0000 7FFF)

Peripheral Frame 1

ePWM, eCAP, eQEP, DAC, CMPSS, SDFM

Peripheral Frame 2

McBSP, SPI, uPP, WD, XINT, SCI, 12C, ADC, X-BAR, GPIO

Block Protected Zone 2 (0x0004 0000 to 0x0005 FFFF)

Peripheral Frame 2 | USB, EMIF, CAN, IPC, System Control

The peripheral write-read protection is a mechanism to protect the write-read order for peripherals
at different addresses. This works similar to the CPU pipeline protection of write-read order for

the same address.

TMS320F2837xD Microcontroller Workshop - Architecture Overview

Memory

Memory

The F28x7x MCU utilizes a memory map where the unified memory blocks can be accessed in
either program space, data space, or both spaces. This type of memory map lends itself well for
supporting high-level programming languages. The memory structure consisting of dedicated
RAM blocks, shared local RAM blocks, shared global RAM blocks, message RAM blocks, Flash,
and one-time programmable (OTP) memory. The Boot is factory programmed with boot software
routines and standard tables used in math related algorithms.

Memory Map

The C28x CPU core contains no memory, but can access on-chip and off-chip memory. The
C28x uses 32-bit data addresses and 22-bit program addresses. This allows for a total address
reach of 4G words (1 word = 16-bits) in data memory and 4M words in program memory.

Simplified F28x7x Memory Map

0x000000 .

MO RAM (1Kx16) OX00CO00 :
X
0x000400 LR (IKe16 GSO - GS15 RAM
(1Kx16) (4Kx16 each) 150 LS5 RAM
0x03F800 accessible by
0x000000 5 Vectors CPUZ to CPUL IPC CPU & CLA
(512x16) OXO3FCO0 MSG RAM (1Kx16)
0x001480 VISG RAM (1Kx16) GS0 - GS15
CLAto cgg MGSG and EMIF1
0x001500 —SAM (126X16) 0x078000 accessible by DMA
CPU to CLA MSG User OTP (1Kx16) (only GSO - GS7
RAM (128x16) RAM on F2807x)
0x002000 0x080000
EMIF-2 (4Kx16) FLASH (256Kx16) Notes:
1. Only EMIF-1 on
0x008000 0x100000 F2807x
x LSO - LS5 RAM EMIF-1 (2Mx16) 2. IPC MSG RAMs
(2Kx16 each) only on F2837xD
0x00B0O00 3. 512Kx16 FLASH
DO - D1 RAM 0x3F8000 '
(2Kx16 each) Boot ROM (32Kx16) on F2837xS
OX3FFFCO
. BROM Vectors (64x16)

There are four dedicated RAM block (MO, M1, DO, and D1) which are tightly coupled with the
CPU, and only the CPU has access to them. The PIE Vectors are a special memory area
containing the vectors for the peripheral interrupts. The six local shared memory blocks, LSO
through LS5, are accessible by its CPU and CLA. Global shared memory blocks GSO through
GS15 on the F2837x and through GS7 on the F2807x are accessible by CPU and DMA.

There are two types of message RAM blocks: CPU message RAM blocks and CLA message
RAM blocks. The CPU message RAM blocks are used to share data between CPU1 subsystem
and CPU2 subsystem in a dual-core device via inter-processor communications. The CLA
message RAM blocks are used to share date between the CPU and CLA.

The user OTP is a one-time, programmable, memory block which contains device specific
calibration data for the ADC, internal oscillators, and buffered DACs, in addition to settings used
by the flash state machine for erase and program operations. Additionally, it contains locations
for programming security settings, such as passwords for selectively securing memory blocks,
configuring the standalone boot process, as well as selecting the boot-mode pins in case the

TMS320F2837xD Microcontroller Workshop - Architecture Overview

Memory

factory-default pins cannot be used. This information is programmed into the dual code security
module (DCSM). The flash memory is primarily used to store program code, but can also be
used to store static data. Notice that the external memory interface is assigned a region within
the memory map. The boot ROM and boot ROM vectors are located at the bottom of the memory

map.

Dual Code Security Module (DCSM)

Dual Code Security Module

¢ Prevents reverse engineering and protects valuable

intellectual property

Z1 CSMPSWDO

Z1 CSMPSWD1

Z2_CSMPSWDO

Z1 CSMPSWD2

Z2_CSMPSWD1

Z1 CSMPSWD3

Z2_CSMPSWD2

Z2_CSMPSWD3

¢ Various on-chip memory resources can be assigned to
either zone 1 or zone 2

¢ Each zone has its own password
¢ 128-bit user defined password is stored in OTP
¢ 128-bits = 2128 = 3.4 x 1038 possible passwords

¢ To try 1 password every 8 cycles at 200 MHz, it would take
at least 4.3 x 1028 years to try all possible combinations!

Peripherals

The F28x7x is available with a variety of built in peripherals optimized to support control
applications. These peripherals vary depending on which F28x7x device selected.

ePWM
eCAP
eQEP
CMPSS
ADC

DAC
Watchdog Timer
DMA
CLA

e SDFM
e SPI

e SCI

e |2C

e McBSP
e CAN

e USB

e GPIO

e EMIF

TMS320F2837xD Microcontroller Workshop - Architecture Overview

Fast Interrupt Response Manager

Fast Interrupt Response Manager

The fast interrupt response manage is capable of automatically performing context save of critical
registers. This results in the ability of servicing many asynchronous events with minimal latency.
The F28x7x implements a zero cycle penalty to do 14 registers context saved and restored during
an interrupt. This feature helps reduces the interrupt service routine overheads.

C28x Fast Interrupt Response Manager

¢ 192 dedicated PIE
vectors

¢ No software decision
making required

¢ Direct access to RAM
vectors

¢ Auto flags update

¢ Concurrent auto
context save

PIE module
For 192
interrupts

192

28x CPU Interrupt logic

INT1 to

INT12
121 C28x
192 PIE interrupts IFR || IER || INTM ¥ cPU

Register
Map

Peripheral Interrupts 12x16

Auto Context Save
T STO

AH AL

PH PL

AR1 (L) | ARO (L)
DP ST1
DBSTAT | IER
PC(msw)| PC(Isw)

By incorporating the very fast interrupt response manager with the peripheral interrupt expansion
(PIE) block, it is possible to allow up to 192 interrupt vectors to be processed by the CPU. More
details about this will be covered in the reset, interrupts, and system initialization modules.

1-12 TMS320F2837xD Microcontroller Workshop - Architecture Overview

Math Accelerators

Math Accelerators
Viterbi / Complex Math Unit (VCU-II)
Viterbi / Complex Math Unit (VCU-II)

Extends C28x instruction
set to support:

VCU execution
. . . o« Veue)
+ Viterbi operations — e VCU-II
. . VSTATUS
¢ Decode for communications _
¢ Complex math VRO e
16-bit fixed-point complex FFT VR1) Coeneions
¢ used in spread spectrum . | VR2 = 3. Arithmetic instructions
B?Q:rgsusri‘;lcg g%né"lt?\rr]r?smany sign VRS V?MO : Sa'°is| Fie;i;n,s“:' Cti:).ns
¢ Complex filters VRE vswigs ™= HOmPIRE STHETOnS
used to improve data reliability, RS
transmission distance, and power VR6
efficiency .
¢ Power Line Communijcations
(PLC) and radar applications VR8 =~
* %/glcl:(): Redundancy Check = === Control Logic
VT
=
¢ Communications and memory v
robustness checks
¢ Other: OFDM interleaving & "’

de-interleaving, Galois Field
arithmetic, AES acceleration

The Viterbi, Complex Math, and CRC Unit (VCU) adds an extended set of registers and
instructions to the standard C28x architecture for supporting various communications-based
algorithms, such as power line communications (PLC) standards PRIME and G3. These
algorithms typically require Viterbi decoding, complex Fast Fourier Transform (FFT), complex
filters, and cyclical redundancy check (CRC). By utilizing the VCU a significant performance
benefit is realized over a software implementation. It performs fixed-point operations using the
existing instruction set format, pipeline, and memory bus architecture. Additionally, the VCU is
very useful for general-purpose signal processing applications such as filtering and spectral
analysis.

TMS320F2837xD Microcontroller Workshop - Architecture Overview 1-13

Math Accelerators

Trigonometric Math Unit (TMU)

Trigonometric Math Unit (TMU)

Adds instructions to FPU for
calculating common
Trigonometric operations

X = r*cos(rad)
Operation Instruction Exe Cycles | Result Latency | FPU Cycles w/o TMU
Z=YIX DIVF32 Rz ,Ry,Rx 1 5 ~24
Y = sqrt(X) SQRTF32 Ry, Rx 1 5 ~26
Y = sin(X/2pi) SINPUF32 Ry, RX 1 4 33
Y = cos(X/2pi) COSPUF32 Ry, Rx 1 4 28
Y = atan(X)/2pi | ATANPUF32 Ry, RX 1 4 53
Instruction To QUADF32 Rw,Rz,Ry,Rx 3 11 ~90
Support ATAN2 | ATANPUF32 Ra,Rz
Calculation ADDF32 Rb,Ra,Rw
Y = X * 2pi MPY2PIF32 Ry, RX 1 2 2
Y = X * 1/2pi DIV2PIF32 Ry, RX 1 > 2

¢ Supported by natural C and C-intrinsics

+ Significant performance impact on algorithms such as:
e Park / Inverse Park »dgO0 Transform & Inverse dq0
* Space Vector GEN * FFT Magnitude & Phase Calculations

The Trigonometric Math Unit (TMU) is an extension of the FPU and the C28x instruction set, and
it efficiently executes trigopnometric and arithmetic operations commonly found in control system
applications. Similar to the FPU, the TMU provides hardware support for IEEE-754 single-
precision floating-point operations that are specifically focused on trigonometric math functions.
Seamless code integration is accomplished by built-in compiler support that automatically
generates TMU instructions where applicable. This dramatically increases the performance of
trigonometric functions, which would otherwise be very cycle intensive. It uses the same pipeline,
memory bus architecture, and FPU registers as the FPU, thereby removing any special
requirements for interrupt context save or restore.

TMS320F2837xD Microcontroller Workshop - Architecture Overview

On-Chip Safety Features

On-Chip Safety Features

On-Chip Safety Features

¢ Memory Protection
¢ ECC and parity enabled RAMs, shared RAMs protection
¢ ECC enabled flash memory
¢ Clock Checks
¢ Missing clock detection logic
¢ PLLSLIP detection
¢ NMIWDs
¢ Windowed watchdog
¢ Write Register Protection
¢ LOCK protection on system configuration registers
¢ EALLOW protection
¢ CPU1 and CPU2 PIE vector address validity check
¢ Annunciation

¢ Single error pin for external signalling of error

TMS320F2837xD Microcontroller Workshop - Architecture Overview 1-15

Summary

Summary

Summary

¢ High performance 32-bit CPU

¢ 32x32 bit or dual 16x16 bit MAC

¢ |IEEE single-precision floating point unit (FPU)
¢ Hardware Control Law Accelerator (CLA)
Viterbi, complex math, CRC unit (VCU)

¢ Trigonometric math unit (TMU)

¢ Atomic read-modify-write instructions

¢ Fast interrupt response manager

¢ 256Kw on-chip flash memory

¢ Dual code security module (DCSM)

¢ Control peripherals

¢ ADC module

¢ Comparators

¢ Direct memory access (DMA)

¢ Shared GPIO pins

¢ Communications peripherals

TMS320F2837xD Microcontroller Workshop - Architecture Overview

Programming Development Environment

Introduction

This module will explain how to use Code Composer Studio (CCS) integrated development
environment (IDE) tools to develop a program. Creating projects and setting building options will
be covered. Use and the purpose of the linker command file will be described.

Module Objectives

Module Objectives

¢ Use Code Composer Studio to:
¢ Create a Project
¢ Set Build Options
¢ Create a user linker command file which:

¢ Describes a system’s available memory

¢Indicates where sections will be placed
iIn memory

TMS320F2837xD Microcontroller Workshop - Programming Development Environment 2-1

Code Composer Studio

Chapter Topics

Programming Development ENVIFONMENTooiii it e e 2-1
Code COMPOSE STUIO.....ciiiieiieie ettt ettt e e e e et b e e e e e e s s e abb e e e e e e e e e sanbbbeeeeaaeeeannbeneeas 2-3
Software Development and COFF CONCEPLS......ccuuuiiiiieeiiiiiiiieieee e e e sriiteeer e e e s s ssnreaneeee e e e e anns 2-3
(000 (ST Of0] ya] o T01ST=T g 11 o [T SRS 2-4
Edit and Debug Perspective (CCSVT) ... iiiiiiieiiee e e s ietitieee e e s s s ssiiaeee s e e e e s s sanreeee e e e e e snnanneees 2-5
BLIE= 1o [A O] a1 T 8T ir=\ 1o o SRR 2-6

(O OV o (o] [Tox S TP POUPUPRRPT 2-7
Creating & NEW CCSVT7 PrOJECT. ..ottt e e e e e e e e anes 2-8
CCSv7 Build Options — COomMPIler / LINKENooiiiiiiiiieie et 2-9
CCS DebUG ENVIFONMENT.......uiiiiiiieeiiiiteiie ettt e e e e et e e e e e e e e sabbeseeeaaeeeaannes 2-10
Creating a Linker Command Fileccuuiiiiiiie e e e e e e e e e 2-12
7= Tod 1] LSS PUP PO 2-12
Linker Command Files (- CMA)cooiiiiiiiiee et a e 2-15
MEMOrY-Map DESCHPLIONuviiiiiiee ettt ie e e e e e e e s e s e e e e e e e s st e e e e e e s s snnrraeeeeeeeaannnes 2-15
SECHON PIACEMENT ...t e e e e e e te e e e e e e s e anb e eeaaaeeas 2-16
Summary: Linker Command File ...t 2-17
Lab File DIr€COrY SIUCIUIEcieeiiiiiiiieie e et e e e s s st e e e e e e s st e e e e e s s n e e e e e e e e annnnnnees 2-18
Lab 2: LinKer Command Fil..........ooiiiiiiiiiiiee ettt 2-19

TMS320F2837xD Microcontroller Workshop - Programming Development Environment

Code Composer Studio

Code Composer Studio

Software Development and COFF Concepts

In an effort to standardize the software development process, Tl uses the Common Object File
Format (COFF). COFF has several features which make it a powerful software development
system. It is most useful when the development task is split between several programmers.

Each file of code, called a module, may be written independently, including the specification of all
resources necessary for the proper operation of the module. Modules can be written using Code
Composer Studio (CCS) or any text editor capable of providing a simple ASCII file output. The
expected extension of a source file is . ASM for assembly and .C for C programs.

Code Composer Studio

Build) _Code
Compile Ink.cmd Simulator
: || Development
Asm P Link P Debug Tool
E
I l [External
Editor Libraries | | Graphs, Emulator
Profiling i
MCU
Board

¢ Code Composer Studio includes:
¢ Integrated Edit/Debug GUI
¢ Code Generation Tools
¢ TI-RTOS

Code Composer Studio includes a built-in editor, compiler, assembler, linker, and an automatic
build process. Additionally, tools to connect file input and output, as well as built-in graph
displays for output are available. Other features can be added using the plug-ins capability

Numerous modules are joined to form a complete program by using the linker. The linker
efficiently allocates the resources available on the device to each module in the system. The
linker uses a command (.CMD) file to identify the memory resources and placement of where the
various sections within each module are to go. Outputs of the linking process includes the linked
object file (-OUT), which runs on the device, and can include a -MAP file which identifies where
each linked section is located.

The high level of modularity and portability resulting from this system simplifies the processes of
verification, debug and maintenance. The process of COFF development is presented in greater
detail in the following paragraphs.

The concept of COFF tools is to allow modular development of software independent of hardware
concerns. An individual assembly language file is written to perform a single task and may be
linked with several other tasks to achieve a more complex total system.

TMS320F2837xD Microcontroller Workshop - Programming Development Environment 2-3

Code Composer Studio

Writing code in modular form permits code to be developed by several people working in parallel
so the development cycle is shortened. Debugging and upgrading code is faster, since
components of the system, rather than the entire system, is being operated upon. Also, new
systems may be developed more rapidly if previously developed modules can be used in them.

Code developed independently of hardware concerns increases the benefits of modularity by
allowing the programmer to focus on the code and not waste time managing memory and moving
code as other code components grow or shrink. A linker is invoked to allocate systems hardware
to the modules desired to build a system. Changes in any or all modules, when re-linked, create
a new hardware allocation, avoiding the possibility of memory resource conflicts.

Code Composer Studio

Code Composer Studio: IDE

loix
File Edit View Navigate Project Run Scripts Window Help
miig [EELRSFCRE RS] hAERC e
L Project Explorer &2 & Y= 8
SRS Example [Active - Debug]
4 Binaries . .
i) Incudes ¢ Integrates: edit, code generation,
B cpull
@ Adcc and debug

CodeStartBranch.asm

Dac.c . . .

Defaultir.c ¢ Single-click access using buttons
DelayUs.asm
ECap.c
EPwmM.C

F2B37xD_AdCC ¢ Powerful graphing/profiling tools

(¢ F2837xD_GlobaVariableDefs.c

peshbfedennontios.auend. o Automated tasks using Scripts
Lab.cmd
Main. . . .
il & Built-in access to RTOS functions
PieVect.
Sﬁe?a:tb;.c .
sysculc ¢ Based on the Eclipse open source
Watchdog.c
& Xbarc software framework
= Debug

Code Composer Studio™ (CCS) is an integrated development environment (IDE) for Texas
Instruments (Tl) embedded processor families. CCS comprises a suite of tools used to develop
and debug embedded applications. It includes compilers for each of TlI's device families, source
code editor, project build environment, debugger, profiler, simulators, real-time operating system
and many other features. The intuitive IDE provides a single user interface taking you through
each step of the application development flow. Familiar tools and interfaces allow users to get
started faster than ever before and add functionality to their application thanks to sophisticated
productivity tools.

CCS is based on the Eclipse open source software framework. The Eclipse software framework
was originally developed as an open framework for creating development tools. Eclipse offers an
excellent software framework for building software development environments and it is becoming
a standard framework used by many embedded software vendors. CCS combines the
advantages of the Eclipse software framework with advanced embedded debug capabilities from
Tl resulting in a compelling feature-rich development environment for embedded developers.
CCS supports running on both Windows and Linux PCs. Note that not all features or devices are
supported on Linux.

TMS320F2837xD Microcontroller Workshop - Programming Development Environment

Code Composer Studio

Edit and Debug Perspective (CCSv7)

A perspective defines the initial layout views of the workbench windows, toolbars, and menus that
are appropriate for a specific type of task, such as code development or debugging. This
minimizes clutter to the user interface.

Edit and Debug Perspective (CCSv7)

¢ Each perspective provides a set of functionality aimed
at accomplishing a specific task

alnisi

ey N e Rt e by B e

¢ Edit Perspective ¢ Debug Perspective
+ Displays views used - Displays views used for
during code development debugging
+ C/C++ project, editor, etc. + Menus and toolbars

associated with debugging,
watch and memory
windows, graphs, etc.

Code Composer Studio has “Edit” and “Debug” perspectives. Each perspective provides a set of
functionality aimed at accomplishing a specific task. In the edit perspective, views used during
code development are displayed. In the debug perspective, views used during debug are

displayed.

TMS320F2837xD Microcontroller Workshop - Programming Development Environment 2-5

Code Composer Studio

Target Configuration

A Target Configuration defines how CCS connects to the device. It describes the device using

GEL files and device configuration files. The configuration files are XML files and have a
*_ccxml file extension.

Creating a Target Configuration

g
Target Configuration
Create a new Target Configuration file.
_ ¢ File 2 New =2 Target
File name: | F2837xD.coml
P e sraredcaten Configuration File
Location: | €:/Users/<Name>/t/CCSTargetConfiqurations File Systern. . | Workspace...
@

il *F2837xD.cciml B
Basic

General Setup
This section describes the general configuration about the target. 'S SE| eCt conn eCtI on type
Confction Texas Instruments XDE100v2 USE Debug Probe =] Target Configuration

Board or Device [283790

Advanced Setup

Save Conflguration € Select deV'Ce
ED)
Test Conmection

To test a connection,
confiquration fie cont

¢ Save configuration

TMS320F2837xD Microcontroller Workshop - Programming Development Environment

Code Composer Studio

CCSv7 Project

Code Composer works with a project paradigm. Essentially, within CCS you create a project for
each executable program you wish to create. Projects store all the information required to build
the executable. For example, it lists things like: the source files, the header files, the target
system’s memory-map, and program build options.

CCSv7 Project

File Edit View Navigate Project Run Scripts

O LB iR i Project files contain:
I5 Project Explorer 52 = <’==g> = =8
CaFonme ¢ List of files:
&) Includes
& pudL ¢ Source (C, assembly)
[8 Adc.c
CodeStartBranch.asm a A
B Dace ¢ Libraries
[Defaultisr.c

§ DelayUs.asm ¢ Linker command files
[g] ECap.c . . .
=4 EPwm.c ¢ TI-RTOS configuration file
[8 F2837xD_Adc.c

[8 F2837xD_GlobalvariableDefs.c

F2837xD_Headers_nonBIOS_cpul.cmd ‘ PI’O] eCt S ettl n g S -

[g Gpio.c . . .
18 Labond ¢ Build options (compiler,
lain.c .
&) PieCtrl.c assembler, linker, and TI-RTOS)
[2 Pievect.c
(4 SineTable.c ¢ Build configurations
[g SysCtrl.c

[watchdog.c
[Xbar.c
&= Debug

A project contains files, such as C and assembly source files, libraries, BIOS configuration files,
and linker command files. It also contains project settings, such as build options, which include
the compiler, assembler, linker, and TI-RTOS, as well as build configurations.

To create a new project, you need to select the following menu items:
File > New > CCS Project

Along with the main Project menu, you can also manage open projects using the right-click popup
menu. Either of these menus allows you to modify a project, such as add files to a project, or
open the properties of a project to set the build options.

TMS320F2837xD Microcontroller Workshop - Programming Development Environment 2-7

Code Composer Studio

Creating a New CCSv7 Project

A graphical user interface (GUI) is used to assist in creating a new project. The GUI is shown in
the slide below.

Creating a New CCSv7 Project

1. Project Name, Location, and Device

. ¢ File 2 New 2 CCS Project
CCS Project /_/

Create a nev CC5 Project.

Target: | #837xD Defno | [tms3zorze3zen =
Connection: [=] =i | 2.Advanced Settings

i camot [c2000) | = N

Project name: | Exampie Dutput type: [Executabie =

I use default kocaton Output format: [fegacy corr =]

Location: [C:\C28x\Labs\Exampie\cpuil Browse.., | Device erddanness; ™ =]

Compler version: [T vi6.95.LTs = e | Unker command fe: R x| Beowse
7R e Runtimie support lorary; | <sutomatic> | Boowse.
* Project tempistes and examples

3. Project Templates and Examples
mwmmammam i SHEE

Creates an empty project ntaked for =]

Empty Project

{7 s | mers | posh] cincd | & Empty Project (with man.c)
& Empty Assembly-only Project
= Empty RTSC Project

7= Basic Exampies
& Helo Workl

After a project is created, the build options are configured.

TMS320F2837xD Microcontroller Workshop - Programming Development Environment

Code Composer Studio

CCSv7 Build Options — Compiler / Linker

Project options direct the code generation tools (i.e. compiler, assembler, linker) to create code
according to your system’s needs. When you create a new project, CCS creates two sets of build

options — called Configurations: one called Debug, the other Release (you might think of as

optimize).

To make it easier to choose build options, CCS provides a graphical user interface (GUI) for the
various compiler and linker options. Here’'s a sample of the configuration options.

71 gome s wores =] == |

¢ Compiler
¢ 20 categories for code
generation tools
¢ Controls many aspects of
the build process, such as:
¢ Optimization level
¢ Target device

¢ Compiler / assembly / link
options

CCSv7 Build Options — Compiler / Link

-5

-5

71 gome s wores =] == |

¢ Linker

¢ 9 categories for linking
¢ Specify various link
options
¢ ${PROJECT_ROOT}
specifies the current
project directory

er

There is a one-to-one relationship between the items in the text box on the main page and the
GUI check and drop-down box selections. Once you have mastered the various options, you can

probably find yourself just typing in the options.

There are many linker options but these four handle all of the basic needs.

e -0 <Filename> specifies the output (executable) filename.

o -m <Filename> creates a map file. This file reports the linker’s results.

e —c tells the compiler to autoinitialize your global and static variables.

e -X tells the compiler to exhaustively read the libraries. Without this option libraries are

searched only once, and therefore backwards references may not be resolved.

To help make sense of the many compiler options, Tl provides two default sets of options

(configurations) in each new project you create. The Release (optimized) configuration invokes

the optimizer with —03 and disables source-level, symbolic debugging by omitting —g (which

disables some optimizations to enable debug).

TMS320F2837xD Microcontroller Workshop - Programming Development Environment

Code Composer Studio

CCS Debug Environment

The basic buttons that control the debug environment are located in the top of CCS:

B @- DO @~ e -t P-

e

- AR AL e

The common debugging and program execution descriptions are shown below:

Start debugging

Image

Name

Description

Availability

iﬁi

New Target
Configuration

Creates a new target configartion file.

File New Menu
Target Menu

ﬁ‘g; Debug Qpens a dialog to modify existing debug configura- Debug Toolbar
tions. Its drop down can be used to access other
- . Target Menu
launching options.
51__ Connect Connect to hardware targets. T1 Debug Toolbar
Target Target Menu
Debug View Context Menu
Terminate All | Terminates all active debug sessions. Target Menu

Debug View Toolbar

TMS320F2837xD Microcontroller Workshop - Programming Development Environment

Code Composer Studio

Program execution

Image Name Description Availability
oo Halt Halts the selected target. The rest of the debug
- - . . Target Menu
views will update automatically with most recent -
Debug View Toolbar
target data.
[Run Resumes the execution of the currently loaded
. - Target Menu
program from the current PC location. Execution -
. - R Debug View Toolbar
continues until a breakpoint is encountered.
={>I Run to Line Resumes the execution of the currently loaded
. - Target Menu
program from the current PC location. Execution Disassembly Context Menu
continues until the specific source/assembly line is e
Source Editor Context Menu
reached.
q. Go to Main Rups _the programs until the beginning of function Debug View Toolbar
main in reached.
i Step Into Steps into the highlighted statement. Target Menu
Debug View Toolbar
i Step Over Steps over the highlighted statement. Execution
will continue at the next line either in the same
method or (if you are at the end of a method) it Target Menu
will continue in the method from which the current Debug View Toolbar
method was called. The cursor jumps to the decla-
ration of the method and selects this line.
L Step Return | Steps out of the current method. Target Menu

Debug View Toolbar

q& Reset Resets the selected target. The drop-down menu
- . . Target Menu
has various advanced reset options, depending on -
. Debug View Toolbar
the selected device.
,;,1,}'3?4 Restart Restores the PC to the entry point for the currently
loaded program. If the debugger option "Run to
. o . Target Menu
main on target load or restart" is set the target will Debua View Toolbar
run to the specified symbol, otherwise the execu- 9
tion state of the target is not changed.
T Assembly The debugger executes the next assembly instruc- | Tl Explicit Stepping Toolbar
Step Into tion, whether source is available or not. Target Advanced Menu
L) Assembly The debugger steps over a single assembly instruc-
Step Over tion. If the instruction is an assembly subroutine, Tl Explicit Stepping Toolbar

the debugger executes the assembly subroutine
and then halts after the assembly function returns.

Target Advanced Menu

TMS320F2837xD Microcontroller Workshop - Programming Development Environment

Creating a Linker Command File

Creating a Linker Command File

Sections

Looking at a C program, you'll notice it contains both code and different kinds of data (global,
local, etc.). All code consists of different parts called sections. All default section names begin
with a dot and are typically lower case. The compiler has default section names for initialized and
uninitialized sections. For example, x and y are global variables, and they are placed in the
section .ebss. Whereas 2 and 7 are initialized values, and they are placed in the section called
.Cinit. The local variables are in a section .stack, and the code is placed in a section called .txt.

In the Tl code-generation tools (as with any toolset based on the COFF — Common Object File
Format), these various parts of a program are called Sections. Breaking the program code and
data into various sections provides flexibility since it allows you to place code sections in ROM

Sections

Global vars (.ebss) Init values (.cinit)

void main(void)
{

long z;

Z =X +Y; ...

Local vars (.stack) Code (.text)

¢ All code consists of
different parts called
sections

¢ All default section
names begin with “.”

¢ The compiler has
default section names
for initialized and
uninitialized sections

and variables in RAM. The preceding diagram illustrated four sections:

Global Variables

Initial Values for global variables
Local Variables (i.e. the stack)
Code (the actual instructions)

TMS320F2837xD Microcontroller Workshop - Programming Development Environment

Creating a Linker Command File

The following is a list of the sections that are created by the compiler. Along with their
description, we provide the Section Name defined by the compiler. This is a small list of compiler
default section names. The top group is initialized sections, and they are linked to flash. In our
previous code example, we saw .txt was used for code, and .cinit for initialized values. The
bottom group is uninitialized sections, and they are linked to RAM. Once again, in our previous
example, we saw .ebss used for global variables and .stack for local variables.

Compiler Section Names

Initialized Sections

Name Description Link Location

text code FLASH

.cinit initialization values for FLASH
global and static variables

.econst constants (e.g. const int k = 3;) FLASH

.switch tables for switch statements FLASH

pinit tables for global constructors (C++) | FLASH

Uninitialized Sections

Name Description Link Location

.ebss global and static variables RAM

.stack stack space low 64Kw RAM

.esysmem | memory for far malloc functions RAM

Note: During development initialized sections could be linked to RAM since
the emulator can be used to load the RAM

Sections of a C program must be located in different memories in your target system. This is the
big advantage of creating the separate sections for code, constants, and variables. In this way,
they can all be linked (located) into their proper memory locations in your target embedded
system. Generally, they're located as follows:

Program Code (.text)

Program code consists of the sequence of instructions used to manipulate data, initialize system
settings, etc. Program code must be defined upon system reset (power turn-on). Due to this basic
system constraint it is usually necessary to place program code into non-volatile memory, such as
FLASH or EPROM.

Constants (.cinit — initialized data)

Initialized data are those data memory locations defined at reset.It contains constants or initial
values for variables. Similar to program code, constant data is expected to be valid upon reset of
the system. It is often found in FLASH or EPROM (non-volatile memory).

Variables (.ebss — uninitialized data)

Uninitialized data memory locations can be changed and manipulated by the program code
during runtime execution. Unlike program code or constants, uninitialized data or variables must
reside in volatile memory, such as RAM. These memories can be modified and updated,
supporting the way variables are used in math formulas, high-level languages, etc. Each variable

TMS320F2837xD Microcontroller Workshop - Programming Development Environment 2-13

Creating a Linker Command File

must be declared with a directive to reserve memory to contain its value. By their nature, no value
is assigned, instead they are loaded at runtime by the program.

Next, we need to place the sections that were created by the compiler into the appropriate
memory spaces. The uninitialized sections, .ebss and .stack, need to be placed into RAM; while
the initialized sections, .cinit, and .txt, need to be placed into flash.

Placing Sections in Memory

Memory Secti
ections
0x00 0000 RAMMO .
(0x400) | TTTm==-o__ s
0x00 0400 RAMM1 . _
(0x400) | TTe=~l__
" .stack
0x08 0000 FLASH ammmmmm =1 .cinit
(0x40000) -
- text

Linking code is a three step process:
1. Defining the various regions of memory (on-chip RAM vs. FLASH vs. External Memory).
2. Describing what sections go into which memory regions

3. Running the linker with “build” or “rebuild”

2-14 TMS320F2837xD Microcontroller Workshop - Programming Development Environment

Creating a Linker Command File

Linker Command Files (.cmd)

The linker concatenates each section from all input files, allocating memory to each section
based on its length and location as specified by the MEMORY and SECTIONS commands in the
linker command file. The linker command file describes the physical hardware memory and
specifies where the sections are placed in the memory. The file created during the link process is
a .out file. This is the file that will be loaded into the microcontroller. As an option, we can
generate a map file. This map file will provide a summary of the link process, such as the
absolute address and size of each section.

Linking

e Memory description
e How to place s/w into h/w

Link.cmd
.0Dbj Linker —— .out
.map

Memory-Map Description

The MEMORY section describes the memory configuration of the target system to the linker.
The format is: Name: origin = 0x????, length = 0x??7??

For example, if you placed a 256Kw FLASH starting at memory location 0x080000, it would read:

MEMORY

FLASH: origin = 0x080000 , length = 0x040000
}

Each memory segment is defined using the above format. If you added RAMMO and RAMM1, it
would look like:

MEMORY
RAMMO: origin = 0x000000 , length = 0x0400
RAMM1 : origin = 0x000400 , length = 0x0400

TMS320F2837xD Microcontroller Workshop - Programming Development Environment 2-15

Creating a Linker Command File

}

Remember that the MCU has two memory maps: Program, and Data. Therefore, the MEMORY
description must describe each of these separately. The loader uses the following syntax to

delineate each of these:

Linker Page TI Definition

Page 0 Program

Page 1 Data

MEMORY
PAGE O:
FLASH:
PAGE 1:
RAMMO:
RAMM1 :
ks
SECTIONS
{
.text:>
.ebss:>
.cinit:>
.stack:>
}

Linker Command File

/* Program Memory */

origin = 0x080000, length = 0x40000
/* Data Memory */

origin = 0x000000, length = 0x400

origin = 0x000400, length = 0x400

FLASH PAGE = O
RAMMO PAGE =1
FLASH PAGE = O
RAMM1 PAGE = 1

A linker command file consists of two sections, a memory section and a sections section. In the
memory section, page 0 defines the program memory space, and page 1 defines the data
memory space. Each memory block is given a unique name, along with its origin and length. In
the sections section, the section is directed to the appropriate memory block.

Section Placement

The SECTIONS section will specify how you want the sections to be distributed through memory.
The following code is used to link the sections into the memory specified in the previous example:

SECTIONS

{
.text:> FLASH
.ebss:> RAMMO
_cinit:> FLASH
.stack:> RAMM1

PAGE O
PAGE 1
PAGE O
PAGE 1

TMS320F2837xD Microcontroller Workshop - Programming Development Environment

Creating a Linker Command File

The linker will gather all the code sections from all the files being linked together. Similarly, it will
combine all ‘like’ sections.

Beginning with the first section listed, the linker will place it into the specified memory segment.

Summary: Linker Command File

The linker command file (.cmd) contains the inputs — commands — for the linker. This
information is summarized below:

Linker Command File Summary

¢ Memory Map Description
¢ Name
¢ Location
¢Size

¢ Sections Description

¢ Directs software sections into named
memory regions

¢ Allows per-file discrimination
¢ Allows separate load/run locations

TMS320F2837xD Microcontroller Workshop - Programming Development Environment 2-17

Lab File Directory Structure

Lab File Directory Structure

Lab File Directory Structure

B . C28x Supporting Files
¢ Easier to make projects portable

= . Labs .
¢ ${PROJECT_ROOT} provides
=0 F2837xD_headers an anchor point for paths to files
, cmd that travel with the project

J include ¢ Easier to maintain and update
supporting files
Project Source Files

_ ¢ All modified files are in the
 indlude Project Folder

El) Labx Other Source Files that are
| cpudi /“Added” to the Project Folder
| source ¢ Source files for multiple part

lab exercises

. Source

E . Lab_common

Note: CCSv7 will automatically add ALL files contained in the folder where the project is created

2-18 TMS320F2837xD Microcontroller Workshop - Programming Development Environment

Lab 2: Linker Command File

Lab 2: Linker Command File
» Objective

Use a linker command file to link the C program file (Lab2.c) into the system described below.

Lab 2: Linker Command File

M PAGE @: /* Program Memory */
emory RAMLS4 : origin = 8x@@AGRA, length = BxPEEEEE
RAMLSS : origin = @x@8ASE8, length = BxG@E300
) RAMGSE123 1 origin = @x@eceed, length = OxGod4e80

on-chip
PAGE 1: /* Data Memory */
memory RAMMB : origin = 8x@888e8, length = BxG08480
RAMML 1 origin = @x@8e4e8, length = OxGoE480
RAMLSE : origin = @x@eseed, length = OxDeEBEE
RAMLS1 : origin = 8x@@8808, length = BxPEEEEE
F2837x RAMLS2 : origin = @x@09808, length - exeeesee
RAMLS3 : origin = @x@8980@, length = OxG@EEEQ
RAMDE : origin = @x@epeed, length = OxDEEBEE
RAMDL : origin = 8x@@B3RA, length = BxPEEEEE
. . . RAMGS4 : origin = 8x@18@e8, length = Bxe@le80
SVStem Descrlptlon RAMGSS : origin = @x@l11@ea, length = Gx@elecs
RAMGSE : origin = @x@l2eea, length = OxBoleae
* TMS320F2837x RAMGST : origin = &x@13@08, length = BxPO186E
. RAMGSB9ABCDEF : origin = 8x@14888, length = Bx801000
* All internal RAM

blocks allocated

Placement of Sections:

« .text into RAM Block RAMGS0123 on PAGE 0 (program memory)
« .cinit into RAM Block RAMGS0123 on PAGE 0 (program memaory)
« .ebss into RAM Block RAMMO on PAGE 1 (data memory)

« .stack into RAM Block RAMML1 on PAGE 1 (data memory)

> Initial Hardware Set Up

Note: The lab exercises in this workshop have been developed and targeted for the F28379D
LaunchPad. Optionally, the F28379D Experimenter Kit can be used. Other F2807x or
F2837xS development tool kits may be used and might require some minor modifications
to the lab code and/or lab directions; however the Inter-Processor Communications lab
exercise will require either the F28379D LaunchPad or the F28379D Experimenter Kit.
Refer to Appendix A for additional information about the F28379D Experimenter Kit.

e F28379D LaunchPad:

Using the supplied USB cable — plug the USB Standard Type A connector into the computer USB
port and the USB Mini Type B connector into the LaunchPad. This will power the LaunchPad
using the power supplied by the computer USB port. Additionally, this USB port will provide the
JTAG communication link between the device and Code Composer Studio.

At the beginning of the workshop, boot mode switch S1 position 3 must be set to “1 — ON". This
will configure the device for emulation boot mode.

> Initial Software Set Up

Code Composer Studio must be installed in addition to the workshop files. A local copy of the
required C2000Ware files is included with the lab files. This provides portability, making the

TMS320F2837xD Microcontroller Workshop - Programming Development Environment 2-19

Lab 2: Linker Command File

workshop files self-contained and independent of other support files or resources. The lab
directions for this workshop are based on all software installed in their default locations.

Procedure

Start Code Composer Studio and Open a Workspace

1.

Start Code Composer Studio (CCS) by double clicking the icon on the desktop or selecting it
from the Windows Start menu. When CCS loads, a dialog box will prompt you for the
location of a workspace folder. Use the default location for the workspace and click OK.

This folder contains all CCS custom settings, which includes project settings and views when
CCS is closed so that the same projects and settings will be available when CCS is opened
again. The workspace is saved automatically when CCS is closed.

The first time CCS opens an introduction page appears. Close the page by clicking the X on
the “Getting Started” tab. You should now have an empty workbench. The term “workbench”
refers to the desktop development environment. Maximize CCS to fill your screen.

The workbench will open in the CCS Edit perspective view. Notice the “CCS Edit” icon in the
upper right-hand corner. A perspective defines the initial layout views of the workbench
windows, toolbars, and menus which are appropriate for a specific type of task (i.e. code
development or debugging). This minimizes clutter to the user interface. The CCS Edit
perspective is used to create or build C/C++ projects. A CCS Debug perspective view will
automatically be enabled when the debug session is started. This perspective is used for
debugging C/C++ projects.

Setup Target Configuration

3.

Open the target configuration dialog box. On the menu bar click:
File > New > Target Configuration File

In the file name field type F2837xD.ccxml. This is just a descriptive name since multiple
target configuration files can be created. Leave the “Use shared location” box checked and
select Finish.

In the next window that appears, select the emulator using the “Connection” pull-down list
and choose “Texas Instruments XDS100v2 USB Debug Probe”. In the “Board or Device” box
type TMS320F28379D to filter the options. In the box below, check the box to select
“TMS320F28379D". Click Save to save the configuration, then close the “F2837xD.ccxml”
setup window by clicking the X on the tab.

To view the target configurations, click:

View > Target Configurations

and click the plus sign (+) to the left of “User Defined”. Notice that the F2837xD.ccxml file is
listed and set as the default. If it is not set as the default, right-click on the .ccxml file and
select “Set as Default”. Close the Target Configurations window by clicking the X on the tab.

Create a New Project

6.

A project contains all the files you will need to develop an executable output file (.out) which
can be run on the MCU hardware. To create a new project click:

File > New = CCS Project orclick: Project > New CCS Project..

TMS320F2837xD Microcontroller Workshop - Programming Development Environment

Lab 2: Linker Command File

A CCS Project window will open. At the top of this window, filter the “Target” options by using
the pull-down list on the left and choose “2837xD Delfino”. In the pull-down list immediately
to the right, choose the “TMS320F28379D".

Leave the “Connection” box blank. We have already set up the target configuration.

7. The next section selects the project settings. In the Project name field type Lab2. Uncheck
the “Use default location” box. Click the Browse... button and navigate to:

C:\C28x\Labs\Lab2\cpu01
Click OK.

8. Next, open the “Advanced setting” section and set the “Linker command file” to “<none>".
We will be using our own linker command file rather than the one supplied by CCS. Leave
the “Runtime Support Library” set to “<automatic>". This will automatically select the
“rts2800_fpu32.lib” runtime support library for floating-point devices.

9. Then, open the “Project templates and examples” section and select the “Empty Project”
template. Click Finish.

10. A new project has now been created. Notice the Project Explorer window contains Lab2. If
the workbench is empty, reset the perspective view by clicking:

Window > Perspective > Reset Perspective..

The project is set “Active” and the output files will be located in the “Debug” folder. At this
point, the project does not include any source files. The next step is to add the source files to
the project.

11. To add the source files to the project, right-click on Lab2 in the Project Explorer window and
select:

Add Files..
or click: Project > Add Files..

and make sure you're looking in C:\C28x\Labs\Lab2\source. With the “files of type” set
to view all files (*.*) select Lab2.c and Lab2.cmd then click OPEN. A “File Operation”
window will open, choose “Copy files” and click OK. This will add the files to the project.

12. In the Project Explorer window, click the plus sign (+) to the left of Lab2 and notice that the
files are listed.

Project Build Options

13. There are numerous build options in the project. Most default option settings are sufficient for
getting started. We will inspect a couple of the default options at this time. Right-click on
Lab2 in the Project Explorer window and select Properties or click:

Project > Properties

14. A “Properties” window will open and in the section on the left under “Build” be sure that the
“C2000 Compiler” and “C2000 Linker” options are visible. Next, under “C2000 Linker” select
the “Basic Options”. Notice that .out and .map files are being specified. The .out file is
the executable code that will be loaded into the MCU. The .map file will contain a linker
report showing memory usage and section addresses in memory. Also notice the stack size
is set to 0x200.

15. Under “C2000 Compiler” select the “Processor Options”. Notice the large memory model
and unified memory boxes are checked. Next, notice the “Specify CLA support” is set to

TMS320F2837xD Microcontroller Workshop - Programming Development Environment 2-21

Lab 2: Linker Command File

clal, the “Specify floating point support” is set to fpu32, the “Specify TMU support” is set to
TMUO, and the “Specify VCU support” is set to vcu2. Select OK to close the Properties
window.

Linker Command File — Lab2.cmd

16.

17.

Open and inspect Lab2 . cmd by double clicking on the filename in the Project Explorer
window. Notice that the Memory{} declaration describes the system memory shown on the
“Lab2: Linker Command File” slide in the objective section of this lab exercise. Memory
blocks RAMLS4, RAMLS5 and RAMGS0123 have been placed in program memory on page
0, and the other memory blocks have been placed in data memory on page 1.

In the Sections{} area notice that the sections defined on the slide have been “linked” into
the appropriate memories. Also, notice that a section called .reset has been allocated. The
.reset section is part of the rts2800_fpu32.lib and is not needed. By putting the TYPE =
DSECT modifier after its allocation the linker will ignore this section and not allocate it. Close
the inspected file.

Build and Load the Project

18.

19.

20.

21.
22.

Two buttons on the horizontal toolbar control code generation. Hover your mouse over each
button as you read the following descriptions:

Ry - L FE -
Button Name Description
1 Build Full build and link of all source files
2 Debug Automatically build, link, load and launch debug-session

Click the “Bui Id” button and watch the tools run in the Console window. Check for errors in
the Problems window (we have deliberately put an error in Lab2.c). When you get an error,
you will see the error message in the Problems window. Expand the error by clicking on the
plus sign (+) to the left of the “Errors”. Then simply double-click the error message. The
editor will automatically open to the source file containing the error, with the code line
highlighted with a red circle with a white “x” inside of it.

Fix the error by adding a semicolon at the end of the “z = x + y” statement. For future
knowledge, realize that a single code error can sometimes generate multiple error messages
at build time. This was not the case here.

Build the project again. There should be no errors this time.

CCS can automatically save modified source files, build the program, open the debug
perspective view, connect and download it to the target, and then run the program to the
beginning of the main function.

Click on the “Debug” button (green bug) or click RUN - Debug

A Launching Debug Session window will open. Select only CPUL1 to load the program on (i.e.
uncheck CPU2), and then click OK.

Notice the “CCS Debug” icon in the upper right-hand corner indicating that we are now in the
CCS Debug perspective view. The program ran through the C-environment initialization
routine in the rts2800_fpu32.lib and stopped at main() in Lab2.c.

TMS320F2837xD Microcontroller Workshop - Programming Development Environment

Lab 2: Linker Command File

Debug Environment Windows

It is standard debug practice to watch local and global variables while debugging code. There are
various methods for doing this in Code Composer Studio. We will examine two of them here:
memory browser, and expressions.

23. Open a “Memory Browser” to view the global variable “z”".
Click: View > Memory Browser on the menu bar.

Type &z into the address field, select “Data” memory page, and then <enter>. Note that you
must use the ampersand (meaning “address of”) when using a symbol in a memory browser
address box. Also note that CCS is case sensitive.

Set the properties format to “16-Bit Hex — Tl Style” in the browser. This will give you more
viewable data in the browser. You can change the contents of any address in the memory
browser by double-clicking on its value. This is useful during debug.

24. Notice the “Variables” window automatically opened and the local variables x and y are
present. The variables window will always contain the local variables for the code function
currently being executed.

(Note that local variables actually live on the stack. You can also view local variables in a
memory browser by setting the address to “SP” after the code function has been entered).

25. We can also add global variables to the “Expressions” window if desired. Let's add the global
variable “z".

Click the “Expressions” tab at the top of the window. In the empty box in the “Expression”
column (Add new expression), type z and then <enter>. An ampersand is not used here.
The expressions window knows you are specifying a symbol. (Note that the expressions
window can be manually opened by clicking: View - Expressions on the menu bar).

Check that the expressions window and memory browser both report the same value for “z”.
Try changing the value in one window, and notice that the value also changes in the other
window.

Single-stepping the Code

26. Click the “Variables” tab at the top of the window to watch the local variables. Single-step
through main() by using the <F5> key (or you can use the “Step Into” button on the
horizontal toolbar). Check to see if the program is working as expected. What is the value
for “z” when you get to the end of the program?

Terminate Debug Session and Close Project

27. The “Terminate” button will terminate the active debug session, close the debugger and
return Code Composer Studio to the CCS Edit perspective view.

Click: Run = Terminate or use the Terminate icon: L]

28. Next, close the project by right-clicking on Lab2 in the Project Explorer window and select
Close Project.

End of Exercise

TMS320F2837xD Microcontroller Workshop - Programming Development Environment 2-23

Lab 2: Linker Command File

2-24 TMS320F2837xD Microcontroller Workshop - Programming Development Environment

Peripherial Registers Header Files

Introduction

The purpose of the F2837xD C-code header files is to simplify the programming of the many
peripherals on the F28x device. Typically, to program a peripheral the programmer needs to
write the appropriate values to the different fields within a control register. In its simplest form,
the process consists of writing a hex value (or masking a bit field) to the correct address in
memory. But, since this can be a burdensome and repetitive task, the C-code header files were
created to make this a less complicated task.

The F2837xD C-code header files are part of a library consisting of C functions, macros,
peripheral structures, and variable definitions. Together, this set of files is known as the ‘header
files.’

Registers and the bit-fields are represented by structures. C functions and macros are used to
initialize or modify the structures (registers).

In this module, you will learn how to use the header files and C programs to facilitate
programming the peripherals.

Module Objectives

Module Objectives

¢ Review Register Programming Model

¢ Understand the usage of the F2837xD
C-Code Header Files

¢ Be able to program peripheral
registers

¢ Understand how the structures are
mapped with the linker command file

TMS320F2837xD Microcontroller Workshop - Peripherial Registers Header Files 3-1

Register Programming Model

Chapter Topics

Peripherial Registers Header FileS..... .o 3-1
Register Programming MOueiiiiiiiii e 3-3
Traditional and Structure Approach t0 C COTINGuuveeiiiieiiiiiiiiet et 3-5
NE= Tl a Tl OTe] 0 \VZ=T 0 i o] o TR P TP 3-9
F2837XD C-Code Header FIleS........coi it 3-11

Peripheral StruCture .h Fileoooi oo e e e e annes 3-11
Global Variable Definitions Filecooiiiiiiiiii e 3-13
Mapping SrUCLUrES 10 IMEIMOIY ...ttt e et e e e e e e s e e e e e e e e e e e aannes 3-14
Linker Command Filcoiiiiiiiiiie ettt 3-14
Peripheral SPecific ROULINESooiiiiiiiiiieee et e e e e 3-15
U]] 4= Y2 PSSPt 3-16

TMS320F2837xD Microcontroller Workshop - Peripherial Registers Header Files

Register Programming Model

Register Programming Model

Software]

v
Direct

Hardware ?bstraction

\ 4

Bit Fields

Driv‘e'rLib

A 4

A 4 \ 4

[Registers and Addresses]

A 4

[

Hardware]

Register Programming Model

¢ DriverLib
¢ C functions automatically set
register bit fields
¢ Common tasks and
peripheral modes supported
¢ Reduces learning curve and
simplifies programming
¢ Bit Field Header Files
¢ C structures — Peripheral
Register Header Files
¢ Register access whole or by
bits and bit fields are
manipulated without masking

¢ Ease-of-use with CCS IDE
¢ Direct Register Access

¢ User code (C or assembly)
defines and access register
addresses

The various levels of the programming model provide different degrees of abstraction. The

highest level is DriverLib which are C functions that automatically set the bit fields. This gives you
the least amount of flexibility in exchange for a reduced learning curve and simplified
programming. The bit field header files are C structures that allow registers to be access whole

or by bits and bit fields, and modified without masking. This provides a nice balance between

ease of use and flexibility when working with Code Composer Studio. Direct register access is
the lowest level where the user code, in C or assembly, defines and access register addresses.

TMS320F2837xD Microcontroller Workshop - Peripherial Registers Header Files

Register Programming Model

Programming Model Comparison

¢ Register addresses # defined individually
[Direct Register ACCGSS]— & User must compute bit-field masks
¢ Not easy-to-read

*CMPR1 = 0x1234;

¢ Header files define all registers as structures
[Bit Field Header Files]— o Bit-fields directly accessible
¢ Easy-to-read

EPwmlRegs.CMPA_half.CMPA = EPwmlRegs.TBPRD * duty;

¢ DriverLib performs low-level register manipulation

[DriverLib]— ¢ Easy-to-read

¢ Highest abstraction level

EPWM_setCounterCompareValue(EPWM2_BASE, EPWM_COUNTER_COMPARE_A, duty);

¢ The device support package includes documentation and examples showing how to
use the Bit Field Header Files or DriverLib

¢ Device support packages located at: C:\ti\c2000\C2000Ware\device_support\
¢ C2000Ware can be downloaded at www. ti.com/tool/c2000ware

The above slide provides a comparison of each programming model, from the lowest level to the
highest level of abstraction. With direct register access, the register addresses are #defined
individually and the user must compute the bit-field mask. The bit field header files define all
registers as structures and the bit fields are directly accessible. DriverLib performs low-level
register manipulation and provides the highest level of abstraction. This workshop makes use of
the bit field header files, which provides a balance between ease of use and flexibility. Device
support packages can be downloaded from www.ti.com.

3-4 TMS320F2837xD Microcontroller Workshop - Peripherial Registers Header Files

Traditional and Structure Approach to C Coding

Traditional and Structure Approach to C Coding

Traditional Approach to C Coding

#define TBCTL (volatile unsigned int *)0x00004000

void main(void)

{
*TBCTL = 0x1234; //write entire register
*TBCTL]|= 0x0003; //stop time-base counter
}
Advantages - Simple, fast and easy to type

- Variable names can match register names (easy
to remember)

Disadvantages - Requires individual masks to be generated to
manipulate individual bits

- Cannot easily display bit fields in debugger window
- Will generate less efficient code in many cases

In the traditional approach to C coding, we used a #define to assign the address of the register
and referenced it with a pointer. The first line of code on this slide we are writing to the entire
register with a 16-bit value. The second line, we are ORing a bit field.

Advantages? Simple, fast, and easy to type. The variable names can exactly match the register
names, so it's easy to remember. Disadvantages? Requires individual masks to be generated to
manipulate individual bits, it cannot easily display bit fields in the debugger window, and it will
generate less efficient code in many cases.

TMS320F2837xD Microcontroller Workshop - Peripherial Registers Header Files 3-5

Traditional and Structure Approach to C Coding

Structure Approach to C Coding

void main(void)
{
EPwm1Regs.TBCTL.all = 0x1234; //write entire register
EPwm1Regs.TBCTL.bit.CTRMODE = 3; //stop time-base counter
}
Advantages - Easy to manipulate individual bits

- Watch window is amazing! (next slide)

- Generates most efficient code (on C28x)

Can be difficult to remember the structure names
(Editor Auto Complete feature to the rescuel!)

- More to type (again, Editor Auto Complete feature
to the rescue)

Disadvantages

The structure approach to C coding uses the peripheral register header files. First, a peripheral is
specified, followed by a control register. Then you can modify the complete register or selected
bits. This is almost self-commented code.

The first line of code on this slide we are writing to the entire register. The second line of code we
are modifying a bit field. Advantages? Easy to manipulate individual bits, it works great with our
tools, and will generate the most efficient code. Disadvantages? Can be difficult to remember
the structure names and more to type; however, the edit auto complete feature of Code
Composer Studio will eliminate these disadvantages.

TMS320F2837xD Microcontroller Workshop - Peripherial Registers Header Files

Traditional and Structure Approach to C Coding

4

110
ity

Built-in Register Window

Registers 52 Eﬂlwlfﬁflﬁz?vmﬁ

| Value | Description

" Ecapnegs
"4 ECapRegs
ECapSReqs

" ECapsRegs

il Emif 1ConfigRegs
" Emif2Confighegs
" EmifiRegs

"% Emif2Regs

ol EPwm1Regs

74 EPwm2Regs

" EPwm3Regs

11 EPwm4Regs

{4 EPwmSRegs

{4 EPwmBRegs

U4 EPwmTRegs

i EPwmBRegs
EPwmIRegs

"4 EPwm10Regs

{4 EPwm11Regs

{4 EPwm12Regs

{4 EPwmXbarRegs

i1 EQep3Regs
" FlashCtriRegs
¥\ FlashEccRegs
"4 GpioCtriRegs
GpioDataRegs
U I2caRegs

" 12coRegs

101 IncRegs
McbspaRegs
161 McbspbRegs

1008 Registers 5

F3
&
Fl
"

05 HEHEFEEEEB

S E|@|riAee Y=0

| value | Description |
#% ECapIRegs
% ECap2Regs
e ECapFRens
% ECapRegs
e ECapSRegs
#% ECapeRens
% EmifiConfigRegs
i EmifzConfigRegs
S Emif1Regs
e EmifRegs
S EPwm1Regs
= i TBCTL 0xC033 Time Base Control Register
3 FREE SOFT 11 Emulation Mode Bits
44t PHSDIR 0 Phase Direction it
it CLKDIV 000 Time Base Clock Pre-scaler
34 HsPCLKDIV 000 High Speed TBCLK Pre-scale
380 SWFSYNC 0 Software Force Sync Pulse
34 sYMCosEL 11 Sync Output Select
siot PROLD 0 Active Period Load
a6t PHSEN 0 Phase Load Enable
#at CTRMODE 11 Counter Mode
i TBCTL2 0x%0000 Time Base Control Register
8 TBCTR 0x0000 Time Base Counter Register
i TBSTS 0x0000 Time Base Status Register [
M cvpoTL 0%0000 Counter Compare Control R
it CMPCTL2 0%0000 Counter Compare Control R
afad DBCTL 0x0000 Dead-Band Generator Cont
afal DBCTL2 0x0000 Dead-Band Generator Cont
i AQeTL 0%0000 Action Qualifier Control Reg
M AQTSRCSEL 0x0000 Action Qualifier Trigger Ever
i PCCTL 0x%0000 PWM Chopper Contral Regic
W HRONFG 0x0000 HRPWM Configuration Regic
i HRPWR 0x0000 HRPWM Power Register [Me
14 HRMSTEP 0x0000 HRPWM MEP Step Register
atai HRPCTL 0x0000

High Resolution Period Cont ¥
| »

Register values can be viewed using the built-in Register Window. Also, the peripheral can be
added to the expression window. In addition to viewing register values, individual bit fields can be

modified. There is no need to refer to the reference guide to identify the bit field settings.

Expressions Window using Structures

HE| X KFE| A T O

& Expressions £%

Expression | Type | Yalue | Address |.|
F (= EPwm1Regs struct EPWM_REGS L3 0x00004000@Data
E (= TBCTL union TBCTL_REG Lo} 0x00004000 @Data
69- all unsigned int 0xC033 (Hex) 0x00004000 @Data
B (= bit struct TECTL_BITS Lo} 0x00004000 @Data
9= CTRMODE unsigned int : 2 3 0x00004000 @Data bit 0-1
)= PHSEN unsignedint: 1 0 0x00004000@Data bit 2
9= PROLD unsigned int : 1 0 0x00004000@Dats bit 3
)= SYNCOSEL unsigned int : 2 3 0x00004000@Data bit 4-5
b= SWFSYNC unsigned int : 1 1] 0x00004000@Dats bit 6
9= HSPCLKDIY unsignedint : 3 1] 0x00004000@0ata bit 7-9
)= CLKDIV unsigned int : 3 0 0x00004000@Data bit 10-12
9= PHSDIR unsigned int : 1 1] 0x00004000 @Data bit 13
)= FREE_SOFT unsignedint: 2 3 0x00004000 @Data bit 14-15
(= TBCTLZ union TBCTL2_REG L.} 0x00004001@Data
= rsvd1 unsigned int[2] 0x00004002@0ata 0x00004002@Data
(9= TBCTR unsigned int 1] 0x00004004@Data
(= TBSTS union TBSTS_REG L3 0x00004005@Data
@ rsvd2 unsigned int[2] 0x00004006 @Data 0x00004006 @Data
= cMpCTL union CMPCTL_REG L3 0x00004008 @Data
(= cMPCTL2 union CMPCTL2_REG Lo} 0x00004009 @Data
= rsvd3 unsigned int[2] Ox0000400A@Data 0x0000400A@Data
(= pBCTL union DBCTL_REG L.} 0x0000400C@Data
(= pBCTL2 union DBCTL2_REG [0x00004000@Data
(= rsvd4 unsigned int[2] 0x0000400E@Data 0x0000400E@Data
= aqcTL union AQCTL_REG [0x00004010 @Data
(= AQTSRCSEL union AQTSRCSEL_REG £} 0x00004011@Data
@ rsvd5 unsigned int[2] 0x00004012@Data 0x00004012@Data
= pccTL union PCCTL_REG [0x00004014@Data
= rsvds unsigned int[11] 0x00004015@0ata 0x00004015@Data
(= HRCNFG union HRCNFG_REG [0x00004020 @Data
(= HRPWR union HRPWR_REG L0} 0x00004021@Data
B rsvd7 unsigned int[4] 0x00004022@Data 0x00004022@Data
(= HRMSTER union HRMSTER_REG L0 0x00004026 @Data
@ rsvds unsigned int[&] 0x00004027@Data 0x00004027@Data
= HRPCTL union HRPCTL_REG [0x0000402D @Data |

TMS320F2837xD Microcontroller Workshop - Peripherial Registers Header Files

Traditional and Structure Approach to C Coding

Is the Structure Approach Efficient?

The structure approach enables efficient compiler use of
DP addressing mode and C28x atomic operations

C Source Code Generated Assembly Code*
// Stop CPU TimerO MOVW DP, #0030
CpuTimerORegs.TCR.bit.TSS = 1; OR @4, #0x0010
// Load new 32-bit period value MOVL XAR4, #0x010000
CpuTimerORegs.PRD.all = 0x00010000; MOVL @2, XAR4
// Start CPU TimerO AND @4, #OXFFEF
CpuTimerORegs.TCR.bit.TSS = 0;

- Easy to read the code w/o comments
- Bit mask built-in to structure

5words, 5 cycles

You could not have coded this example any more efficiently with hand assembly!

* C28x Compiler v5.0.1 with -g and either -01, -02, or -03 optimization level

Compare with the #define Approach

The #define approach relies heavily on less-efficient pointers for
random memory access, and often does not take advantage of
C28x atomic operations

C Source Code Generated Assembly Code*
// Stop CPU Timer0 ggg gﬁL,;80i8X0C04)
*TIMEROTCR |= 10; , #0x
OTCR |= 0x0010; MOV *(0:0x0C04), @AL
// Load new 32-bit period value MOVL XAR5, #0x010000
*TIMEROTPRD32 = 0x00010000; MOVL XAR4, #0x000COA
MOVL *+XAR4[0], XARS5
// Start CPU TimerO
& - - MOV @AL, *(0:0x0C04
TIMEROTCR &= OXFFEF; Y AL #onEeED)
MoV *(0:0x0C04), @AL
- Hard to read the code w/o comments 9 words, 9 cycles

- User had to determine the bit mask

* C28x Compiler v5.0.1 with -g and either -01, -02, or -03 optimization level

TMS320F2837xD Microcontroller Workshop - Peripherial Registers Header Files

Naming Conventions

Naming Conventions

The header files use a familiar set of naming conventions. They are consistent with the Code
Composer Studio configuration tool, and generated file naming conventions.

Structure Naming Conventions

¢ The F2837xD header files define:
¢ All of the peripheral structures
¢ All of the register names
All of the bit field names
¢ All of the register addresses

PeripheralName.RegisterName.all /I Access full 16 or 32-bit register

PeripheralName.RegisterName.bit.FieldName // Access specified bit fields of register

Notes: [1] “PeripheralName” are assigned by Tl and found in the F2837xD header files.
They are a combination of capital and small letters (i.e. CpuTimerORegs).

[2] “RegisterName” are the same names as used in the data sheet.
They are always in capital letters (i.e. TCR, TIM, TPR,..).

[3] “FieldName” are the same names as used in the data sheet.
They are always in capital letters (i.e. POL, TOG, TSS,..).

The header files define all of the peripheral structures, all of the register names, all of the bit field
names, and all of the register addresses. The most common naming conventions used are
PeripheralName.RegisterName.all, which will access the full 16 or 32-bit register; and

PeripheralName.RegisterName.bit.FieldName, which will access the specified bit fields of a
register.

TMS320F2837xD Microcontroller Workshop - Peripherial Registers Header Files 3-9

Naming Conventions

Editor Auto Complete to the Rescue!
8 CCS Debuy - Example/EPwm.c - Code Composer Stuslio == =10
Bl Fdt Vew Broject Tooh Sopis fon Window
- H &5 - - ok i3 B Vil i

a1l | Mccsedt |8 ccsong
i
=
ce
Ear bit.ERuMl = 13
DevefgRegs. SOFTPASSI bt . EFutll = @)
asm(” EDTS")} acee
EPwalRegs. TBCTL. DAt .CTRMODE = 8x3; tim
EPwmlRegs . TBCTL.A11 =
EPwmiReps. TECTR = 8x0000;
EPwalfiegs. TEPRD = Pul_HALF_PERIOD;
EPwmlfegs . TEPHS. bit, TEPHS = Bx2004;
EPwniRegs. CHPA. LIt CHPA = PYM_BUTY_CYCLE;
EPwmlfegs . CHPCTL. all = Bx2802;
15-18 #'s:
atch
1 register A -
_'I_I
| smartinsert | a3:30 £ Rl Licerse

The editor auto complete feature works as follows. First, you type EPwm1Regs. Then, when you

wn

type a “.” a window opens up, allowing you to select a control register. In this example TBCTL is

wn

selected. Then, when you type the “.” a window opens up, allowing you to select “all” or “bit”. In

this example “bit” is selected. Then, when you type the “.” a window opens up, allowing you to
select a bit field. In this example CTRMODE is selected. And now, the structure is completed.

TMS320F2837xD Microcontroller Workshop - Peripherial Registers Header Files

F2837xD C-Code Header Files

F2837xD C-Code Header Files

The F2837xD header file package contains everything needed to use the structure approach. It
defines all the peripheral register bits and register addresses. The header file package includes
the header files, linker command files, code examples, and documentation. The header file
package is available from C2000Ware.

F2837xD Header File Package

(http://lwww.ti.com, C2000Ware)

¢ Contains everything needed to use the
structure approach

¢ Defines all peripheral register bits and
register addresses

¢ Header file package includes:

¢\F2837xD_headers\include - .hfiles
¢\F2837xD_headers\cmd - linker .cmd files
¢\F2837xD_examples - CCS examples
e\doc - documentation

C2000Ware Header File Package located at —
C:\ti\c2000\C2000Ware_<version>\device_support\

A peripheral is programmed by writing values to a set of registers. Sometimes, individual fields
are written to as bits, or as bytes, or as entire words. Unions are used to overlap memory
(register) so the contents can be accessed in different ways. The header files group all the
registers belonging to a specific peripheral.

Peripheral data structures can be added to the watch window by right-clicking on the structure
and selecting the option to add to watch window. This will allow viewing of the individual register
fields.

Peripheral Structure .h File

The F2837xD_Device.h header file is the main include file. By including this file in the .c source
code, all of the peripheral specific .h header files are automatically included. Of course, each
specific .h header file can be included individually in an application that does not use all the
header files, or you can comment out the ones you do not need. (Also includes typedef
statements).

TMS320F2837xD Microcontroller Workshop - Peripherial Registers Header Files 3-11

F2837xD C-Code Header Files

Peripheral Structure .h files o2

¢ Contain bits field structure definitions for each peripheral register

F2837xD_epwm.h

/I EPWM Individual Register Bit Definitions:
struct TBCTL_BITS{ /I bits description

Uintl6 CTRMODE:2; /1'1:0 Counter Mode
Your C-source file (e_g_ EPwm.c) Uintl6 PHSEN:1; /I 2 Phase Load Enable
- - Uintl16 PRDLD:1; /I 3 Active Period Load
#include “F2837xD_device.h" X
Uintl6 SYNCOSEL:2; /1 5:4 Sync Output Select
. . . Uintl6 SWFSYNC:1; /1 6 Software Force Sync Pulse
Void InitAdc(void) X R
{ Uintl6 HSPCLKDIV:3; 119:7 High Speed TBCLK Pre-scaler
. Uintl6 CLKDIV:3; //12:10 Time Base Clock Pre-scaler
/* Stop time-base counter */ X i . R
_ Uintl6 PHSDIR:1; /I 13 Phase Direction Bit
EPwm1Regs.TBCTL.bit. CTRMODE = 1;) - .
Uintl6 FREE_SOFT:2; /1 15:14 Emulation Mode Bits
/* configure the ADC register */ Y o . X
/I Allow access to the bit fields or entire register:
AdcRegs.ADCCTL1.all = 0x00E4; .
¥ union TBCTL_REG{
' uint16 all;

struct TBCTL_BITS bit;
Ik
/Il EPWM External References & Function Declarations:
extern volatile struct EPWM_REGS EPwm1Regs;

Next, we will discuss the steps needed to use the header files with your project. The .h files
contain the bit field structure definitions for each peripheral register.

Peripheral Structure .h files o2

¢ The header file package contains a .h file for
each peripheral in the device

F2837xD_adc.h F2837xD_emif.h F2837xD_mniintrupt.h
F2837xD_analogsubsys.h F2837xD_epwm.h F2837xD_output_xbar.h
F2837xD_can.h F2837xD_epwm_xbar.h F2837xD_piectrl.h
F2837xD_cla.h F2837xD_eqgep.h F2837xD_pievect.h
F2837xD_cmpss.h F2837xD_flash.h F2837xD_sci.h
F2837xD_cputimer.h F2837xD_gpio.h F2837xD_sdfm.h
F2837xD_dac.h F2837xD_i2c.h F2837xD_spi.h
F2837xD_dcsm.h F2837xD_input_xbar.h F2837xD_sysctrl.h
F2837xD_device.h F2837xD_ipc.h F2837xD_upp.h
F2837xD_dma.h F2837xD_mcbsp.h F2837xD_xbar.h
F2837xD_ecap.h F2837xD_memconfig.h F2837xD_xint.h

¢ F2837xD_device.h
¢ Main include file
¢ Will include all other .h files

¢ Include this file (directly or indirectly)
in each source file:

#include “F2837xD_device.h”

The header file package contains a .h file for each peripheral in the device. The
F2837xD_Device.h file is the main include file. It will include all of the other .h files. There are

TMS320F2837xD Microcontroller Workshop - Peripherial Registers Header Files

F2837xD C-Code Header Files

three steps needed to use the header files. The first step is to include this file directly or indirectly
in each source files.

Global Variable Definitions File

With F2837xD_GlobalVariableDefs.c included in the project all the needed variable definitions are
globally defined.

Global Variable Definitions File
F2837xD_GlobalVariableDefs.c

¢ Declares a global instantiation of the structure
for each peripheral

¢ Each structure is placed in its own section using
a DATA_SECTION pragma to allow linking to the
correct memory (see next slide)

F2837xD_GlobalVariableDefs.c
#include "F2837xD_device.h"

#pragma DATA_SECTION(EPwm1Regs,"EPwm1RegsFile");
volatile struct EPWM_REGS EPwm1Regs;

¢ Add this file to your CCS project:
F2837xD_GlobalVariableDefs.c

The global variable definition file declares a global instantiation of the structure for each
peripheral. Each structure is placed in its own section using a DATA_SECTION pragma to allow
linking to the correct memory. The second step for using the header files is to add
F2837xD_GlobalVariableDefs.c file to your project.

TMS320F2837xD Microcontroller Workshop - Peripherial Registers Header Files 3-13

F2837xD C-Code Header Files

Mapping Structures to Memory

The data structures describe the register set in detail. And, each instance of the data type (i.e.,
register set) is unique. Each structure is associated with an address in memory. This is done by
(1) creating a new section name via a DATA_SECTION pragma, and (2) linking the new section
name to a specific memory in the linker command file.

Linker Command Files for the Structures
F2837xD_nonBlOS.cmd and F2837xD_BIOS.cmd

F2837xD_GlobalVariableDefs.c

#include "F2837xD_device.h" ¢ Links each structure to
the address of the
— #pragma DATA_SECTION(EPwm1Regs,* EPwm1RegsFile"); peripheral using the
volatile struct EPWM_REGS EPwm1Regs; structures named
section
F2837xD_Headers_nonBlOS.cmd ¢ non-BIOS and BIOS
NVEMORY versions of the .cmd file
PAGEL:

¢ Add one of these files

EPWML: origin=0x004000, length=0x000100 :
. . to your CCS project:

¥ F2837xD_nonBIOS.cmd

SECTIONS

{ or
EPwmlRegsFile: > EPWML PAGE = 1 F2837xD_BIOS.cmd

}

The header file package has two linker command file versions; one for non-BIOS projects and
one for BIOS projects. This linker command file is used to link each structure to the address of
the peripheral using the structures named section. The third and final step for using the header
files is to add the appropriate linker command file to your project.

Linker Command File

When using the header files, the user adds the MEMORY regions that correspond to the
CODE_SECTION and DATA_SECTION pragmas found in the .h and global-definitons.c file.

The user can modify their own linker command file, or use a pre-configured linker command file
such as F28075.cmd. This file has the peripheral memory regions defined and tied to the
individual peripheral.

3-14 TMS320F2837xD Microcontroller Workshop - Peripherial Registers Header Files

F2837xD C-Code Header Files

Peripheral Specific Routines

Peripheral Specific C functions are used to initialize the peripherals. They are used by adding the

appropriate .c file to the project.

Peripheral Specific Examples
¢ Example projects for each peripheral

¢ Helpful to get you started

. adc_ppb_delay

. adc_soc_epwm

. adc_ppb_limits

. adc_soc_software

. adc_ppb_offset
, blinky

. adc_soc_continuous

. blinky_with_DCSM

. buffdac_enable . can_loopback . tan_loopback_interrupts . da_adc_fir32

. da_asin . da_atan . da_cre8 . da_crc8tablel

| da_det_3by3 | da_divide . da_exp2 . da_exp10
da_fir32 da_iir2p2z da_logic da_matrix_mpy
da_matrix_transpase da_mixed_c_asm da_prime da_shellsort

. da_sart . da_vinverse . da_vmaxfloat . da_vminfloat

. cmpss_asynch . cmpss_digital _filter . cpu_timers | ecap_apwm

. ecap_capture_pwm . epwm_deadband . epwm_trip_zone . EpWm_up_aq

| epwm_updown_ag | eqep_fregeal | eqep_pos_speed | external_interrupt
. gpio_setup | gpio_toggle , hrpwm_duty_sfo_va | hrpwm_prdupdown_sfo_va
, hrpwm_slider . i2c_eeprom | Ipm_idlewake J Ipm_standbywake

| mcbsp_loopback

| mcbsp_loopback_dma

. mcbsp_loopback_interrupts

. mcbsp_spi_loopback

| pbist_Non_L50_to_LS5 | sd_echoback , sci_loopback | sd_loopback_interrupts
,sd_card , sdfm_filters_sync_da | sdfm_filters_sync_cpu | sdfm_filters_sync_dma
, sdfm_pwm_sync_cpu , spi_loopback | spi_loopback_dma | spi_loopback_interrupts
| sw_prioritized_interrupts , imed_led_blink . tmu_sinegen J usb_dev_bulk
Jush_dev_keyboard J ush_dev_mouse , usb_dev_serial , usb_dual_detect

, ush_host_keyboard , usb_host_mouse , usb_host_msc . watchdog

The peripheral register header file package includes example projects for each peripheral. This
can be very helpful to getting you started.
TMS320F2837xD Microcontroller Workshop - Peripherial Registers Header Files 3-15

Summary

Summary

Peripheral Register Header Files
Summary

¢ Easier code development

¢ Easy to use

¢ Generates most efficient code

¢ Increases effectiveness of CCS watch window

¢ Tl has already done all the work!
¢ Use the correct header file package for your device:

* F2837xD * F2803x * F280x

» F2837xS * F2802x * F2801x

* F2807x * F2802x0 * F281x

» F2806x * F2833x * F28M35x
* F2805x * F2823x * F28M36x
» F2804x * F2834x

Go to http://www.ti.com and enter “C2000Ware” in the keyword search box

In summary, the peripheral register header files allow for easier code development, they are easy
to use, generates the most efficient code, works great with Code Composer Studio, and Tl has
already done the work for you. Just make sure to use the correct header file package for your
device.

3-16 TMS320F2837xD Microcontroller Workshop - Peripherial Registers Header Files

Reset and Interrupts

Introduction

This module covers the interrupt process and explains how the Peripheral Interrupt Expansion
(PIE) is used to service the peripheral interrupts.

Module Objectives

Module Objectives

¢ Describe the F28x reset process

¢ List the event sequence during an
interrupt

¢ Describe the F28x interrupt structure

TMS320F2837xD Microcontroller Workshop - Reset and Interrupts 4-1

Reset and Boot Process

Chapter Topics

RESEE AN INTEITUPES ettt e e e et e e e e e e e s e aab et e e e e e e e s nanbeeeaaaaeas 4-1
RESEL AN BOOL PIrOCESSeteiiiiiiiiiiiitti ettt ettt e e e e st e e e e e e e st b e e e e e e e e s e snnbbeaeaaaaeas 4-3
Y=y A = ToTo 1 [0 T= o = PP OTPPPRTRPR 4-5
EMUIation BOOt MOGE......ccoiiiiiiie ittt ettt e e s e e e e s et e e e s srbeeeeanes 4-6
Stand-AloNE BOOL MOEouveiiiiiiiie ettt e et e et e e s sneeee s 4-7
Reset Code FIOW — SUMMAIYcoooiiiiiiiee s ee e et e e e e s s e e e e e e s s e e e e e e s snnnnneees 4-8
Emulation Boot Mode using Code Composer Studio GELoccuuiiiiiiiiiiiiiiiiieeeee e 4-8
1=y uil oo TR (ol 0 =Vl 1 PP UOUPUPRPPTR 4-9
Peripheral Software ReSet REQISIEIScuii ittt 4-10

L1 =T U] o] £ T PP PUUPPPPPPTTNN 4-11
INEEITUPL PrOCESSING .eeiiiieiiieee e e ettt e e e e e sttt et e e e e e s abbbbe e e e e e e e e sanbbseeeeaaeeaaannes 4-12
Interrupt Flag RegISter (IFR)oooi ittt e e e e e e 4-13
Interrupt Enable RegiSter (IER).......cccuuviiiiie ettt e e e e e e s e e e e e e annes 4-13
Interrupt Global Mask Bit (INTIM)uuuiiiiireiiiiiiieie e s e ceteee e e e e s s st e e e e e e s s snnrnaee e e e e e e e ennes 4-14
Peripheral Interrupt EXPanSIion (PIE)coeiiiiiiiiiiieiee e ciiiiiieee e e s s ssitiee e e e e e s s snrnneee e e e e s e annes 4-14
(1= = (o Tod QR [a1 1= | [2= 11 [0] [PP 4-17
Interrupt Signal FIOW — SUMMATY.........vuiiiiieiiiiiiieir e e e e s st r e e e e e s s snnrreeeeeeeeseannes 4-19
F2837XD Dual-Core INterrupt STTUCIUEcciivivieiee e e ettt e e s s et e e e e e e e e e e e e e 4-20
Interrupt RESPONSE AN LAtENCYceuiiiiiieeieiiiie ettt ee e e e e anes 4-21

TMS320F2837xD Microcontroller Workshop - Reset and Interrupts

Reset and Boot Process

Reset and Boot Process

Reset Sources

Missing Clock Detect F28X7x

Watchdog Timer *

Power-on Reset —1)
Hibernate Reset

XRS

XRS pin active

To XRS pin

. .))) ! *= CPULWD resets both cores and
Logic shown is functional representation, not actual implementation CPU2.WD resets CPU2 only

¢ POR — Power-on Reset generates a device reset during
power-up conditions

¢ RESC - Reset Cause register contains the cause of the
last reset (sticky bits maintain state with multiple resets)

Note: Only F2807x devices support an on-chip voltage regulator (VREG) to
generate the core voltage.

The device has various reset sources, but in general resets on CPU1 will reset the entire device
and resets on CPU2 will reset only the CPU2 subsystem. The reset sources include an external
reset pin, watchdog timer reset, power-on reset which generates a device reset during power-up
conditions, Hibernate reset, as well as a missing clock detect reset. A reset cause register
(RESC) is available for each CPU subsystem which can be read to determine the cause of the
reset. The external reset pin is the main chip-level reset for the device, and it resets both CPU
subsystems to their default state. The power-on reset (POR) circuit is used to create a clean
reset throughout the device during power-up, while suppressing glitches on the input/output pins.
Note, only the F2807x devices support an on-chip voltage regulator to generate the core voltage.

TMS320F2837xD Microcontroller Workshop - Reset and Interrupts 4-3

Reset and Boot Process

Dual-Core Boot Process

¢ CPUL1 starts execution from CPU1 boot
ROM while CPU2 is held in reset

¢ CPU1 controls the boot process
¢ CPU2 goes through its own boot process

under the control of CPU1 — except when
CPU2 is set to boot-to-flash

¢ |PC registers are used to communicate
between CPU1 and CPU2 during the boot
process

During the F2837xD dual-core microcontroller booting, CPU1 controls the boot process and starts
execution from the CPU1 boot ROM while CPU2 is held in reset. CPU2 goes through its own
boot process under the control of CPU1, except when CPU2 is set to boot-to-flash. The IPC
registers are used to communicate between CPU1 and CPU2 during the boot process.
Additionally, the boot ROM contains the necessary boot loading routines to support peripheral
boot loading.

4-4 TMS320F2837xD Microcontroller Workshop - Reset and Interrupts

Reset and Boot Process

Reset - Bootloader

Reset — Bootloader
Reset vector
Reset fetched from
ENPIE =0 boot ROM CPU2 held_lin
_ reset unti
INTM =1 0x3F FFCO released by
CPUL1.
S » CPU2
YES Emulator NO
TRsT=1 | Connected ? | TRsT=0
Emulation Boot Stand-alone Boot
Boot determined by Boot determined by
EMU_BOOTCTRL: 2 GPIO pins and
EMU_KEY and EMU_BMODE Zx-BOOTCTRL:
OTP_KEY and OTP_BMODE
EMU_BOOTCTRL register located in PIE RAM at 0x000D0O0
_ Z1-BOOTCTRL register located in OTP at 0x07801E
TRST = JTAG Test Reset 22-BOOTCTRL register located in OTP at 0x07821E

When the device is reset, the peripheral interrupt expansion block, also known as the PIE block,
and the master interrupt switch INTM are disabled. This prevents any interrupts during the boot
process. The program counter is set to Ox3FFFCO, where the reset vector is fetched. In the boot
code the JTAG Test Reset line (TRST line) is checked to determine if the emulator is connected.

If the emulator is connected, then the boot process follows the Emulation Boot mode flow. In
Emulation Boot mode, the boot is determined by the EMU_BOOTCTRL register located in the
PIE RAM. Specific details about the boot flow are then determined by the EMU_KEY and
EMU_BMODE bhit fields in the EMU_BOOTCTRL register.

If the emulator is not connected, the boot process follows the Stand-alone Boot mode flow. In
Stand-alone Boot mode, the boot is determined by two GPIO pins and the Z1-BOOTCTRL and
Z2-BOOTCTRL registers located in the OTP. Specific details about the boot flow are then deter-
mined by the OTP_KEY and OTP_BMODE bit fields in the Z1-BOOTCTRL and Z2-BOOTCTRL
registers.

TMS320F2837xD Microcontroller Workshop - Reset and Interrupts 4-5

Reset and Boot Process

Emulation Boot Mode

Emulation Boot Mode (TRST=1) side1of2

Emulator Connected

Emulation Boot If either |I_EdMl#‘_KEY orbEMU_Bé\/IODE
. are invalid, the “wait” boot mode is
Boot determined by used. These values can then be

EMU_BOOTCTRL : modified using the debugger and a
EMU_KEY and EMU_BMODE reset issued to restart the boot process.
'

NO Boot Mode

| EMU_KEY = Ox5A ? i

Wait
YES
GPIO 72 GPIO 84| Boot Mode
_ 0 0 Parallel I/O | Boot pins can be
EMU_BMODE = OxFE ? | YES o 1 LA mapped (0 a'&y Gplé)
CPU1 onl . pins. GetMode reads
Y 1 0 Wait Zx-BOOTCTRL (not
NO 1 1 GetMode | the boot pins).

YES
EMU_BMODE = OxFF ? | BootMode | paags OTP for boot
Emulate CPU1/2 | pins and boot mode.

NO Stand-Alone

CPU1 EMU_BOOTCTRL Register CPU2 EMU_BOOTCTRL Register
31-24 23-16 15-8 7-0 31-24 23-16 15-8 7-0

EMU_BOOTPIN1[EMU_BOOTPINO[EMU_BMODE[EMU_KEY | [reserved reserved |EMU_BMODE|EMU_KEY

Emulation Boot Mode (TRST=1) siide20f2

l Continued from

revious slide
i ——[0TP_KEY =0x5A 7 | NO iBscHiigus
EMU_BMODE = | Boot Mode FLASH
0x00 Parallel I/0 1 YES
0x01 SCI-A OTP_BMODE = | Boot Mode
0x03 GetMode 0x00 Parallel 1/0
c%m gxgg lstél-: 0x01 SCI-A
— X 5 -
CPUZ | | ox07 CAN-A 8§8§ ZT;I_,/:
O0x0A MO RAM 0x07 CAN-A
0x0B FLASH OXO0A MO RAM
other Wait 0x0B FLASH —SPUL
0x0C USB-0 0x0C USB-0
0x81 SCI-A* other Wait
Gy | 0x84 SPI-A* e T
0x85 12C-A * 0x84 SPI-A *
0x87 CAN-A * 0x85 12C-A *
* Alternate RX/TX GPIO 0x87 CAN-A *
pin mapping for CPUT only OTP_BMODE = | Boot Mode
0x0B FLASH } CPU2
other Wait GetMode

In Emulation Boot mode, first the EMU_KEY bit fields are checked for a value of 0x5A. If either
EMU_KEY or EMU_BMODE bit fields are invalid, the “Wait” boot mode is entered. These bit field
values can then be modified using the debugger and then a reset is issued to restart the boot

4-6 TMS320F2837xD Microcontroller Workshop - Reset and Interrupts

Reset and Boot Process

process. This is the typical sequence followed during device power-up with the emulator con-
nected, allowing the user to control the boot process using the debugger.

Once the EMU_KEY bit fields are set to 0x5A, then the EMU_BMODE bit field values determines
the boot mode. The various Emulation Boot modes supported are Parallel I/O, SCI, SPI, 12C,
CAN, MO RAM, FLASH, USB, and Wait. The GetMode and when EMU_BMODE bit fields have a
value of OXFE or OXFF are used to emulate the Stand-alone Boot mode.

Stand-Alone Boot Mode

Stand-Alone Boot Mode (TrsT=0)
Emulator Not Connected S EAETEE S o
—) | = | Boot Mode
Stand-Alone Boot 0x00 Parallel 1/0
Boot determined by 0x01 SCI-A
2 GPIO pins and 0x04 SPI-A
Zx-BOOTCTRL : 0x05 12C-A
OTP_KEY and OTP_BMODE 0x07 CAN-A
i 0X0A MO RAM
GPIO GPIO 0x0B FLASH | goiiote
72 84 |Boot Mode 0x0C USB-0
CPU1 0 0 Parallel 1/0 other Wait
only 0 1 [scl 0x81 SCI-A *
1 0 Wait 0x84 SPI-A *
1 1 GetMode 0x85 12C-A *
l—_, 0x87 CAN-A *
Léie Z1-BOOTCTRL YES OTP_BMODE = | Boot Mode
BOOTCTRL OTP_KEY = 0x5A ? 0x0B FLASH CPU2
other Wait GetMode
I Nno
Use 72-BOOTCTRL YES CPU1 Zx-BOOTCTRL Register
22- OTP KEY = OX5A 2 31-24 23-16 15-8 7-0
BOOTCTRL = ’ [OTP_BOOTPINL | OTP_BOOTPINO | OTP_BMODE | OTP_KEY]
N
l o CPU2 Zx-BOOTCTRL Register
Boot Mode 31-24 23-16 15-8 7-0
FLASH [reserved [reserved [OTP_BMODE IOTP_KEY]

In Stand-alone boot mode, first GPIO pins 72 and 84 are checked to determine if the boot mode
is Parallel 1/0, SCI, Wait, or GetMode. These pin can be remapped to any GPIO pins, if needed,
and the default “unconnected” pins set the boot mode to GetMode. In GetMode the OTP_KEY bit
fields in the Z1-BOOTCTRL and Z2-BOOTCTRL registers are checked for a value of Ox5A. An
un-programmed device will have these locations set as 1's, and the flash boot mode is entered,
as expected for the default mode. If the OTP_KEY bit fields in either Z1-BOOTCTRL or Z2-
BOOTCTRL registers has a value of Ox5A, then the OTP_BMODE bit field values in the registers
determines the boot mode. The various Stand-alone Boot modes supported are Parallel /0, SCI,
SPI, 12C, CAN, MO RAM, FLASH, USB, and Wait.

TMS320F2837xD Microcontroller Workshop - Reset and Interrupts 4-7

Reset and Boot Process

Reset Code Flow — Summary

In summary, the reset code flow is as follows. After reset, the program counter is set to
0x3FFFCO0, where the flow is vectored to the Init_Boot code in the Boot ROM. The Init_Boot code
defines the execution entry based on emulation boot mode or stand-alone boot mode. The entry
point can be executing boot-loading routines, entry to the flash, or MO RAM.

Reset Code Flow - Summary

0x000000 0x000000
MO RAM (1Kw)

0x080000 0x080000
FLASH (512Kw)

0x3F8000[550t ROM (32Kw) Execution Entry
£ Ide.ternéined'vl?yd L
Boot Code mulation Boot Mode or
InitBoot Stand-Alone Boot Mode :
. f !
1
BROM vector (64w) !
v
RESET BB OX3FFFCO| * reset vector Bootloading
Routines
(SCI, SPI, 12C,
------------------------ USB, CAN,
Parallel 1/0)

* reset vector = 0x3FF16A for CPU1; Ox3FEC52 for CPU2

Emulation Boot Mode using Code Composer
Studio GEL

The CCS GEL file is used to setup the boot modes for the device during debug. By default the
GEL file provides functions to set the device for “Boot to SARAM” and “Boot to FLASH". It can be
modified to include other boot mode options, if desired.

/ /
/* EMU Boot Mode - Set Boot Mode During Debug */
/ /

menuitem "EMU Boot Mode Select™
hotmenu EMU_BOOT_SARAMQ)

*0xDO0 = OxO0A5A;
}
hotmenu EMU_BOOT_FLASHQ)

*0xD0O0 = OxOB5A;

To access the GEL file use: Tools > GEL Files

TMS320F2837xD Microcontroller Workshop - Reset and Interrupts

Reset and Boot Process

Getting to main()

After reset how do we get to main() ?

¢ At the code entry point, branch to _c_int00()
¢ Part of compiler runtime support library
¢ Sets up compiler environment
+ Calls main()

CodeStartBranch.asm ~ -S€ct “codestart

LB _c_int00
MEMORY
PAGE 0: .
Linker .cmd) BEGIN_MO : origin = 0x000000, length = 0x000002
SECTIONS
codestart : > BEGIN_MO, PAGE = 0

Note: the above example is for boot mode set to RAMMO; to run out of Flash, the
“codestart” section would be linked to the entry point of the Flash memory block

After reset how do we get to main? When the bootloader process is completed, a branch to the
compiler runtime support library is located at the code entry point. This branch to _c_int00 is
executed, then the compiler environment is set up, and finally main is called.

TMS320F2837xD Microcontroller Workshop - Reset and Interrupts 4-9

Reset and Boot Process

Peripheral Software Reset Registers

Peripheral Software Reset Registers

DevCfgRegs.SOFTPRESKX.hit.PeripheralName = 1

Peripheral Software

Reset Signal A Peripheral
\ | Peripheral |

0 =controlled by normal CPU reset (default) 1 =reset peripheral

Register

PeripheralName

SOFTPRESO

CPU1_CLA1, CPU2_CLAL

SOFTPRES1

EMIF1, EMIF2

SOFTPRES2

EPWM1, EPWM2, EPWM3, EPWM4, EPWMS5, EPWM6, EPWM7, EPWM8, EPWM9, EPWM10, EPWM11, EPWM12

SOFTPRES3

ECAP1, ECAP2, ECAP3, ECAP4, ECAP5, ECAP6

SOFTPRES4

EQEP1, EQEP2, EQEP3

SOFTPRES6

SD1, sD2

SOFTPRES7

SCI_A, SCI_B, SCI_C, SCI_D

SOFTPRESS8

SPI_A, SPI_B, SPI_C

SOFTPRES9

12C_A, 12C_B

SOFTPRES11

McBSP_A, McBSP_B, USB_A

SOFTPRES13

ADC_A, ADC_B, ADC_C, ADC_D

SOFTPRES14

CMPSS1, CMPSS2, CMPSS3, CMPSS4, CMPSS5, CMPSS6, CMPSS7, CMPSS8

SOFTPRES16

DAC_A, DAC_B, DAC_C

The peripheral software reset register contains the reset bit for each peripheral.

TMS320F2837xD Microcontroller Workshop - Reset and Interrupts

Interrupts

Interrupts

Interrupt Sources

Internal Sources

TINT2
TINT1 F28x CORE
TINTO ——— XRS

ePWM, eCAP, eQEP, PIE NMI

ADC, SCI, SPI, 12C, INTL

CAN, McBSP, (Peripheral T

Interrupt
Dbl G, B2 Expansion) a INT3

External Sources ’
77777777777 INT12
XINT1 — XINTS i INTL3
B 1 INT14
TZx —
—_ |
RS 3

The internal interrupt sources include the general purpose timers 0, 1, and 2, and all of the
peripherals on the device. External interrupt sources include the three external interrupt lines, the
trip zones, and the external reset pin. The core has 14 interrupt lines. The Peripheral Interrupt
Expansion block, known as the PIE block, is connected to the core interrupt lines 1 through 12
and is used to expand the core interrupt capability, allowing up to 192 possible interrupt sources.

TMS320F2837xD Microcontroller Workshop - Reset and Interrupts 4-11

Interrupts

Interrupt Processing

Maskable Interrupt Processing

Conceptual Core Overview

Core (IFR) (IER) (INTM)

Interrupt “Latch” “Switch” “Global Switch”

NTi -

INT2 fo}——"- F28x
. . . . Core
INT14 [1] e

¢ Avalid signal on a specific interrupt line causes the latch
to display a “1” in the appropriate bit

¢ If the individual and global switches are turned “on” the
interrupt reaches the core

By using a series of flag and enable registers, the CPU can be configured to service one interrupt
while others remain pending, or perhaps disabled when servicing certain critical tasks. When an
interrupt signal occurs on a core line, the interrupt flag register (IFR) for that core line is set. If the
appropriate interrupt enable register (IER) is enabled for that core line, and the interrupt global
mask (INTM) is enabled, the interrupt signal will propagate to the core. Once the interrupt service
routine (ISR) starts processing the interrupt, the INTM bit is disabled to prevent nested interrupts.
The IFR is then cleared and ready for the next interrupt signal. When the interrupt servicing is
completed, the INTM bit is automatically enabled, allowing the next interrupt to be serviced.
Notice that when the INTM bit is ‘0’, the “switch” is closed and enabled. When the bit is ‘1’, the
“switch” is open and disabled. The IER is managed by ORing and ANDing mask values. The
INTM bit in the status register is managed by using in-line assembly instructions.

TMS320F2837xD Microcontroller Workshop - Reset and Interrupts

Interrupts

Interrupt Flag Register (IFR)

Interrupt Flag Register (IFR)

15 14 13 12 1 10 9 8
|RTOSINT|DLOGINT| INT14 | INT13 | INT12 | INT1L | INT10 | INT9 |
7 6 5 4 3 2 1 0
| INT8 | INT7 | INT6 | INTS | INT4 | INT3 | INT2 | INT1 |

Pending: IFRg;=1
Absent : IFRg; =0

/*** Manual setting/clearing IFR ***/

extern cregister volatile unsigned int IFR;
IFR |= 0x0008; llset INT4 in IFR
IFR &= OxFFF7; llclear INT4 in IFR

¢ Compiler generates atomic instructions (non-interruptible) for setting/clearing IFR
< If interrupt occurs when writing IFR, interrupt has priority

¢ IFR(bit) cleared when interrupt is acknowledged by CPU

¢ Register cleared on reset

Interrupt Enable Register (IER)

Interrupt Enable Register (IER)

15 14 13 12 1 10 9 8
|RTOSINT|DLOGINT| INT14 | INT13 | INT12 | INT11 | INT10 | INT9 |
7 6 5 4 3 2 1 0
| INT8 | INT7 | INT6 | INTS | INT4 | INT3 | INT2 | INTL |

Enable: Set IER g =1
Disable: Clear IERg;=0

[*** Interrupt Enable Register ***/

extern cregister volatile unsigned int IER;
IER |= 0x0008; /lenable INT4 in IER
IER &= OXFFF7; /ldisable INT4 in IER

¢ Compiler generates atomic instructions (non-interruptible)
for setting/clearing IER

¢ Register cleared on reset

TMS320F2837xD Microcontroller Workshop - Reset and Interrupts 4-13

Interrupts

Interrupt Global Mask Bit (INTM)

ST1

Interrupt Global Mask Bit

Bit 0

INTM

¢ INTM used to globally enable/disable interrupts:
¢ Enable: INTM =0
¢ Disable: INTM =1 (reset value)

¢ INTM modified from assembly code only:

[*** Global Interrupts ***/
asm(* CLRC INTM”); /lenable global interrupts
asm(* SETC INTM”); //disable global interrupts

Peripheral Interrupt Expansion (PIE)

Peripheral Interrupt Expansion - PIE

PIE module for 192 Interrupts

Interrupt Group 1

PIEIFR1 PIEIER1

=192

INTL1.y interrupt group INTL1 1 pa
INT2.y interrupt group
. INTL.2 _.@_/_
INT3.y interrupt group . . TNTL

INT4.y interrupt group . .

INT5.y interrupt group

INT6.y interrupt group

INTL.16 —[1 }—— .

192

INT7.y interrupt group

INT8.y interrupt group

Core Interrupt logic

INT9.y interrupt group

INT11.y interrupt group

xllexl| |2 28x
1ol TV o
= [= < Core

INT12.y interrupt group

| Peripheral Interrupts 12 x 16

INT13 (TINT1)

INT10.y interrupt group | | 15 Interrupts>

INT14 (TINT2)

NMI

The C28x CPU core has a total of fourteen interrupt lines, of which two interrupt lines are directly
connected to CPU Timers 1 and 2 (on INT13 and INT14, respectively) and the remaining twelve

TMS320F2837xD Microcontroller Workshop - Reset and Interrupts

Interrupts

interrupt lines (INT1 through INT12) are used to service the peripheral interrupts. A Peripheral
Interrupt Expansion (PIE) module multiplexes up to sixteen peripheral interrupts into each of the
twelve CPU interrupt lines, further expanding support for up to 192 peripheral interrupt signals.
The PIE module also expands the interrupt vector table, allowing each unique interrupt signal to
have its own interrupt service routine (ISR), permitting the CPU to support a large number of
peripherals.

The PIE module has an individual flag and enable bit for each peripheral interrupt signal. Each of
the sixteen peripheral interrupt signals that are multiplexed into a single CPU interrupt line is
referred to as a “group”, so the PIE module consists of 12 groups. Each PIE group has a 16-bit
flag register (PIEIFRX), a 16-bit enable register (PIEIERX), and a bit field in the PIE acknowledge
register (PIEACK) which acts as a common interrupt mask for the entire group. For a peripheral
interrupt to propagate to the CPU, the appropriate PIEIFR must be set, the PIEIER enabled, the
CPU IFR set, the IER enabled, and the INTM enabled. Note that some peripherals can have
multiple events trigger the same interrupt signal, and the cause of the interrupt can be determined
by reading the peripheral’s status register.

We have already discussed the interrupt process in the core. Now we need to look at the
peripheral interrupt expansion block. This block is connected to the core interrupt lines 1 through
12. The PIE block consists of 12 groups. Within each group, there are sixteen interrupt sources.
Each group has a PIE interrupt enable register and a PIE interrupt flag register. Note that
interrupt lines 13, 14, and NMI bypass the PIE block.

F2837xD PIE Assignment Table - Lower

INTx.8 INTx.7 INTx.6 | INTx.5 | INTx.4 INTX.3 INTx.2 | INTx.1

INT1 WAKE TINTO ADCD1 XINT2 XINT1 ADCC1 ADCB1 ADCA1

INT2 PWM8_ PWM7_ PWM6_ PWM5 PWM4_ PWM3 PWM2 PWM1

TZ TZ TZ TZ TZ TZ TZ TZ

INT3 PWM8 PWM7 PWM6 PWM5 PWM4 PWM3 PWM2 PWM1

INT4 ECAP6 | ECAP5 | ECAP4 | ECAP3 | ECAP2 | ECAP1
INT5 EQEP3 | EQEP2 | EQEPL
INT6 Mé:_E.‘r?(P MBC_E,‘&P ME_‘?&P MAC_E,‘&P SPIB_TX | SPIB_RX | SPIA_TX | SPIA_RX
INT7 DMA_CH6| DMA_CH5| DMA_CH4 | DMA_CH3 | DMA_CH2| DMA_CH1
INT8 | SCID_TX | SCID_RX | SCIC_TX | SCIC_Rx | '2CB 12CB l2Ca 12CA

INT9 CANB_2 | CANB_1 [CANA_2 | CANA_1 | SCIB_TX | SCIB_RX | SCIA_TX | SCIA_RX

ADCB ADCA
INT10 ADCB4 ADCB3 ADCB2 EVT ™ ADCA4 ADCA3 ADCA2 EVT ™

INT11 | CLA1.8 | CLA1.7 | CLA1 6 | CLA1 5 | CLA1. 4 | CLA1.3 | CLA1 2 | CLA1_1

INT12 FPU_UF | FPU_OF VCU XINT5 XINT4 XINT3

The PIE assignment table maps each peripheral interrupt to the unique vector location for that
interrupt service routine. Notice the interrupt numbers on the left represent the twelve core group
interrupt lines and the interrupt numbers across the top represent the lower eight of the sixteen
peripheral interrupts within the core group interrupt line. The next figure shows the upper eight of
the sixteen peripheral interrupts within the core group interrupt line.

TMS320F2837xD Microcontroller Workshop - Reset and Interrupts 4-15

Interrupts

F2837xD PIE Assignment Table - Upper

INTX.16 | INTX.15 | INTx.14 | INTx.13 | INTx.12 | INTx.11 | INTx.10 | INTX.9
INTL IPC3 IPC2 IPC1 IPCO
i PWM12_ | PWMIL_ | PWMIO_ | PWM9_
TZ TZ 7 Tz
INT3 EPWM12 | EPWMIL | EPWM10 | EPWM9
INT4
INTS SD2 SD1
INT6 SPIC_TX | SPIC_RX
INT7
INT8 UPPA
INT9 USBA
ADCD ADCC
INT10 | ApcD4 | ADcD3 | Apcpz | ABCP- | apcca | apces | Apccz | AREC-
INT11
AUX_PLL | SYS_PLL |[RAM_ACC| FLASH C | RAM_C_| EMIF
INT12 | CLA UF | CLA OF | ""grip™ | " 'Srjp | VIGLAT | ERROR | ERROR | ERROR

Similar to the core interrupt process, the PIE module has an individual flag and enable bit for
each peripheral interrupt signal. Each PIE group has a 16-bit flag register, a 16-bit enable

register, and a bit field in the PIE acknowledge register which acts as a common interrupt mask

for the entire group. The enable PIE bit in the PIECTRL register is used to activate the PIE

module.

PIE Registers
PIEIFRx register (x=1t0 12)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

|INTX.16|INTX.15|INTX.14|INTX.13|INTX.12|INTX.11|INTX.10| INTX.9 | INTX.8 | INTX.7 | INTX.6| INTX.5 | INTx.4 | INTX.3 | INTX.2 | INTx.1 |

PIEIERx register (x =1to 12)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

|INTx.16 INTX.15(INTx.14 INTx.l3|lNTx.12|INTx.11 INTx.lO| INTX.9 | INTX.8 | INTX.7 | INTX.6 | INTX.5 | INTX.4 | INTX.3 | INTX.2 | INTX.1
PIE Interrupt Acknowledge Register (PIEACK)

15-12 1 10 9 8 7 6 5 4 3 2 1 0
| reserved | PIEACKXx |
PIECTRL register 15-1 0
| PIEVECT |ENPIE|

#include “F2837x_Device.h”
PieCtrIRegs.PIEIFR1.bit.INTx4 = 1; //manually set IFR for XINT1 in PIE group 1
PieCtrIRegs.PIEIER3.bit.INTx2 = 1; //enable PWM2 interrupt in PIE group 3
PieCtrIRegs.PIEACK.all = 0x0004; //acknowledge the PIE group 3
PieCtrIRegs.PIECTRL.bit.ENPIE = 1; //enable the PIE

TMS320F2837xD Microcontroller Workshop - Reset and Interrupts

Interrupts

PIE Block Initialization

PIE Block Initialization

Main.c Memory Map

// CPU Initialization @
InitPieCtri();
> PIE RAM
R Vectors
)) g 512w

PieVect.c PieCtrll.c | (ENPIE = 1)
PIE_VECT_TABLE // Initialize PIE_RAM @
// Base Vectors @ =

o » memcpy(eee);

> = Boot ROM
// Core INT1 re-ma ©

: ? // Enable PIE Block Reset Vector

- PieCtriRegs. :
// Core INT12 re-map PIECTRL.DIT. sssefeseeussssessemsssnnsssnnssnnnnnnnnl

The interrupt vector table, as mapped in the PIE interrupt assignment table, is located in the
PieVect.c file. During processor initialization a function call to PieCtrl.c file is used to copy the
interrupt vector table to the PIE RAM and then the PIE module is enabled by setting ENPIE to ‘1.
When the CPU receives an interrupt, the vector address of the ISR is fetched from the PIE RAM,
and the interrupt with the highest priority that is both flagged and enabled is executed. Priority is
determined by the location within the interrupt vector table. The lowest numbered interrupt has
the highest priority when multiple interrupts are pending.

TMS320F2837xD Microcontroller Workshop - Reset and Interrupts 4-17

Interrupts

PIE Initialization Code Flow - Summary

RESET Reset Vector Boot option determines
<Ox3F FFC0> <reset vector> = Boot Code | code execution entry point

I CodeStartBranch.asm
l l .sect “codestart”
MO RAM Entry Point OR Flash Entry Point
<0x00 0000> = LB _c_int00 <0x08 0000> = LB _c_int00

I |
!

_C_int00: rts2800_fpu32.lib

CALL mainQ)

v
PIE Vector Table

Main.c 4 Initialization() » 512 Word RAM
- { 0x00 0D00 — OEFF

main() Load PIE Vectors .
{ initialization(Q; | Enable the PIE v Defaultlsr.c

= > Enable PIEIER = A A

< Enable Core IER interrupt void name(void)
¥ Enable INTM { .

4 :
3

In summary, the PIE initialization code flow is as follows. After the device is reset and execution
of the boot code is completed, the selected boot option determines the code entry point. In this
figure, two different entry points are shown. The one on the left is for memory block MO RAM,
and the one on the right is for flash.

In either case, the CodeStartBranch.asm file has a Long Branch instruction to the entry point of
the runtime support library. After the runtime support library completes execution, main is called.
In main, a function is called to initialize the interrupt process and enable the PIE module. When
the CPU receives an interrupt, the vector address of the ISR is fetched from the PIE RAM, and
the interrupt with the highest priority that is both flagged and enabled is executed. Priority is
determined by the location within the interrupt vector table.

4-18 TMS320F2837xD Microcontroller Workshop - Reset and Interrupts

Interrupts

Interrupt Signal Flow — Summary

Interrupt Signal Flow — Summary

Peripheral Interrupt Expansion (PIE) — Interrupt Group x
PIEIFRX PIEIERX

Peripheral INTx.y 1)\
Interrupt L= v

PieCtrIRegs.PIEIERX.bit.INTxy = 1;

Core Interrupt Logic

Core IFR IER INTM
INTX 1])\
L= v
IER |= 0x0001; asm(“ CLRC INTM");
- OXOFFF,;

PIE Vector Tabl Defaultlsr.c
5'- Co interrupt void name(void)
SN § - { -
e)

TNTx.y > narﬁe

(For peripheral interrupts where x =1 to 12, and y = 1 to 16)

In summary, the following steps occur during an interrupt process. First, a peripheral interrupt is
generated and the PIE interrupt flag register is set. If the PIE interrupt enable register is enabled,
then the core interrupt flag register will be set. Next, if the core interrupt enable register and
global interrupt mask is enabled, the PIE vector table will redirect the code to the interrupt service
routine.

TMS320F2837xD Microcontroller Workshop - Reset and Interrupts 4-19

Interrupts

F2837xD Dual-Core Interrupt Structure

F2837xD Dual-Core Interrupt Structure

Internal Sources
TIN

T2.1
TINTLL CPU1 CORE
TINTO.1 DMAL1.1 CLA1.1 NMI
INT1
ePWM, eCAP, eQEP, INT2
ADC, SCI, SPI, I12C, INT3
CAN, McBSP, WD 3
ePIE.1 .
External Sources INT12
777777777777 ‘ INT13
XINT1 — XINT5} INT14
— | —
TZX \——————. IPC XRS
CPU2 CORE
NMI
INT1
ePIE.2 INT2
INT3
Internal Sources IN:I'12
TINTO.2 DMA12 CLAL.2 INT13
TINT1.2 INT14
TINT2.2

Each C28x CPU core in the F2837xD device has its own PIE module, and each PIE module is
configured independently. Some interrupt signals are sourced from shared peripherals that can
be owned by either CPU, and these interrupt signals are sent to both CPU PIE modules
regardless of which CPU owns the peripheral. Therefore, if enabled a peripheral owned by one
CPU can cause an interrupt on the other CPU.

TMS320F2837xD Microcontroller Workshop - Reset and Interrupts

Interrupts

Interrupt Response and Latency

Interrupt Response - Hardware Sequence

CPU Action Description

Registers — stack 14 Register words auto saved

0 — IFR (bit) Clear corresponding IFR bit

0 - IER (bit) Clear corresponding IER bit

1 - INTM/DBGM Disable global ints/debug events
Vector - PC Loads PC with int vector address
Clear other status bits | Clear LOOP, EALLOW, IDLESTAT

Note: some actions occur simultaneously, none are interruptible

T STO

AH AL

PH PL

AR1 ARO

DP ST1
DBSTAT | IER
PC(msw)| PC(Isw)

Interrupt Latency

e ennmmeaneee Latency

ext. Internal
interrupt : interrupt Assumes ISR in
occurs occurs internal RAM

here here

| S
T >

o / cycles
@ ® ® ® ©® ® |

Sync ext. Recognition Getvector F1/F2/D1of Save D2/R1/R2 of SR

signal delay (3), SP and place ISR return ISR g‘fg&?gg”
alignment (1), inPC instruction address instruction gn next
. (ext. interrupt (3reg. (3 reg. pairs el
interrupt placed in pairs saved) Y
only) pipeline saved)

¢ Minimum latency (to when real work occurs in the ISR):
> Internal interrupts: 14 cycles

» External interrupts: 16 cycles

¢ Maximum latency: Depends on wait states, INTM, etc.

TMS320F2837xD Microcontroller Workshop - Reset and Interrupts 4-21

Interrupts

TMS320F2837xD Microcontroller Workshop - Reset and Interrupts

System Initialization

Introduction

This module covers the operation of the OSC/PLL-based clock module and watchdog timer.
Also, the general-purpose digital 1/0, external interrups, low power modes and the register
protection will be covered.

Module Objectives

Module Objectives

¢ OSC/PLL Clock Module

¢ Watchdog Timer

¢ General Purpose Digital I/O
¢ External Interrupts

¢ Low Power Modes

¢ Register Protection

TMS320F2837xD Microcontroller Workshop - System Initialization 5-1

Oscillator/PLL Clock Module

Chapter Topics

SYSTEM INTIAITZATTION ..ciiiii e e e e e e e e e e nnbbeeeaaaeeas 5-1
OsCillator/PLL CIOCK MOGUIEcoiiieiiieeee ettt e e e e e e 5-3
F2837XD Dual-Core SYsStem ClOCKcuuiiiiiiiiieiiie e 5-5
VAT (e g To (oo T T2 o= PP UR TP 5-7
General PUrPOSE DIgItal IOueeiiiiiiee ettt e e e e e e 5-12
(€1 (@ 1] 11 0= - 1 PSPPSRt 5-15
GPIO OULPUE X-BaT ...ttt et e et et s s be et s s s be e sesennnes 5-16

L (=T Tz L [(=T (]] SR 5-18
LOW POWET IMOGES.......iiiiie ittt ettt et e e e st e e e et e e s e bt e e e s s nbbe e e e anees 5-19
=T oI5 (= g =d €0] =Yt 1o) o 1 SRR 5-21
Lab 5: System INIAlIZAtIONccoiiiiiiiiee e 5-23

TMS320F2837xD Microcontroller Workshop - System Initialization

Oscillator/PLL Clock Module

Oscillator/PLL Clock Module

F28x7x Oscillator / PLL Clock Module

Internal | osc1CLK
OsC1 WDCLK
(10 MHz) OSCCLKSRCSEL
Internal ;ﬁ SYSCLKDIV
0sC 2 OSC2CLK 050+ L OSCCLK N ;
(10 MHz) y (PLL bypass) < :
2 [1/n—> PLLSYSCLK
XCLKIN
""" o PLLCLK
X2n.c 0
ozne) 2 O |ExTCLK PLL L.
ot = ‘ t--SYSPLLCTLL
< = :
x XCLKOUTSEL 7~ SYSPLLMULT
11(:) XCLKOUTDIV
101 H
AUXPLLCLK —{101 ;
CPU2.SYSCLK ——011 1/n XCLKOUT
CPU1.SYSCLK — GPIO 73
PLLCLK ——» ()

PLLSYSCLK ——

[oleole)]
oOr
O*I—‘O

AUXOSCCLKSRCSEL
AUXPLLDIV

AUX
AUXCLK El—» AUXPLLCLK
PLL

* default

o /--
*

POO
\&R

AUXCLKIN (from GPIO)

The device clock signals are derived from one of four clock sources: Internal Oscillator 1
(INTOSC1), Internal Oscillator 2 (INTOSC?2), External Oscillator (XTAL), and Auxiliary Clock Input
(AUXCLKIN). At power-up, the device is clocked from the on-chip 10 MHz oscillator INTOSC2.
INTSOC?2 is the primary internal clock source, and is the default system clock at reset. The
device also includes a redundant on-chip 10 MHz oscillator INTOSC1. INTOSC1 is a backup
clock source, which normally only clocks the watchdog timers and missing clock detection circuit.

Additionally, the device includes dedicated X1 and X2 pins for supporting an external clock
source such as an external oscillator, crystal, or resonator. The AUXCLKIN is used as the bit
clock source for the USB and CAN to generate the precise frequency requirements.

TMS320F2837xD Microcontroller Workshop - System Initialization 5-3

Oscillator/PLL Clock Module

F28x7x PLL and LOSPCP

ClkCfgRegs.SYSCLKDIVSEL.bit.PLLSYSCLKDIV

OSCCLK o ;
(PLL bypass) S !
§ — 1/n PLLSYSCLK | cpux 1 CPUx.SYSCLK
PLLCLK
PLL 1/./ LOSPCP CPUxX.LSPCLK
. ‘-- CIkCfgRegs.SYSPLLCTL1.bit.PLLCLKEN ;
i [CIkCfgRegs.SYSPLLMULT.bit.IMULT CIkagRegs.LOSIPCP.bit.LSPCLK
ClkCfgRegs.SYSPLLMULT.bit. FMULT
IMULT CLKIN SYSPLL LSPCLK | Peripheral Clk Freq
0000000|OSCCLK /n * (PLL bypass) DIVSEL | n 000 | CPUX.SYSCLK /1
0000001|0SCCLK x1/n 111111 | 126 001 | CPUx.SYSCLK /2 X
0000010|OSCCLK x2/n vee e 010 | CPUx.SYSCLK /4
0000011|0SCCLK x3/n q e 011 | CPUx.SYSCLK /6
500 500 000010 100 | CPUxX.SYSCLK /8
1111101|0SCCLK x 125/ n 000001 | /2 101 | CPUX.SYSCLK /10
1111110|OSCCLK x 126/ n 000000 | /1 110 | CPUxX.SYSCLK /12
1111111]|0SCCLK x 127 /n 111 | CPUx.SYSCLK /14
FMULT CLKIN LSBs in reg. — others reserved
00 Fractional x 0 *
01 Fractional x 0.25
10 Fractional x 0.5
11 Fractional x 0.75

* default

The clock sources can be multiplied using the PLL and divided down to produce the desired clock
frequencies for a specific application. By default, the CPU1 subsystem owns the PLL clock
configuration, however a clock control semaphore is available for the CPU2 subsystem to access
the clock configuration registers.

A clock source can be fed directly into the core or multiplied using the PLL. The PLL gives us the
capability to use the internal 10 MHz oscillator and run the device at the full clock frequency. If
the input clock is removed after the PLL is locked, the input clock failed detect circuitry will issue a
limp mode clock of 1 to 4 MHz. Additionally, an internal device reset will be issued. The low-
speed peripheral clock prescaler is used to clock some of the communication peripherals.

The PLL has a 7-bit integer and 2-bit fractional ratio control to select different CPU clock rates.
The C28x CPU provides a SYSCLK clock signal. This signal is prescaled to provide a clock
source for some of the on-chip communication peripherals through the low-speed peripheral clock
prescaler. Other peripherals are clocked by SYSCLK and use their own clock prescalers for
operation.

TMS320F2837xD Microcontroller Workshop - System Initialization

Oscillator/PLL Clock Module

F2837xD Dual-Core System Clock

F2837xD Dual-Core System Clock

: PERX.SYSCLK

PERx ---1 CPUSELy --:__| .12 | |PERX
PERCLKDIVSEL f--: EPWMCLK
E EPWM

EPWMCLKDIV

Peripherals

WDCLK

PERX.SYSCLK CANX Bit CLK
EXTCLK
AUXCLKIN

'---- CANXBCLKSEL

LSPCLKDIV
CPU2 —l 1
CPU2.SYSCLK m CPU2.LSPCLK
PLLSYSCLK CPUL.SYSCLK [~eo~5 | CPULLSPCLK
J LOSPCP
CPU1

CPU2.SYSCLK
INTOSC1
INTOSC2

EXTCLK
AUXPLLCLK

CPUL.SYSCLK
INTOSC1
INTOSC2

EXTCLK
AUXPLLCLK

PERX.LSPCLK

SCIx
PERX | SPix
McBSPx
CPU2.TMR2CLKCTL

CPUTIMER2.2
CPUTIMER2.1

eeeee- CPUL.TMR2CLKCTL

N

The PLL system clock is fed to both the CPU1 and CPU2 subsystems. By default, all peripherals
are assigned to the CPU1 subsystem. Using the CPU selection register, each individual
peripheral can be assigned to either the CPU1 or CPU2 subsystem. The clock for the EPWM
modules are limited to 100 MHz, and by using the peripheral clock divider selection register, this

clock can be divided down to meet this specification.

Clock Source Control Register

ClkCfgRegs.CLKSRCCTLx (lab file: SysCtrl.c)

XTAL Oscillator Off Internal OSC2 Off
0=on 1 = off 0=on 1 = off
31-6 5 4 3 2

| WDHALTI | XTALOFF | INTOSC20FF | reserved | OSCCLKSRCSEL

1-0

x=1 reserved

WD HALT Mode Ignore Oscillator Clock Source Select

0 = automatic turn on/off 00 = INTOSC2 10 = INTOSC1
1 =ignores HALT Mode 01 = EXTCLK 11 = reserved
31-6 5-4 3-2 1-0
X=2 reserved CANBBCLKSEL | CANABCLKSEL | AUXOSCCLKSRCSEL
CAN A/B Bit Clock Select AUX Osc. Clock Source Select
00 = PERx.SYSCLK 10 = AUXCLKIN 00 = INTOSC2 10 = AUXCLKIN
01 = EXTCLK 11 = reserved 01 = EXTCLK 11 =reserved
31-3 2-0
Xx=3 reserved XCLKOUTSEL
XCLK Out Select
000 = PLLSYSCLK 100 = AUXCLK
001 = PLLCLK 101 = INTOSC1
010 = CPU1.SYSCLK 110 = INTOSC2
Note: register lock protected 011 = CPU2.SYSCLK 111 = reserved 0 = default

TMS320F2837xD Microcontroller Workshop - System Initialization

Oscillator/PLL Clock Module

Dual-Core CPU Select Registers

DevCfgRegs.CPUSELXx.bit.PeripheralName = 0

———— Peripheral

0 = connected to CPUL (default) 1 =connected to CPU2
Note: CPUSELx must be configured before PCLKCRx

CPUL1.SYSCLK
CPU2.SYSCLK

P O/ __

Register PeripheralName

CPUSELO EPWM1, EPWM2, EPWM3, EPWM4, EPWM5, EPWM6, EPWM7, EPWM8, EPWM9, EPWM10, EPWM11, EPWM12
CPUSEL1 ECAP1, ECAP2, ECAP3, ECAP4, ECAPS5, ECAP6

CPUSEL2 EQEP1, EQEP2, EQEP3

CPUSEL4 SD1, SD2

CPUSEL5 | SCI_A, SCI_B, SCI_C, SCI_D

CPUSEL6 SPI_A, SPI_B, SPI_C

CPUSEL7 12C_A, 12C_B

CPUSEL8 CAN_A, CAN_B

CPUSEL9 McBSP_A, McBSP_B

CPUSEL11 | ADC_A, ADC_B, ADC_C, ADC_D

CPUSEL12 | CMPSS1, CMPSS2, CMPSS3, CMPSS4, CMPSS5, CMPSS6, CMPSS7, CMPSS8
CPUSEL14 | DAC_A, DAC_B,DAC_C

Note: DEVCFGLOCK1 register can be used to lock above registers (lock bit for each register)

The dual-core CPU select register selects either CPU1 or CPU2 as the clock source for each
peripheral. The peripheral clock control register allows individual peripheral clock signals to be
enabled or disabled. If a peripheral is not being used, its clock signal could be disabled, thus
reducing power consumption.

Peripheral Clock Control Registers

CpuSysRegs.PCLKCRXx.bit.PeripheralName = 1

CPUx.SYSCLK /\ Peripheral Clock
2
Module Enable Clock Bit 0 = disable (default) 1 =enable
Register PeripheralName
PCLKCRO CLAL, DMA, CPUTIMERO, CPUTIMER1, CPUTIMER2, HRPWM, TBCLKSYNC, GTBCLKSYNC
PCLKCR1 EMIF1, EMIF2
PCLKCR2 EPWM1, EPWM2, EPWM3, EPWM4, EPWMS, EPWM6, EPWM7, EPWM8, EPWM9, EPWM10, EPWM11, EPWM12
PCLKCR3 ECAP1, ECAP2, ECAP3, ECAP4, ECAP5, ECAP6
PCLKCR4 EQEP1, EQEP2, EQEP3
PCLKCR6 SD1, SD2
PCLKCR7 SCI_A, SCI_B, SCI_C, SCI_D
PCLKCR8 SPI_A, SPI_B, SPI_C
PCLKCR9 I2C_A, 12C_B
PCLKCR10 | CAN_A, CAN_B
PCLKCR11 | McBSP_A, McBSP_B, USB_A
PCLKCR12 | uPP_A
PCLKCR13 | ADC_A, ADC_B, ADC_C, ADC_D
PCLKCR14 | CMPSS1, CMPSS2, CMPSS3, CMPSS4, CMPSS5, CMPSS6, CMPSS7, CMPSS8
PCLKCR16 | DAC_A, DAC_B, DAC_C

Note: CPUSYSLOCK1 register can be used to lock above registers (lock bit for each register)

TMS320F2837xD Microcontroller Workshop - System Initialization

Watchdog Timer

Watchdog Timer

The watchdog timer is a safety feature, which resets the device if the program runs away or gets
trapped in an unintended infinite loop. The watchdog counter runs independent of the CPU. If
the counter overflows, a user-selectable reset or interrupt is triggered. During runtime the correct
key values in the proper sequence must be written to the watchdog key register in order to reset
the counter before it overflows.

Watchdog Timer

¢ Resets the C28x if the CPU crashes
¢ Watchdog counter runs independent of CPU

¢ |f counter overflows, a reset or interrupt is
triggered (user selectable)

¢ CPU must write correct data key sequence
to reset the counter before overflow
¢ Watchdog must be serviced or disabled
within 131,072 WDCLK cycles after reset

¢ This translates to 13.11 ms with a 10 MHz
WDCLK

The watchdog timer provides a safeguard against CPU crashes by automatically initiating a reset
if it is not serviced by the CPU at regular intervals. In motor control applications, this helps
protect the motor and drive electronics when control is lost due to a CPU lockup. Any CPU reset
will set the PWM outputs to a high-impedance state, which should turn off the power converters in
a properly designed system.

The watchdog timer starts running immediately after system power-up/reset, and must be dealt
with by software soon after. Specifically, the watchdog must be serviced or disabled within 13.11
milliseconds (using a 10 MHz watchdog clock) after any reset before a watchdog initiated reset
will occur. This translates into 131,072 watchdog clock cycles, which is a seemingly tremendous
amount! Indeed, this is plenty of time to get the watchdog configured as desired and serviced. A
failure of your software to properly handle the watchdog after reset could cause an endless cycle
of watchdog initiated resets to occur.

TMS320F2837xD Microcontroller Workshop - System Initialization 5-7

Watchdog Timer

Watchdog Timer Module

WDPS WDOVERRIDE
Watchdog 7
WDCLK /512
- Prescaler WDDIS
WDCNTR
8-bit Watchdog
Counter
CLR CNT
System WDRST
Output [—*
Reset WDCNTR Pulse B
WI_DWCR less than WDINT
55 + AA W|r!dow WDWCR
Detector | Good key INmam
T
Watchdog
Reset Key
Register
WDKEY Bad WDCHK Key

The watchdog clock is divided by 512 and prescaled, if desired for slower watchdog time periods.
A watchdog disable switch allows the watchdog to be enabled and disabled. Also a watchdog
override switch provides an additional safety mechanism to insure the watchdog cannot be
disabled. Once set, the only means to disable the watchdog is by a system reset.

During initialization, a value ‘101’ is written into the watchdog check bit fields. Any other values
will cause a reset or interrupt. During run time, the correct keys must be written into the
watchdog key register before the watchdog counter overflows and issues a reset or interrupt.
Issuing a reset or interrupt is user-selectable. The watchdog also contains an optional
“windowing” feature that requires a minimum delay between counter resets.

TMS320F2837xD Microcontroller Workshop - System Initialization

Watchdog Timer

Watchdog Period Selection

WDPS FRC WD timeout period
Bits rollover @ 10 MHz WDCLK
00x: 1 13.11 ms *
010: 2 26.22 ms
011: 4 52.44 ms
100: 8 104.88 ms
101: 16 209.76 ms
110: 32 419.52 ms
111: 64 839.04 ms

* reset default

reset is released!

(1/10 MHz) * 512 * 256 = 13.11 ms

¢ Remember: Watchdog starts counting immediately after

¢ Reset default with WDCLK =10 MHz computed as

Watchdog Timer Control Register

SysCtrIRegs.WDCR (lab file: Watchdog.c)

15-7 6 5-3 2-0
reserved WDDIS WDCHK WDPS
Logic Check Bits WD Prescale
Write as 101 or reset Selection Bits
Watchdog Disable Bit ~ immediately triggered | wpPs | wDCLK =
Write 1 to disable 00x | OSCCLK/512/1
(Functions only if WD OVERRIDE 81(1’ 828&&;25;‘2‘
bit in SCSR is equal to 1) 100 | OSCCLK /512 /8
101 | OSCCLK /512/16
110 | OSCCLK /512/32
111 | OSCCLK /512 /64

TMS320F2837xD Microcontroller Workshop - System Initialization

Watchdog Timer

Resetting the Watchdog

SysCtrIRegs.WDKEY (lab file: Watchdog.c)

15-8 7-0
reserved WDKEY

¢ WDKEY write values:
55h - counter enabled for reset on next AAh write
AAh - counter set to zero if reset enabled

¢ Writing any other value has no effect

¢ Watchdog should not be serviced solely in an ISR

¢ If main code crashes, but interrupt continues to
execute, the watchdog will not catch the crash

¢ Could put the 55h WDKEY in the main code, and the
AAh WDKEY in an ISR; this catches main code crashes
and also ISR crashes

WDKEY Write Results

Sequential | Value Written
Step to WDKEY | Result

1 AAh No action
2 AAh No action
3 55h WD counter enabled for reset on next AAh write
4 55h WD counter enabled for reset on next AAh write
5 55h WD counter enabled for reset on next AAh write
6 AAh WD counter is reset
7 AAh No action
8 55h WD counter enabled for reset on next AAh write
9 AAh WD counter is reset
10 55h WD counter enabled for reset on next AAh write
11 23h No effect; WD counter not reset on next AAh write
12 AAh No action due to previous invalid value
13 55h WD counter enabled for reset on next AAh write
14 AAh WD counter is reset

5-10 TMS320F2837xD Microcontroller Workshop - System Initialization

Watchdog Timer

System Control and Status Register

SysCtrlIRegs.SCSR (lab file: Watchdog.c)

WD Override (protect bit)

Protects WD from being disabled

0 = WDDIS bit in WDCR has no effect (WD cannot be disabled)
1 = WDDIS bit in WDCR can disable the watchdog

« This bit is a clear-only bit (write 1 to clear)

* The reset default of this bitisal \

15-3 2 1 0
reserved WDINTS [WDENINT [WDOVERRIDE
WD Interrupt Status WD Enable Interrupt
(read only)

0 = WD generates a MCU reset
0 = active 1= WD generates a WDINT interrupt
1 =not active

TMS320F2837xD Microcontroller Workshop - System Initialization 5-11

General Purpose Digital /10

General Purpose Digital 1/0

F28x7x GPIO Grouping Overview
GPIOPortAGroup| [GPIO Port A Muxt]
_ | MuxlRegister |, Register P T
D (GPAGMUX1) [| (GPAMUX1) | l—] MPUt | |
[GPIO 0 to 15] [GPIO 0 to 15] _GPIOPortA Qual [* 1§
Direction Register o
(GPADIR) S —
GPIO Port A Group GPIO Port A Mux2 [GPIO 0 to 31] N
_ Mux2 Register R Register - >
N (GPAGMUX2) | | (GPAMUX2) [
Si [GPIO 16 to 31] [GPIO 16 to 31]
= |
3 (] L] L] L] L]
o) . 3 [[[3
w L] L] L] L] L]
c —
@ GPIO Port F Group GPIO Port F Mux1
. Mux1 Register |, Register R nout
N (GPFGMUX1) [~ | (GPFMUX1) [] MUl |
[GPIO 160 to 175] [GPIO 160 to 175] _ GPIOPortF Qual |* 1§
Direction Register [}
(GPFDIR) = i
GPIO Port F Group GPIO Port F Mux2 [GPIO 160 to 191] '3_‘
. Mux2 Register - Register P >
b (GPFGMUX2) | | (GPFMUX2) |
[GPIO 176 to 191] [GPIO 176 to 191] N

The F2837xD device incorporates a multiplexing scheme to enable each 1/O pin to be configured
as a GPIO pin or one of several peripheral I/O signals. Sharing a pin across multiple functions
maximizes application flexibility while minimizing package size and cost. A GPIO Group
multiplexer and four GPIO Index multiplexers provide a double layer of multiplexing to allow up to
twelve independent peripheral signals and a digital I/O function to share a single pin. Each output
pin can be controlled by either a peripheral or CPU1, CPU1 CLA, CPU2, or CPU2 CLA.

However, the peripheral multiplexing and pin assignment can only be configured by CPUL. By
default, all of the pins are configured as GPIO, and when configured as a signal input pin, a
qualification sampling period can be specified to remove unwanted noise. Optionally, each pin
has an internal pullup resistor that can be enabled in order to keep the input pin in a known state
when no external signal is driving the pin. The I/O pins are grouped into six ports, and each port
has 32 pins except for the sixth port which has nine pins (i.e. the remaining 1/O pins). For a
GPIO, each port has a series of registers that are used to control the value on the pins, and within
these registers each bit corresponds to one GPIO pin.

If the pin is configured as GPIO, a direction (DIR) register is used to specify the pin as either an
input or output. By default, all GPIO pins are inputs. The current state of a GPIO pin
corresponds to a bit value in a data (DAT) register, regardless if the pin is configured as GPIO or
a peripheral function. Writing to the DAT register bit field clears or sets the corresponding output
latch, and if the pin is configured as an output the pin will be driven either low or high. The state
of various GPIO output pins on the same port can be easily modified using the SET, CLEAR, and
TOGGLE registers. The advantage of using these registers is a single instruction can be used to
modify only the pins specified without disturbing the other pins. This also eliminates any timing
issues that may occur when writing directly to the data registers.

TMS320F2837xD Microcontroller Workshop - System Initialization

General Purpose Digital I/0

F2837xD GPIO Pin Block Diagram
CPU2CLA CPU2 CPULCLA CPUl | Input 8882 g”“:"‘;d "
(GPxDATR) (GPxDAT(R) (GPXDAT(R) (GPXDAT(R) [X-BAR S Pobhere
: ipheral 2
1 1 I I i 00:11 — Peripheral 3
Input 01:00 unused
lificati 01:01 —— Peripheral 5
Quali I‘Ca on CPU1 01:10 — Peripheral 6
GPxQSEL12 GPXCSEL1-4 01:11 — Peripheral 7
CPXCTRL CPU1 (;0 10:xx —— Peripherals 9-11
XX eripherals 9-
Wy cPUL CPUL.CLA—{ 01
CPU2 —»{ 10 11:xX — Peripherals 13-15
Cpul CPU2.CLA— 11
_— i
CPU1 CPU1 00:00 GPIO P
~--{ GPXDIR }---{GPXODR 00:01 Peripheral 1
0=Input 0=Normal 00;%8 Eergpﬂera}% GPXG:GPx
1=0Output 1= Open Drain e eriphera . (GPxGMUX1/2
01:00 [+ GPIO GPXMUX1/2
01:01 «—— Peripheral 5 CPU1
01:10 «—— Peripheral 6
GPxPUD | Intemal Pull-Up 01:11 [+—— Peripheral 7
CPUL 0=enable . :)
: 1= disable 10:xx +—GPIO& Peripherals 9-11
Pin (default GPIO 0-xx) %4_4_ GPIO & Peripherals 13-15
x=A,B,C,D,EorF !

The input qualification scheme is very flexible, and the type of input qualification can be
configured for each GPIO pin individually. In the case of a GPIO input pin, the qualification can
be specified as only synchronize to SYSCLKOUT or qualification by a sampling window. For pins
that are configured as peripheral inputs, the input can also be asynchronous in addition to
synchronized to SYSCLKOUT or qualified by a sampling window.

F28x7x GPIO Input Qualification

an AL to GPIO and

i o peripheral
pin O Qualification modules

f
CPUX.SYSCLK

¢ Qualification available on ports A - F

¢ Individually selectable per pin sl e
¢ no qualification (peripherals only)
¢ sync to CPUx.SYSCLK only | ! !

¢ qualify 3 samples
qualify 6 samples <

T T T

T = qual period

TMS320F2837xD Microcontroller Workshop - System Initialization 5-13

General Purpose Digital /10

F28x7x GPIO Input Qual Registers

GpioCtrIRegs.register (lab file: Gpio.c)
GPxQSEL1 / GPXQSEL2 where x=A,B,C,D,EorF
31
[| | | | | 16 pins configured per register | | | | | |

00 = sync to SYSCLKOUT only *

01 = qual to 3 samples

10 = qual to 6 samples

11 = no sync or qual (for peripheral only; GPIO same as 00)

GPXCTRL wherex=A,B,C,D,EorF

31 24 16 8 0
[QUALPRD3 | QUALPRD2 | QUALPRD1 | QUALPRDO |
A GPI0O31-24 GP1023-16 GPI1015-8 GPIO7-0
B: GPI063-56 GPI1055-48 GPIO47-40 GPI0O39-32
C: GPI1095-88 GPI1087-80 GPIO79-72 GPIO71-64
D: GPI0127-120 GPI0119-112 GPIO111-104 GPI0103-96
E: GPI0159-152 GPIO151-144 GPI0143-136 GPI0135-128
F: GPI0191-184 GPIO183-176 GPIO175-168 GPI0167-160
00h no qualification (SYNC to SYSCLKOUT) *
0lh QUALPRD = SYSCLKOUT/2
02h QUALPRD = SYSCLKOUT/4
FFh QUALPRD = SYSCLKOUT/510 * reset default
F28x7xD Dual-Core GPIO Core Select
GpioCtrIRegs.register (lab file: Gpio.c)
¢ Selects which core’s GPIODAT/SET/CLEAR/TOGGLE
registers are used to control a pin
¢ Each pin individually controlled
31 0 31 0 31 0 31 0
[L1l [Ll
GPxCSEL4 GPxCSEL3 GPxCSEL2 GPxCSEL1
A: GPIO31-24 GPI023-16 GPIO15-8 GPIO7-0
B: GP1063-56 GPI055-48 GP1047-40 GP1039-32
C: GPI1095-88 GPI1087-80 GPIO79-72 GPIO71-64
D: GPI0127-120 GPIO119-112 GPIO111-104 GPI0103-96
E: GPI0159-152 GPIO151-144 GPI0143-136 GPI0135-128
F: GPI0191-184 GPI0183-176 GPIO175-168 GPIO167-160
xx00 pin controlled by CPU1 *
xx01 pin controlled by CPU1.CLA1
xx10 pin controlled by CPU2
xx11 pin controlled by CPU2.CLA1
Note: GPXLOCK register can be used to lock above registers (lock bit for each pin) * reset default

TMS320F2837xD Microcontroller Workshop - System Initialization

General Purpose Digital I/0

F28x7x GPIO Control & Data Registers
GpioCtrIRegs.register / GpioDataRegs.register (lab file: Gpio.c)
Register Description
GPxCTRL GPIO x Control Register
GPxQSEL1 GPIO x Qualifier Select 1 Register
GPxQSEL2 GPIO x Qualifier Select 2 Register
GPxMUX1 GPIO x Mux1 Register
GPxMUX2 GPIO x Mux2 Register
GPxDIR GPIO x Direction Register o
GPxPUD GPIO x Pull-Up Disable Register L S
GPxINV GPIO x Input Polarity Invert Registers g
GPxGSEL1 GPIO x Peripheral Group Mux -
GPxGSEL2 GPIO x Peripheral Group Mux
GPxCSEL1 GPIO x Core Select Register
GPxCSEL2 GPIO x Core Select Register
GPxCSEL3 GPIO x Core Select Register
GPxCSEL4 GPIO x Core Select Register
GPxDAT GPIO x Data Register
GPxSET GPIO x Data Set Register g
GPxCLEAR GPIO x Data Clear Register 5
GPXTOGGLE GPIO x Data Toggle Register
Wherex=A, B, C, D, E,or F
F28x7x GPIO Input X-Bar
—— INPUT7 —> eCAP1
—— INPUT8 —> eCAP2
GPIO0 ——{ Asynchronous I
. S)X]chronous H Input X-Bar INPUTS —(REERES
GPIOX . Sync. + Qual. . —— INPUT10 —>{ eCAP4
—— INPUT11 —> eCAP5
—— INPUT12 —> eCAP6
1T T 1T T T
: Q O 0 T MmN A
EEEEEEEE
22020202222
[o e A
zzzzzzzz
[XINT5 721, TRIPL
TZ2, TRIP2 —
CPU.PIE [*— i:m‘é TZ3, TRIP3 —|
CLA | XINT2 —— TRIP4 —
¢ —— TRIP5 —
XINT1 S ——TrRIP7 — €ePWM
© TRIP8 Modules
X-Bar [—— TRIP9 —
[TRIP10 —
— TRIP11 —
— TRIP12 —
TRIP6
ADC ADCEXTSOC
EXTSYNCINL1 —> ePWM and eCAP
EXTSYNCIN2 —>| Sync Chain
Output X-Bar

The Input X-BAR is used to route external GPIO signals into the device. It has access to every
GPIO pin, where each signal can be routed to any or multiple destinations which include the
ADCs, eCAPs, ePWMs, Output X-BAR, and external interrupts. This provides additional flexibility

TMS320F2837xD Microcontroller Workshop - System Initialization 5-15

General Purpose Digital /10

above the multiplexing scheme used by the GPIO structure. Since the GPIO does not affect the
Input X-BAR, it is possible to route the output of one peripheral to another, such as measuring the
output of an ePWM with an eCAP for frequency testing.

F28x7x GPIO Input X-Bar Architecture

This block diagram is replicated 14 times

GPIO0 &—
H H INPUTX
L] L]

GPIOn .—>/

InputXbarRegs.INPUTXSELECT = GPIO Pin #

Input Destinations

INPUT1 ePWM[TZ1, TRIP1], ePWM X-Bar, Output X-Bar

INPUT2 ePWM[TZ2, TRIP2], ePWM X-Bar, Output X-Bar

INPUT3 ePWM[TZ3, TRIP3], ePWM X-Bar, Output X-Bar

INPUT4 XINT1, ePWM X-Bar, Output X-Bar

INPUTS XINT2, ADCEXTSOC, EXTSYNCIN1, ePWM X-Bar, Output X-Bar
INPUT6 XINT3, ePWM[TRIP6], EXTSYNCIN2, ePWM X-Bar, Output X-Bar
INPUT7 eCAP1

INPUT8 eCAP2

INPUT9 eCAP3

INPUT10 eCAP4

INPUT11 eCAP5

INPUT12 eCAP6

INPUT13 XINT4

INPUT14 XINTS

Note: INPUTSELECTLOCK register can be used to lock above registers (lock bit for each register)

GPIO Qutput X-Bar

I CTRIPOUTH | ouTPUTL
CMPSS1 L CTRIPOUTL —— outPUT2 —»
L OUTPUT3 ——
. I_—D_. —— oo —] GPIO
: —— Gurure —| Module
L CTRIPOUTH L ouTPUT7 —»)
CMPSS8 L cTRIPOUTL L ouTPUTE —)
INPUTL
I—_D_' INPUT2
| EPWM/ECAP sync |— extsmcour —» IouTS INPUT X-Bar
INPUTS
| ADCSOCAO |— ADCSOCAO ——»] INPUTS
OUTPUT FLT1COMPH
ADCSOCBO FLTLCOMPL -
| _ADCSOCBO |— — Bar] :
ADCA — EVT1toEVT4 —~—» FLTAC‘OMPH_ SD1
ADCB [EVILOEVH — FLT4.COMPL -
ADCC — EVTLoEVT4 —ep)
ADCD |— EVT1t0EVT4 —<—pf
FLTLCOMPH -
ECAP1 | EcapLoUT —»] FLT1COMPL -
ECAP2 — ECAP2.0UT —» ‘_q__l H
ECAP3 —— ECAP3.0UT —»| . sSD2
FLT4.COMPH -
ECAP4 —— ECAP4.0OUT ——»
ECAP5 | ECAPSOUT ——»l FLT4.COMPL -
ECAP6 | — EcAPs.OUT — ‘_G—_I

TMS320F2837xD Microcontroller Workshop - System Initialization

General Purpose Digital I/0

The Output X-BAR is used to route various internal signals out of the device. It contains eight
outputs that are routed to the GPIO structure, where each output has one or multiple assigned pin
positions, which are labeled as OUTPUTXBARX. Additionally, the Output X-BAR can select a
single signal or logically OR up to 32 signals.

0.0—> OutputXbarRegs.register
0.2— OUTPUTXMUXENABLE
031 3 Muxed with
: uxed witl
OUTPUTXMUXOTO15CFG.MUX0 Wz Peripheral
o L
1.0— OUTPUTLATCHENABLE GPIO Pins
11— ;
1.2—| ‘
1.3— 2 OUTPUTX
i °
OUTPUTXMUX0TO15CFG.MUX1
. ;
. OUTPUTINV
%%(1) This block diagram is replicated 8 times
31.2— Note: OUTPUTLOCK register locks
31.3— the configuration for the Output X-Bar
OUTPUTXMUX16TO31CFG.MUX31
MUX 0 1 2 3 MUX 0 1 2 3
0 CMPSSL.CTRIPOUTH | CMPSS1.CTRIPOUTH_OR_CTRIPOUTL | ADCAEVTL ECAP1.0UT 16 SDIFLT1.COMPH SD1FLT1.COMPH_OR_COMPL
1 CMPSS1.CTRIPOUTL INPUTXBARL ADCCEVTL 17 SDIFLT1.COMPL
2 CMPSS2.CTRIPOUTH | CMPSS2.CTRIPOUTH_OR_CTRIPOUTL | ADCAEVT2 ECAP2.0UT 18 SD1FLT2.COMPH SD1FLT2.COMPH_OR_COMPL
3 CMPSS2.CTRIPOUTL INPUTXBAR2 ADCCEVT2 19 SD1FLT2.COMPL
4 CMPSS3.CTRIPOUTH | CMPSS3.CTRIPOUTH_OR_CTRIPOUTL | ADCAEVT3 ECAP3.0UT 20 SD1FLT3.COMPH SD1FLT3.COMPH_OR_COMPL
5 CMPSS3.CTRIPOUTL INPUTXBAR3 ADCCEVT3 21 SD1FLT3.COMPL
6 CMPSS4.CTRIPOUTH | CMPSS4.CTRIPOUTH_OR_CTRIPOUTL | ADCAEVT4 ECAP4.0UT 22 SD1FLT4.COMPH SD1FLT4.COMPH_OR_COMPL
7 CMPSS4.CTRIPOUTL INPUTXBAR4 ADCCEVT4 23 SD1FLT4.COMPL
8 CMPSS5.CTRIPOUTH | CMPSS5.CTRIPOUTH_OR_CTRIPOUTL | ADCBEVTL ECAP5.0UT 24 SD2FLT1.COMPH SD2FLT1.COMPH_OR_COMPL
9 CMPSS5.CTRIPOUTL INPUTXBARS ADCDEVTL 25 SD2FLT1.COMPL
10 CMPSSE.CTRIPOUTH | CMPSS6.CTRIPOUTH_OR_CTRIPOUTL | ADCBEVT2 ECAP6.0UT 26 SD2FLT2.COMPH SD2FLT2.COMPH_OR_COMPL
11 CMPSS6.CTRIPOUTL INPUTXBARG ADCDEVT2 27 SD2FLT2.COMPL
12 CMPSS7.CTRIPOUTH | CMPSS7.CTRIPOUTH_OR_CTRIPOUTL | ADCBEVT3 28 SD2FLT3.COMPH SD2FLT3.COMPH_OR_COMPL
13 CMPSS7.CTRIPOUTL ADCSOCAO ADCDEVT3 29 SD2FLT3.COMPL
14 CMPSS8.CTRIPOUTH | CMPSS8.CTRIPOUTH_OR_CTRIPOUTL | ADCBEVT4 | EXTSYNCOUT 30 SD2FLT4.COMPH SD2FLT4.COMPH_OR_COMPL
15 CMPSS8.CTRIPOUTL ADCSOCBO ADCDEVT4 31 SD2FLT4.COMPL

TMS320F2837xD Microcontroller Workshop - System Initialization 5-17

External Interrupts

External Interrupts

External Interrupts

¢ 5 external interrupt signals: XINT1, XINT2,
XINT3, XINT4 and XINT5

¢ Each can be mapped to any of GPIO pins via
the X-Bar Input architecture

¢ XINT1, XINT2 and XINT3 also each have a
free-running 16-bit counter that measures
the elapsed time between interrupts

¢ The counter resets to zero each time the
interrupt occurs

Configuring External Interrupts

¢ Configuring external interrupts is a two-step process:
¢ Enable interrupt and set polarity
¢ Select XINT1-5 GPIO pins via Input X-Bar

Interrupt Pin Selection Configuration Register | Counter Register
(Input X-Bar) (XintRegs.register) (XintRegs.register)

XINT1 X-Bar INPUT4 XINT1CR XINT1CTR

XINT2 X-Bar INPUTS XINT2CR XINT2CTR

XINT3 X-Bar INPUT6 XINT3CR XINT3CTR

XINT4 X-Bar INPUT13 XINT4CR

XINTS X-Bar INPUT14 XINT5CR

Input X-Bar selects GPIO pins as sources for XINT1-5

¢ XINT1-5 are sources for Input X-Bar signals 4, 5, 6, 13, and 14
respectively

*

¢ Configuration Register controls the enable/disable and polarity
¢ Counter Register holds the interrupt counter

5-18 TMS320F2837xD Microcontroller Workshop - System Initialization

Low Power Modes

Low Power Modes

Low Power Modes

Low Power |CPU Logic | Peripheral |Watchdog | PLL/
Mode Clock Logic Clock Clock OosC
Normal Run on on on on
IDLE off on on on
STANDBY off off on on
HALT off off off off
HIB * off off off off

* Hibernate - low power data retention via MO and M1 memories

See device datasheet for power consumption in each mode

Low Power Mode Control Register

SysCtrlIRegs.LPMCR (lab file: SysCitrl.c)
Wake from STANDBY

IO ISOLATION in State of CPUx MO GPIO signal qualification *
HIB mode set by & M1 memories in Watchdog Interrupt gnata
H/W (CPU1 only) HIB mode wake device from 000000 = 2 OSCCLKs
STANDBY 000001 = 3 OSCCLKs
0 = off (default) 00 = on (default) o . .
1=on 01 = off 0= dlsabblle (default) : :
\ 1= e'7 € 111111 = 65/OSCCLKS (default)
31 30-18 17-16 15 14-8 7-2 1-0

IOISODIS | reserved | MOM1IMODE | WDINTE | reserved | QUALSTDBY | LPMO

/

Low Power
Mode Selection

Low Power Mode Entering

1. Set LPM bits 00 = IDLE (default)
. Enable desired exit interrupt(s) 01 = STANDBY
10 = HALT

2

3. Execute IDLE instruction

4. The power down sequence of the hardware
depends on LP mode

11 = HIB (Hibernate)

* QUALSTDBY will qualify the GPIO wakeup signal in series with the GPIO port qualification.
This is useful when GPIO port qualification is not available or insufficient for wake-up purposes.

TMS320F2837xD Microcontroller Workshop - System Initialization 5-19

Low Power Modes

Low Power Mode Exit

Exit
Interrupt GPIO Any
RESET | PortA Vl\aatfmo? Enabled
Low Power Signal P Interrupt
Mode
IDLE yes yes yes yes
STANDBY yes yes yes no
HALT yes yes no no
HIB yes no* no no

* Hibernate - GP1041 becomes HIBWAKE reset signal; boot ROM avoids
clearing MO and M1 memories and calls a user-specified 10 restore function

GPIO Low Power Wakeup Select

SysCtrIRegs.GPIOLPMSELX
31 30 29 28 27 26 25 24
|GP1063|GPI062|GPI061]| GP1060| GP1059]| GP1058| GP1057]| GP1056|
23 22 21 20 19 18 17 16
|GPI055|GPI054| GP1053| GPI052| GPI051 | GP1050| GPI049| GPI048]|
X =0 15 14 13 12 11 10 9 8
|GP1047|GPI046| GPI045| GP1044| GP1043| GPI042| GPI041|GPI1040]

7 6 5 4 3 2 1 0
|GPI039| GP1038| GP1037| GPI036| GPI035|GP1034| GPI033| GPI032]

31 30 29 28 27 26 25 24
[TeP1031|GPI030| GP1029|GPI028| GPI027| GP1026 | GPI025]| GPIO24|
23 22 21 20 19 18 17 16
[GPI023]|GP1022|GPI1021|GPI020| GPI019|GPI018|GPIO17|GPIO16]|

X=1= 15 14 13 12 11 10 9 8
|GPi015|GPI014|GPI013|GPI012|GPI011|GPI010] GPI09 | GPIOS |
7 6 5 4 3 2 1 0
| GP107 | GPIO6 | GPIO5 | GPI04 | GPI03 | GPIO2 | GPIO1 | GPIOOQ |
1]

f
Wake device from
STANDBY and HALT mode
(GPIO Port A & B)

Note: CPUSYSLOCKI1 register can = di
be used to lock above reg?sters 0 = disable (default)
(lock bit for each register) 1 =enable

TMS320F2837xD Microcontroller Workshop - System Initialization

Register Protection

Register Protection

LOCK Protection Registers

¢ “LOCK?” registers protects several system
configuration registers from spurious CPU writes

¢ Once LOCK register bits are set the respective
locked registers can no longer be modified by

software
CLA1TASKSRCSELLOCK | Z2_OTPSECLOCK GPELOCK
DMACHSRCSELLOCK DxLOCK GPFLOCK
DEVCFGLOCK1 LSXLOCK LOCK
CLKCFGLOCK1 GSXLOCK DACLOCK
CPUSYSLOCK1 INPUTSELECTLOCK COMPLOCK
Z10TP_PSWDLOCK OUTPUTLOCK TRIPLOCK
Z10TP_CRCLOCK GPALOCK SYNCSOCLOCK
Z20TP_PSWDLOCK GPBLOCK EMIF1LOCK
Z20TP_CRCLOCK GPCLOCK EMIF2LOCK
Z1_OTPSECLOCK GPDLOCK

A series of “lock” registers can be used to protect several system configuration settings from
spurious CPU writes. After the lock registers bits are set, the respective locked registers can no
longer be modified by software.

EALLOW Protection @of2)

EALLOW stands for Emulation Allow

¢ Code access to protected registers allowed
only when EALLOW =1 in the ST1 register
¢ The emulator can always access protected
registers
¢ EALLOW bit controlled by assembly level
instructions
¢ ‘EALLOW’ sets the bit (register access enabled)
¢ ‘EDIS’ clears the bit (register access disabled)

¢ EALLOW bhit cleared upon ISR entry, restored
upon exit

*

TMS320F2837xD Microcontroller Workshop - System Initialization 5-21

Register Protection

EALLOW Protection @of2)

The following registers are protected:

Device Configuration & Emulation

Flash

Code Security Module

PIE Vector Table

DMA, CLA, SD, EMIF, X-Bar (some registers)

CANA/B (control registers only; mailbox RAM not protected)
ePWM, CMPSS, ADC, DAC (some registers)

GPIO (control registers only)

System Control

See device datasheet and Technical Reference Manual for detailed listings

EALLOW register access C-code example:

asm(** EALLOW™); // enable protected register access
SysCtrlRegs.WDKEY=0x55; // write to the register
asm(** EDIS™); // disable protected register access

TMS320F2837xD Microcontroller Workshop - System Initialization

Lab 5: System Initialization

Lab 5: System Initialization
» Objective

The objective of this lab exercise is to perform the processor system initialization. Additionally,
the peripheral interrupt expansion (PIE) vectors will be initialized and tested using the information
discussed in the previous module. This initialization process will be used again in all of the lab
exercises throughout this workshop. The system initialization for this lab will consist of the
following:

e Setup the clock module — PLL, LOSPCP = /4, low-power modes to default values, enable all
module clocks

e Disable the watchdog — clear WD flag, disable watchdog, WD prescale = 1

e Setup the watchdog and system control registers — DO NOT clear WD OVERRIDE bit,
configure WD to generate a CPU reset

e Setup the shared I/O pins — set all GPIO pins to GPIO function (e.g. a "0” setting for GPIO
group multiplexer “GPxGMUX1/2” and a “0” setting for GPIO multiplexer “GPxMUX1/2")

The first part of the lab exercise will setup the system initialization and test the watchdog
operation by having the watchdog cause a reset. In the second part of the lab exercise the PIE
vectors will be added and tested by using the watchdog to generate an interrupt. This lab will
make use of the F2837xD C-code header files to simplify the programming of the device, as well
as take care of the register definitions and addresses. Please review these files, and make use
of them in the future, as needed.

> Procedure

Create a New Project

1. Create a new project (File > New > CCS Project) for this lab exercise. The top
section should default to the options previously selected (setting the “Target” to
“TMS320F28379D”, and leaving the “Connection” box blank). Name the project Lab5.
Uncheck the “Use default location” box. Using the “Browse...” button navigate to:
C:\C28x\Labs\Lab5\cpu01 then click OK. Set the “Linker Command File” to <none>,
and be sure to set the “Project templetes and examples” to “Empty Project”. Then click
Finish.

2. Right-click on Lab5 in the Project Explorer window and add (copy) the following files to
the project (Add Files..) from C:\C28x\Labs\Lab5\source:

CodeStartBranch.asm Lab 5 6 7.cmd
DelayUs.asm Main_5.c
F2837xD_GlobalVariableDefs.c SysCtrl.c
F2837xD_Headers_nonBIOS_cpul.cmd Watchdog-c
Gpio.c Xbar.c

Do not add Defaultlsr_5.c, PieCtrl.c, and PieVect.c. These files will be added
and used with the interrupts in the second part of this lab exercise.

TMS320F2837xD Microcontroller Workshop - System Initialization 5-23

Lab 5: System Initialization

Project Build Options

3.

Setup the build options by right-clicking on Lab5 in the Project Explorer window and
select “Properties”. We need to setup the include search path to include the peripheral
register header files and common lab header files. Under “C2000 Compiler” select
“Include Options”. In the include search path box that opens (“Add dir to #include
search path”) click the Add icon (first icon with green plus sign). Then in the “Add
directory path” window type (one at a time):

${PROJECT_ROOT}/../../F2837xD_headers/include
${PROJECT_ROOT}/../../Lab_common/include

Click OK to include each search path.

Next, we need to setup the predefined symbols. Under “C2000 Compiler” select
“Predefined Symbols”. In the predefined name box that opens (“Pre-define NAME”")
click the Add icon (first icon with green plus sign). Then in the “Enter Value” window type
CPUL1. This name is used in the project to conditionally include the peripheral register
header files code specific to CPUL. Click OK to include the name. Finally, click OK to
save and close the Properties window.

Modify Memory Configuration

5.

Open and inspect the linker command file Lab_5 6 7.cmd. Notice that the user defined
section “codestart” is being linked to a memory block named BEGIN_MO. The
codestart section contains code that branches to the code entry point of the project. The
bootloader must branch to the codestart section at the end of the boot process. Recall
that the emulation boot mode "SARAM" branches to address 0x000000 upon bootloader
completion.

BEGIN_MO: origin = 0x000000, length = 0x0002, in program memory. The
existing parts of memory blocks BOOT_RSVD and RAMMO in data memory has been
modified to avoid any overlaps with this memory block.

Notice that the linker command file Lab_5_6_7.cmd has a memory block named

In the linker command file, notice that RESET in the MEMORY section has been defined
using the “(R)” qualifier. This qualifier indicates read-only memory, and is optional. It will
cause the linker to flag a warning if any uninitialized sections are linked to this memory.
The (R) qualifier can be used with all non-volatile memories (e.g., flash, ROM, OTP), as
you will see in later lab exercises. Close the Lab_5 6_7.cmd linker command file.

Setup System Initialization

7.

Open and inspect SysCtrl.c. Notice that the clock sources, PLL, peripheral clocks,
and low-power modes have been initialized.

Modify Watchdog - c to implement the system initialization as described in the objective
for this lab exercise.

Open and inspect Gpio.c. Notice that the shared I/O pins have been set to the GPIO
function. Also, in Xbar . c the crossbar switches have been set to their default values.
Save your work.

TMS320F2837xD Microcontroller Workshop - System Initialization

Lab 5: System Initialization

Build and Load

10. Click the “Bui 1d” button and watch the tools run in the Console window. Check for
errors in the Problems window.

11. Click the “Debug” button (green bug). A Launching Debug Session window will open.
Select only CPUL1 to load the program on (i.e. uncheck CPU2), and then click OK. Then
the CCS Debug perspective view should open, the program will load automatically, and
you should now be at the start of main().

12. After CCS loaded the program in the previous step, it set the program counter (PC) to
point to _c_int00. It then ran through the C-environment initialization routine in the
rts2800_fpu32.lib and stopped at the start of main(). CCS did not do a device reset, and
as a result the bootloader was bypassed.

In the remaining parts of this lab exercise, the device will be undergoing a reset due to
the watchdog timer. Therefore, we must configure the device by loading values into
EMU_KEY and EMU BMODE so the bootloader will jump to “RAMMOQ” at address
0x000000. Set the bootloader mode using the menu bar by clicking:

Scripts > EMU Boot Mode Select -> EMU_BOOT_SARAM

If the device is power cycled between lab exercises, or within a lab exercise, be sure to
re-configure the boot mode to EMU_BOOT_SARAM.

Run the Code — Watchdog Reset Disabled

13. Place the cursor in the “main loop” section (on the asm(* NOP’”) ; instruction line) and
right click the mouse key and select Run To Line. This is the same as setting a
breakpoint on the selected line, running to that breakpoint, and then removing the
breakpoint.

14. Place the cursor on the first line of code in main() and set a breakpoint by double clicking
in the line number field to the left of the code line. Notice that line is highlighted with a
blue dot indicating that the breakpoint has been set. (Alternatively, you can set a
breakpoint on the line by right-clicking the mouse and selecting Breakpoint (Code
Composer Studio) —-> Breakpoint). The breakpoint is set to prove that the
watchdog is disabled. If the watchdog causes a reset, code execution will stop at this
breakpoint (or become trapped as explained in the watchdog hardware reset below).

15. Run your code for a few seconds by using the “Resume” button on the toolbar, or by
using Run - Resume on the menu bar (or F8 key). After a few seconds halt your code
by using the “Suspend” button on the toolbar, or by using Run - Suspend on the
menu bar (or Alt-F8 key). Where did your code stop? Are the results as expected? If
things went as expected, your code should be in the “main loop”.

Run the Code — CCS Issued CPU Reset

16. Perform a CCS CPU reset (soft reset) by clicking on the CPU Reset icon * (or by
selecting Run - Reset > CPU Reset). The program counter should now be at the
entry point of the boot ROM code at Ox3FF16A. To view the boot ROM code click on
View Disassembly..

17. Run your code. Where did your code stop? Are the results as expected? If things went
as expected, your code should have stopped at the breakpoint. What happened is as
follows. The ROM bootloader began execution and since the device is in emulation boot
mode (i.e. the emulator is connected) the bootloader read the EMU_KEY and

TMS320F2837xD Microcontroller Workshop - System Initialization 5-25

Lab 5: System Initialization

EMU_BMODE values from the PIE RAM. These values were previously set for boot to
RAMMO boot mode by CCS. Since these values did not change and are not affected by
reset, the bootloader transferred execution to the beginning of our code at address
0x000000 in the RAMMO, and execution continued until the breakpoint was hit in main().

Run the Code — Watchdog Reset Enabled (Hardware Reset)

18.

19.

20.

21.

22.

Open the Project Explorer window in the CCS Debug perspective view by selecting View
- Project Explorer. Modify the InitWatchdog() function to enable the
watchdog (WDCR). This will enable the watchdog to function and cause a reset. Save
the file.

Build the project by clicking Project > Build Project. Select Yes to “Reload the
program automatically”.

Alternatively, you add the “Bui 1d” button to the tool bar in the CCS Debug perspective (if
it is not already there) so that it will available for future use. Click Window —->
Perspective > Customize Perspective.. and then select the Tool Bar Visibility
tab. Check the Code Composer Studio Project Build box. This will automatically select
the “Bui 1d” button in the Tool Bar Visibility tab. Click OK.

Again, place the cursor in the “main loop” section (on the asm(** NOP’”) ; instruction line)
and right click the mouse key and select Run To Line.

This time we will have the watchdog issue a reset that will toggle the XRSn pin (i.e.
perform a hard reset). Now run your code. Where did your code stop? Why did your
code stop at an assembly ESTOPO instruction in the boot ROM at 0x3FE493 and not as
we expected at the breakpoint in main()? Here is what happened. While the code was
running, the watchdog timed out and reset the processor. The reset vector was then
fetched and the ROM bootloader began execution. Since the device is in emulation boot
mode, it read the EMU_KEY and EMU_BMODE values from the PIE RAM which was
previously set to RAMMO boot mode. Again, note that these values do not change and
are not affected by reset. When the F28x7x devices undergo a hardware reset (e.g.
watchdog reset), the boot ROM code clears the RAM memory blocks. As a result, after
the bootloader transferred execution to the beginning of our code at address 0x000000 in
RAMMO, the memory block was cleared. The processor was then issued an illegal
instruction which trapped us back in the boot ROM.

This only happened because we are executing out of RAM. In a typical application, the
Flash memory contains the program and the reset process would run as we would
expect. This should explain why we did not see this behavior with the CCS CPU reset
(soft reset where the RAM was not cleared). So what is the advantage of clearing
memory during a hardware reset? This ensures that after the reset the original program
code and data values will be in a known good state to provide a safer operation. It is
important to understand that the watchdog did not behave differently depending on which
type of reset was issued. It is the reset process that behaved differently from the different
type of resets.

Since the watchdog reset in the previous step cleared the RAM blocks, we will now need
to reload the program for the second part of this lab exercise. Reload the program by
selecting:

Run > Load > Reload Program

TMS320F2837xD Microcontroller Workshop - System Initialization

Lab 5: System Initialization

Setup PIE Vector for Watchdog Interrupt

The first part of this lab exercise used the watchdog to generate a CPU reset. This was
tested using a breakpoint set at the beginning of main(). Next, we are going to use the
watchdog to generate an interrupt. This part will demonstrate the interrupt concepts learned
in the previous module.

23.

24,

25.

26.

27.

28.

29.

Add (copy) the following files to the project from C:\C28x\Labs\Lab5\source:

Defaultlsr_5.c
PieCtrl.c
PieVect.c

Check your files list to make sure the files are there.

In Main_5.c, add code to call the InitPieCtrl () function. There are no passed
parameters or return values, so the call code is simply:

InitPieCtri();

Using the “PIE Interrupt Assignment Table” shown in the previous module find the
location for the watchdog interrupt, “WAKE”. This will be used in the next step.

PIE group #: # within group:

Modify main() to do the following:
- Enable global interrupts (INTM bit)

Then modify InitWatchdog() to do the following:

- Enable the “WAKE” interrupt in the PIE (Hint: use the PieCtrRegs structure)
- Enable the appropriate core interrupt in the IER register

In Watchdog - ¢ modify the system control and status register (SCSR) to cause the
watchdog to generate a WAKE interrupt rather than a reset. Save all changes to the
files.

Open and inspect Defaultlsr_5.c. This file contains interrupt service routines. The
ISR for WAKE interrupt has been trapped by an emulation breakpoint contained in an
inline assembly statement using “ESTOPO0”. This gives the same results as placing a
breakpoint in the ISR. We will run the lab exercise as before, except this time the
watchdog will generate an interrupt. If the registers have been configured properly, the
code will be trapped in the ISR.

Open and inspect PieCtrl.c. This file is used to initialize the PIE RAM and enable the
PIE. The interrupt vector table located in PieVect.c is copied to the PIE RAM to setup
the vectors for the interrupts.

Build and Load

30.

Build the project by clicking Project - Build Project, or by clicking on the
“Bui Id” button (if it has been added to the tool bar). Select Yes to “Reload the program
automatically”.

TMS320F2837xD Microcontroller Workshop - System Initialization 5-27

Lab 5: System Initialization

Run the Code — Watchdog Interrupt

31. Place the cursor in the “main loop” section, right click the mouse key and select Run To
Line.

32. Run your code. Where did your code stop? Are the results as expected? If things went

as expected, your code should stop at the “ESTOPOQ” instruction in the WAKE interrupt
ISR.

Terminate Debug Session and Close Project

33. Terminate the active debug session using the Terminate button. This will close the
debugger and return Code Composer Studio to the CCS Edit perspective view.

34. Next, close the project by right-clicking on Lab5 in the Project Explorer window and
select Close Project.

End of Exercise

Note: By default, the watchdog timer is enabled out of reset. Code in the file
CodeStartBranch.asm has been configured to disable the watchdog. This can be
important for large C code projects. During this lab exercise, the watchdog was actually
re-enabled (or disabled again) in the file Watchdog.c.

TMS320F2837xD Microcontroller Workshop - System Initialization

Analog Subsystem

Introduction

The Analog Subsystem consists of the Analog-to-Digital Converter (ADC), Comparator
Subsystem (CMPSS), Digital-to-Analog Converter (DAC), and the Sigma Delta Filter Module

(SDFM). This module will explain the operation of each subsystem. Even though the SDFM is a

digital peripheral, it will be covered in this module.

Module Objectives

Module Objectives

¢ Understand the operation of the:
¢ Analog-to-Digital Converter (ADC)
¢ Comparator Subsystem (CMPSS)
¢ Digital-to-Analog Converter (DAC)

¢ Sigma Delta Filter Module (SDFM)

¢ Use the ADC to perform data acquisition

Note: Even though the SDFM is a digital peripheral, it will be covered in this module

Analog Subsystem:
e Up to Four dual-mode ADCs
0 16-bit mode
= 1 MSPS each (up to 4 MSPS system)
= Differential inputs
= External reference
0 12-bit mode
= 3.5 MSPS each (up to 14 MSPS system)
= Single-ended
= External reference
e Up to Eight comparator subsystems
o Each contains:
= Two 12-bit reference DACs
= Two comparators
= Digital glitch filter
e Three 12-bit buffered DAC outputs
e Sigma-Delta Filter Module (SDFM)

TMS320F2837xD Microcontroller Workshop - Analog Subsystem

Analog-to-Digital Converter (ADC)

6-2 TMS320F2837xD Microcontroller Workshop - Analog Subsystem

Analog-to-Digital Converter (ADC)

Chapter Topics

ANAIOG SUDSYSTEM ...t e e ettt e e e e e s bbbt e e e e e e e e e snbbeaeeaaaeeaanne 6-1
Analog-to-Digital CONVEIEr (ADC).....uuiiieiiiieiiiiee ettt e et e e e e e e s sibbe e e e e e e e e s e ssnbbeeeeaaeaas 6-4
ADC Block and FUNCtional DIagramS..........cccuuriiiieeeeeiiiiiieeeeee e s ssstnteeeeeae s s ssnnnreeeeeeeessnnsnneees 6-5

7 L o o =T 1T S 6-7

F D O @01V £ T0] o TN = T 1 SRR 6-8
POSt ProCeSSING BIOCKcuviiiiiiieiiiiiiiiee ettt e e e e e s st e e e e e e s e snnrrae e e e e e e e e nnnes 6-11
ADC ClOCKING FIOW ...ttt e e e et e e e e e e st b be e e e e e e e e snneeaeeas 6-14

F B O 2 {=To 1S (=] =P P PPTTP PP 6-14
SIGNEA INPUL VORBGESceiiiiiiiiieie e e e e e e e eeaaaeeas 6-19
ADC Calibration and RefEreNCe.........cooii i 6-20
Comparator SUBSYSEM (CMPSS)cccceiiiiieiee et e e re e e e e s e e e e e e e e annes 6-22
Comparator Subsystem BIOCK DIagram........coooiuiiiiiiieeiiiieie et a e 6-23
Digital-to-Analog CONVEIEr (DAC)uuiiiiia ettt e e e e e e e e e e e nneaeeas 6-24
Buffered DAC BIOCK DIagram.........ccccuuriiiiieeieiiiiiieie e e e s s sttt e ee e e s s s snnteaeeeeeeesssnssneeeeeeessnnnnes 6-25
Sigma Delta Filter Module (SDFM) ...t e e e e e 6-26
ST Y =1 [o Tod 1 I =V = o o PSR 6-27
Lab 6: Analog-to-Digital CONVEITET.........ciiiiiiiiiiiiee ettt e e e e snneee s 6-28

TMS320F2837xD Microcontroller Workshop - Analog Subsystem 6-3

Analog-to-Digital Converter (ADC)

Analog-to-Digital Converter (ADC)

VREFA®— VREFCe—
DACOUTA/ADCINAO 0 0
DACOUTB/ADCINAL 1 Reserved 1
CMPIN1P/ADCINA2 2 c DCINC2 2
CMPININ/ADCINA3 3 Ci DCINC3 3
CMPIN2P/ADCINA4 4 CMPINSP/ADCINC4 4
CMPIN2N/ADCINAS 5 c DCINC5 5
e — N ¢ | ancc
VREFLOA®——pf g | 16/12:bit VREFLOC 8 | 16/12-bit
VREFLOA @—————p{ 9 | 16channel VREFLOC 9 | 16 channel
Reserved 10 10
Reserved 1 11
DACOUTA 12 DACOUTA 12
TEMP SENSOR 13 13
CMPIN4P/ADCIN14 b i
CMPIN4N/ADCIN1S
VREFB@®—) VREFD®—
VDAC/ADCINBO 0 CMPIN7P/ADCINDO 0
DACOUTC/ADCINBL 1 CMPIN7N/ADCINDL
CMPIN3P/ADCINB2 2 c DCIND2 2
CMPIN3N/ADCINB3 3 c DCIND3 3
ADCINB4 4 ADCIND4 4
ADCINBS P 5 ADCINDS 5
Recarved 3 7| Aoce Resenved 7| ApcD
VREFLOB g | 16/12-bit VREFLOD g | 16/12-bit
VREFLOB 9 | 16 channel VREFLOD 9 | 16 channel
Reserved 10 Reserved 10
Reserved 1 Reserved 11
DACOUTA 12 DACOUTA 12
Reserved 13 Reserved 13
14 14
15 15
*** Multiple ADC modules allow simultaneous sampling or independent operation ***

The F2837xD includes four independent high-performance ADC modules which can be accessed
by both CPU subsystems, allowing the device to efficiently manage multiple analog signals for
enhanced overall system throughput. Each ADC module has a single sample-and-hold (S/H)
circuit and using multiple ADC modules enables simultaneous sampling or independent operation
(sequential sampling). The ADC module is implemented using a successive approximation
(SAR) type ADC with a configurable resolution of either 16-bits or 12-bits. For 16-bit resolution,
the ADC performs differential signal conversions with a performance of 1.1 MSPS, yielding 4.4
MSPS for the device. In differential signal mode, a pair of pins (positive input ADCINXP and
negative input ADCINXN) is sampled and the input applied to the converter is the difference
between the two pins (ADCINxP — ADCINxN). A benefit of differential signaling mode is the
ability to cancel noise that may be introduced common to both inputs. For 12-bit resolution, the
ADC performs single-ended signal conversions with a performance of 3.5 MSPS, yielding 14
MSPS for the device. In single-ended mode, a single pin (ADCINX) is sampled and applied to the
input of the converter.

TMS320F2837xD Microcontroller Workshop - Analog Subsystem

Analog-to-Digital Converter (ADC)

ADC Block and Functional Diagrams

SOC15

ADC Module Block Diagram

TRIGSEL [CHSEL [ACOPS

ADCINO—| o
i el
ADCIN2 —| - 0
12/16-bit o0
ADCIN3—s) 1 v ADCRESULTZ|S 8
. Converter s Tm
° ®
ADCIN14 —> SOCx o
ADCIN15 —>! ADCRESULT15|a
ADC full-scale
input range is CHSEL oD, | EOCx | Inéﬁﬁpt ADCINT1-4.
VeerLo 10 Veeen Logic Logic
SOCx Signal ADCINT1
ADCINT2
SOCO |TRIGSEL |CHSEL |ACOQPS
SOC1 |TRIGSEL |CHSEL |ACQPS
SOC2 |TRIGSEL |CHSEL |ACQPS SOftWﬂr.e
SOC3 |TRIGSEL |CHSEL |ACQPS CPU1 Timer (012

A A

EPWMxSOCA/C x=1t012)

EPWMxSOCB/D (x=1t012)

SOCx Triggers

External Pin(prio/apcexTsoc)

SOCx Configuration Registers

CPU2 Timer ©.1.2)

The ADC triggering and conversion sequencing is managed by a series of start-of-conversion
(SOCXx) configuration registers. Each SOCx register configures a single channel conversion,

where the SOCx register specifies the trigger source that starts the conversion, the channel to
convert, and the acquisition sample window duration. Multiple SOCx registers can be configured
for the same trigger, channel, and/or acquisition window. Configuring multiple SOCx registers to
use the same trigger will cause that trigger to perform a sequence of conversions, and configuring
multiple SOCx registers for the same trigger and channel can be used to oversample the signal.

The various trigger sources that can be used to start an ADC conversion include the General-
Purpose Timers from each CPU subsystem, the ePWM modules, an external pin, and by
software. Also, the flag setting of either ADCINT1 or ADCINT2 can be configured as a trigger
source which can be used for continuous conversion operation. The ADC interrupt logic can
generate up to four interrupts. The results for SOC 0 through 15 appear in result registers 0

through 15, respectively.

TMS320F2837xD Microcontroller Workshop - Analog Subsystem

Analog-to-Digital Converter (ADC)

ADC SOCx Functional Diagram

TINTO (CPU1 Timer 0)— ADCSOCXCTL
TINT1 (CPU1 Timer 1)—
TINT2 (CPU1 Timer 2)—
ADCEXTSOC (GPIO)—>
SOCA/C (ePWM1)— i
SOCB/D (ePWM1)— ADCINT1

-
r
i
. FAN ﬁ Channel Sample Result ADCINT2
. . g | |
ol |/
r

ADCRESULTX

SOCAIC (ePWM12)—| Select Window Register ADCINT3

SOCB/D (ePWM12) —| ADCINT4
TINTO (CPU2 Timer 0) —*|
TINT1 (CPU2 Timer 1)—
TINT2 (CPU2 Timer 2)—>|

Software Trigger

ADCSOCFRC1

x0O0wWm
x0Oom

INTSELXNy

ADCINT1
ADCINT2

Re-Trigger ADCINTSOCSEL1

ADCINTSOCSEL2
This block diagram is replicated 16 times

The figure above is a conceptual view highlighting a single ADC start-of-conversion functional
flow from triggering to interrupt generation. This figure is replicated 16 times and the red text
indicates the register names.

6-6 TMS320F2837xD Microcontroller Workshop - Analog Subsystem

Analog-to-Digital Converter (ADC)

ADC Triggering

Example — ADC Triggering

Sample A1 A3 2 A5 when ePWM1 SOCB/D is generated and then generate ADCINTL1:

SOCB/D (ETPWM1) — 20 Chi’l”e' 2%1";5'35 Result0 no interrupt
SOC1 | Channel Sample ;

A3 26 cycles Resultl no interrupt
SOC2 | Channel Sample

A5 22 cycles Result2 ADCINT1

Sample A2 2 A4 2 A6 continuously and generate ADCINT2:

Software Trigger

SOC3 | Channel Sample ;
A2 22 cycles Result3 no interrupt
SOC4 .
ADCINT2 Chirlnel zgacnggllgs Result4 no interrupt
SOCS5 | Channel Sample
A6 24 cycles Results ADCINT2

Note: setting ADCINT2 flag does not need to generate an interrupt

The top example in the figure above shows channels Al, A3, and A5 being converted with a

trigger from EPWML1. After A5 is converted, ADCINTL1 is generated. The bottom example shows

channels A2, A4, and A6 being converted initially by a software trigger. Then, after A6 is
converted, ADCINT2 is generated and also fed back as a trigger to start the process again.

Example — ADC Ping-Pong Triggering

| Sample all channels continuously and provide Ping-Pong interrupts to CPU/system: |

SoftwarAe ;gﬁ\?:zr 3 S0CO Chg%nel Z%a}:n; gll e no interrupt
SOC1 Chgnlnel zgin;gllees no interrupt
soc2 Chgrénel Z%acn;gll ees ADCINT1
ADCINTL SOC3 Chgrénel Z%acrggllees no interrupt
soc4 Chgrlnel zgacrggllgs no interrupt
S0C5 Chgr%nel zga::n;gllgs ADCINT2

TMS320F2837xD Microcontroller Workshop - Analog Subsystem

Analog-to-Digital Converter (ADC)

The ADC ping-pong triggering example in the figure above shows channels BO through B5 being
converted, triggered initially by software. After channel B2 is converted, ADCINT1 is generated,
which also triggers channel B3. After channel B5 is converted, ADCINTZ2 is generated and is also
fed back to start the process again from the beginning. Additionally, ADCINT1 and ADCINT2 are
being used to manage the ping-pong interrupts for the interrupt service routines.

ADC Conversion Priority

ADC Conversion Priority

¢ When multiple SOC flags are set at the same time —
priority determines the order in which they are converted

¢ Round Robin Priority (default)
+ No SOC has an inherent higher priority than another
+ Priority depends on the round robin pointer

¢ High Priority

» High priority SOC will interrupt the round robin wheel
after current conversion completes and insert itself as
the next conversion

» After its conversion completes, the round robin wheel
will continue where it was interrupted
¢ Round Robin Burst Mode

+ Allows a single trigger to convert one or more SOCs in
the round robin wheel

+ Uses BURSTTRIG instead of TRIGSEL for all round
robin SOCs (not high priority)

When multiple triggers are received at the same time, the ADC conversion priority determines the
order in which they are converted. Three different priority modes are supported. The default
priority mode is round robin, where no start-of-conversion has an inherently higher priority over
another, and the priority depends upon a round robin pointer. The round robin pointer operates in
a circular fashion, constantly wrapping around to the beginning. In high priority mode, one or
more than one start-of-conversion is assigned as high priority. The high priority start-of-
conversion can then interrupt the round robin wheel, and after it has been converted the wheel
will continue where it was interrupted. High priority mode is assigned first to the lower number
start-of-conversion and then in increasing numerical order. If two high priority start-of-conversion
triggers occur at the same time, the lower number will take precedence. Burst mode allows a
single trigger to convert one or more than one start-of-conversion sequentially at a time. This
mode uses a separate Burst Control register to select the burst size and trigger source.

6-8 TMS320F2837xD Microcontroller Workshop - Analog Subsystem

Analog-to-Digital Converter (ADC)

Conversion Priority Functional Diagram

2 SOCO0 T
5 SOC1 SQC Priority _
= soc2 Detern_unes _cu@off point
for high priority and
< SOC3)
.%’ SOCA round robin mode
SOCPRIORITY
/| socs
SOC6 AdcRegs. SOCPRICTL
SOC7
g SOC8 RRPOINTER
o SOC9 ; _
§< SOC10 Round Robin Pointer
c Points to the last converted
S SOC11 J
g SOC12 round rob!n SOCx and
SOC13 de:ermmes prder
SOC14 of conversions
\| SOC15

In this conversion priority functional diagram, the Start-of-Conversion Priority Control Register
contains two bit fields. The Start-of-Conversion Priority bit fields determine the cutoff point

between high priority and round robin mode, whereas the Round-Robin Pointer bit fields contains

the last converted round robin start-of-conversion which determines the order of conversions.

Round Robin Priority Example

SOCPRIORITY configured as 0;
RRPOINTER configured as 15;
SOCO is highest RR priority

SOCY7 trigger received

SOCY7 is converted;
RRPOINTER now points to SOC7;
SOC8 is now highest RR priority

RRPOINTER

SOC2 & SOC12 triggers received
simultaneously

SOC12 is converted;
RRPOINTER points to SOC12;
SOC13is now highest RR priority

SOC2 is converted;
RRPOINTER points to SOC2;
SOC3is now highest RR priority

TMS320F2837xD Microcontroller Workshop - Analog Subsystem

Analog-to-Digital Converter (ADC)

High Priority Example

SOCPRIORITY configured as 4;
RRPOINTER configured as 15;
SOC4 is highest RR priority

SOCT7 trigger received High Priority

SOCY7 is converted;

RRPOINTER points to SOC7,;

SOC8 is now highest RR priority

PONTER .l

SOC2 & SOC12 triggers received

simultaneously

SOC2 is converted; %
RRPOINTER stays pointing to SOC7

SOC12 is converted;
RRPOINTER points to SOC12;
SOC13is now highest RR priority

Round Robin Burst Mode Diagram

AdcxRegs. ADCBURSTCTL e e
BURSTEN I-f Disables/enables burst mode

BURSTSIZE

SOC Burst Size
Determines how many

BURSTTRIGSEL SOCs are converted per
burst trigger

Software, CPU1 Timer0-2

ePWM1 ADCSOCA/C — B/D >
ePWM12 ADCSOCA/C — B/D

CPU2 Timer0-2

SOC Burst Trigger
Source Select
Determines which trigger
starts a burst conversion
sequence

The Round-Robin Burst mode utilizes an ADC Burst Control Register to enable the burst mode,
determine the burst size, and select the burst trigger source.

TMS320F2837xD Microcontroller Workshop - Analog Subsystem

Analog-to-Digital Converter (ADC)

Round Robin Burst Mode with High
Priority Example

SOCPRIORITY configured as 4;
RRPOINTER configured as 15;

SOC4 is highest RR priority

BURSTTRIG trigger received High Priority

SOC4 & SOC5 is converted;

RRPOINTER points to SOCS5;

SOC6 is now highest RR priority
BURSTTRIG & SOCL1 triggers

received simultaneously

SOCl is converted;
RRPOINTER stays pointing to SOC5

SOC6 & SOC7 is converted;
RRPOINTER points to SOC7;
SOC8 is now highest RR priority

Note: BURSTEN =1, BURSTSIZE =1

Post Processing Block

Purpose of the Post Processing Block

¢ Offset Correction

¢ Remove an offset associated with an ADCIN channel possibly
caused by external sensors and signal sources

¢ Zero-overhead; saving cycles
¢ Error from Setpoint Calculation

Subtract out a reference value which can be used to automatically
calculate an error from a set-point or expected value

¢ Reduces the sample to output latency and software overhead
¢ Limit and Zero-Crossing Detection

¢ Automatically perform a check against a high/low limit or zero-
crossing and can generate a trip to the ePWM and/or an interrupt

¢ Decreases the sample to ePWM latency and reduces software overhead;
trip the ePWM based on an out of range ADC conversion without CPU
intervention

¢ Trigger-to-Sample Delay Capture

¢ Capable of recording the delay between when the SOC is
triggered and when it begins to be sampled

+ Allows software techniques to reduce the delay error

TMS320F2837xD Microcontroller Workshop - Analog Subsystem 6-11

Analog-to-Digital Converter (ADC)

Post Processing Block - Diagram

Delay Capture ‘ ADCEVTSEL.PPBXTRIPLO
SOC Control Signals
SOC S0C [ADCEVTSELPPBXTRIPHI
Trigger Start
Deiect Detect ‘ ADCEVTSEL PPBXZERO
latch latct
[REQsTAMPX }—»@—{ DLYSTAMPx| [ADCEVTSTATPPBATRIPLO e T_v\
EVENTX
FEERr t [ADCEVTSTATPPBXTRIPHI |

Offset Correction

ADCEVTSTAT.PPBXZERO PP
w/ Saturation
Threshold Compare
Zero
ADC Output , Y saturate Crossing
— ©, ADCRESULTY B Ll
- . ADCPPBXTRIPHI H+
Error/Bipolar Calculation
+ [Twos 2
ADCPPBXOFFREF ¥ Comp ADCPPBXRESULT
Inv.

T
3
Enable
[ADCPPBXCONFIG. TWOSCOMPEN | aDCEREXRIRLO/ N
[ADCEVTINTSELPPBXZERO
[ADCEVTINTSELPPBXTRIPHI
‘ ADCEVTINTSEL.PPBXTRIPLO

To further enhance the capabilities of the ADC, each ADC module incorporates four post-
processing blocks (PPB), and each PPB can be linked to any of the ADC result registers. The
PPBs can be used for offset correction, calculating an error from a set-point, detecting a limit and
zero-crossing, and capturing a trigger-to-sample delay. Offset correction can simultaneously
remove an offset associated with an ADCIN channel that was possibly caused by external
sensors or signal sources with zero-overhead, thereby saving processor cycles. Error calculation
can automatically subtract out a computed error from a set-point or expected result register value,
reducing the sample to output latency and software overhead. Limit and zero-crossing detection
automatically performs a check against a high/low limit or zero-crossing and can generate a trip
to the ePWM and/or generate an interrupt. This lowers the sample to ePWM latency and reduces
software overhead. Also, it can trip the ePWM based on an out-of-range ADC conversion without
any CPU intervention which is useful for safety conscious applications. Sample delay capture
records the delay between when the SOCXx is triggered and when it begins to be sampled. This
can enable software techniques to be used for reducing the delay error.

INTX

;4

-

TMS320F2837xD Microcontroller Workshop - Analog Subsystem

Analog-to-Digital Converter (ADC)

Post Processing Block Interrupt Event
¢ Each ADC module contains four (4) Post Processing
Blocks

¢ Each Post Processing Block can be associated with
any of the 16 ADCRESULTX registers

Post Processing Block 1

EVENTxX ADCEVT1
INTX

Post Processing Block 2

EVENTX ADCEVT2

INTX |
—\$ ADCEVTINT

Post Processing Block 3

EVENTxX ADCEVT3
INTx

Post Processing Block 4

EVENTX ADCEVT4
INTX

TMS320F2837xD Microcontroller Workshop - Analog Subsystem 6-13

Analog-to-Digital Converter (ADC)

ADC Clocking Flow

ADC Clocking Flow

'”(t)esrga' SYSPLLMULT pL| out _ SYSCLKDIVSEL SYSCLK
(10 MHz) _|[FMULT/IMULT| (400 MHz) | PLLSYSCLKDIV | (200 MH2)
A AN > . >

bis s To CPU
00]0]101000b (x40) 10b (/2)
g\l\ \5@ \\\"\
R N
PCLKCR13.ADC_A=1 | /N_
2
ADCCTL2
PRESCALE | ADCCLK (50 MHz) To ADC core
bits
o1106 /2 ADCSOCXCTL sampling
ACQPS window
- 5
bits
0110b

sampling window = (ACQPS + 1)*(1/SYSCLK)

ADC Registers

Analog-to-Digital Converter Registers

AdczRegs.

register where z =a, b, ¢, ord (lab file: Adc.c)

Register Description

ADCCTL1 Control 1 Register

ADCCTL2 Control 2 Register

ADCSOCXCTL SOCO0 to SOC15 Control Registers
ADCINTSOCSELXx Interrupt SOC Selection 1 and 2 Registers
INTSELXNy Interrupt x and y Selection Registers
SOCPRICTL SOC Priority Control Register
ADCBURSTCTL SOC Burst Control Register
ADCOFFTRIM Offset Trim Register

ADCRESULTXx ADC Result 0 to 15 Registers

Note: ADCRESULTX header file coding is AdczResultRegs.ADCRESULTX (not in AdczRegs)

Refer to the Technical Reference Manual for a complete listing of registers

TMS320F2837xD Microcontroller Workshop - Analog Subsystem

Analog-to-Digital Converter (ADC)

ADC Control Register 1
AdczRegs.ADCCTLL1 (z=4a, b, c, ord)
INT Pulse
Generation Control
ADC Busy ADC Busy Channel 0 = beginning of
0 =ADC available When ADCBSY = conversion
1 =ADC busy 0: last channel converted 1 =onecycle prior
1: channel currently processing to result
15-14 13 12 11-8 7 6-3 2 1-0
reserved|ADCBSY |reserved| ADCBSYCHN [ADCPWDNZ [reserved|INTPULSEPOS|reserved
00h = ADCINO 08h = ADCIN9 ADC Power Down
01h iADCINl 09h =_ADCIN10 Analog circuitry is:
02h = ADCIN2 0Ah = ADCIN11 0 = powered down
03h = ADCIN3 0Bh = ADCIN12 1 = powered up
04h = ADCIN4 0Ch = ADCIN13
05h = ADCIN5S 0Dh = ADCIN14
06h = ADCING6 OEh = ADCIN15
07h = ADCIN7 OFh = ADCIN16
ADC Control Register 2
AdczRegs.ADCCTL2 (z =a, b, c, or d)
15-8 7 6 5-4 3-0
reserved SIGNALMODE | RESOLUTION | reserved PRESCALE
ADC Clock Prescale
\ | ADCCLK equals:
Y 0000 = Input Clock /1.0
. . . 0001 = Invalid
Configured by AdcSetMode() function in source code 0010 = Input Clock / 2.0
Adc.c 0011 = Input Clock / 2.5
A W“ﬂ 0100 = Input Clock /3.0
--- Call AdcSetMode o configure the resolution and signal mode.
I This also perfo:'ravstthe corEect :\DC calibr":tiun for tEa configured mode. 0101 = InpUI Clock /3.5
AdcSetMode (ADC_ADCA, ADC_RESOLUTION_12BIT, ADC_SIGNALMODE SINGLE); 0110 = Input Clock / 4.0
1000 = Input Clock / 4.5
1001 = Input Clock / 5.0
) F2837xD_Adc.c 1010 = Input Clock /5.5
* Set the resolution and signalmode for a given ADC. This will ensure that 1011 = Input Clock / 6.0
:/the correct trim is loaded. 1100 = |npUt ClOCk / 6.5
void AdcSetMode(Uintl6 adc, Uintl6é resolution, Uintls signalmode) 1101 = Input Clock / 7.0
Uintl6 adcOffsetTrimOTPIndex; //index inte OTP table of ADC offset tri 1110 = Input Clock /7.5
s S [S e e e e L 4111 = input Clock /8.0
Definitions for selecting ADC signaling mode and resolution defined in F2837xD_Adc_defines.h

TMS320F2837xD Microcontroller Workshop - Analog Subsystem

Analog-to-Digital Converter (ADC)

ADC SOCO0 - SOC15 Control Registers

AdczRegs.ADCSOCXCTL (z =a, b, c, or d)

SOCx Trigger SOCx Channel SOCx Acquisition

Source Select Select Prescale (S/H window)
31-25 24 - 20 19 18- 15 14 -9 8-0
reserved TRIGSEL reserved CHSEL reserved ACQPS

/ Single-Ended Differential

(SIGNALMODE=0) (SIGNALMODE=1) Sampling Window
00h = software 10h = ePWM6SOCB/D 0Oh =ADCINO 0/1h = ADCINO&1 000h =1 SYSCLK
0lh =CPU1 Timer 0 11h =ePWM7SOCA/C 1h =ADCIN1 2/3h = ADCIN2&3 cycles wide
02h =CPU1 Timer 1 12h = ePWM7SOCB/D 2h =ADCIN2 4/5h = ADCIN4&5 001h =2 SYSCLK
03h =CPU1 Timer 2 13h = ePWM8SOCA/C 3h =ADCIN3 6/7h = ADCING&7 cycles wide
04h = ADCEXTSOC 14h = ePWM8SOCB/D 4h =ADCIN4 8/9h = ADCIN8&9 002h =3 SYSCLK

05h = ePWM1SOCA/C
06h = ePWM1SOCB/D
07h = ePWM2SOCA/C
08h = ePWM2SOCB/D
09h = ePWM3SOCA/C
0Ah = ePWM3SOCB/D
0Bh = ePWM4SOCA/C
0Ch = ePWM4SOCB/D
0Dh = ePWM5SOCA/C
OEh = ePWM5SOCB/D
OFh = ePWM6SOCA/C

15h = ePWM9SOCA/C
16h = ePWM9SOCB/D

17h = ePWM10SOCA/C
18h = ePWM10SOCB/D
19h = ePWM11SOCA/C
1Ah = ePWM11SOCB/D
1Bh = ePWM12SOCA/C
1Ch = ePWM12SOCB/D

1Dh = CPU2 Timer 0
1Eh = CPU2 Timer 1

5h = ADCIN5
6h = ADCING
7h = ADCIN7
8h = ADCIN8
9h = ADCIN9
Ah = ADCIN10
Bh = ADCIN11
Ch = ADCIN12
Dh = ADCIN13
Eh = ADCIN14

A/Bh = ADCIN10&11
C/Dh = ADCIN12&13
E/Fh = ADCIN14&15
(non-inverting/inverting) 1FFh =512 SYSCLK

cycles wide

.
.
.

cycles wide

1Fh = CPU2 Timer 2 Fh = ADCIN15

ADC Interrupt Trigger SOC Select
Registers 1 & 2

AdczRegs.ADCINTSOCSELX (z =a, b, c, or d)

ADCINTSOCSEL2
15-14 13-12 11-10 9-8 7-6 5-4 3-2 1-0
SOC15 SOC14 SOC13 SOC12 | SOC11 | SOC10 SOC9 SOC8

ADCINTSOCSEL1
15-14 13-12 11-10 9-8 7-6 5-4 3-2 1-0

SOC7 SOC6 SOC5 SOC4 SOC3 SOC2 SOC1 SOCO0

SOCx ADC Interrupt Select

Selects which, if any, ADCINT triggers SOCx

00 = no ADCINT will trigger SOCx (TRIGSEL field determines SOCx trigger)
01 = ADCINT1 will trigger SOCx (TRIGSEL field ignored)

10 = ADCINT2 will trigger SOCx (TRIGSEL field ignored)

11 =invalid selection

TMS320F2837xD Microcontroller Workshop - Analog Subsystem

Analog-to-Digital Converter (ADC)

SOC Priority Control Register

AdczRegs.SOCPRICTL (z=a, b, c, or d)

15-10 9-5 4-0
reserved RRPOINTER SOCPRIORITY
Round Robin Pointer SOC Priority

Points to the last converted

Determines cutoff point
round robin SOCx and

for high priority and
round robin mode

/ determines order

of conversions
00h = SOCO last converted, SOC1 highest priority
01h = SOC1 last converted, SOC2 highest priority
02h = SOC2 last converted, SOC3 highest priority
03h = SOC3 last converted, SOC4 highest priority
04h = SOC4 last converted, SOCS5 highest priority
05h = SOCS last converted, SOC6 highest priority
06h = SOCS6 last converted, SOC7 highest priority
07h = SOCY7 last converted, SOC8 highest priority
08h = SOCS8 last converted, SOC9 highest priority

e

00h = round robin mode for all channels

01lh = SOCO high priority, SOC1-15 round robin
02h = SOCO0-1 high priority, SOC2-15 round robin
03h = SOCO0-2 high priority, SOC3-15 round robin
04h = SOCO0-3 high priority, SOC4-15 round robin
05h = SOCO0-4 high priority, SOC5-15 round robin
06h = SOCO0-5 high priority, SOC6-15 round robin
07h = SOCO0-6 high priority, SOC7-15 round robin
08h = SOCO0-7 high priority, SOC8-15 round robin

09h = SOC9 last converted, SOC10 highest priority
0Ah = SOC10 last converted, SOC11 highest priority
0Bh = SOC11 last converted, SOC12 highest priority
0Ch = SOC12 last converted, SOC13 highest priority
0Dh = SOC13 last converted, SOC14 highest priority
OEh = SOC14 last converted, SOC15 highest priority
OFh = SOC15 last converted, SOCO highest priority
10h =reset value (no SOC has been converted)

1xh =invalid selection

09h = SOCO0-8 high priority, SOC9-15 round robin
0Ah = SOCO0-9 high priority, SOC10-15 round robin
0Bh = SOCO0-10 high priority, SOC11-15 round robin
0Ch = SOCO0-11 high priority, SOC12-15 round robin
0Dh = SOCO0-12 high priority, SOC13-15 round robin
OEh = SOCO0-13 high priority, SOC14-15 round robin
OFh = SOCO0-14 high priority, SOC15 round robin
10h = all SOCs high priority (arbitrated by SOC #)
1xh =invalid selection

ADC Burst Control Register

AdczRegs.ADCBURSTCTL (z =4, b, ¢, or d)

15 14 -12 11-8 7-6 5-0
BURSTEN | reserved BURSTSIZE reserved BURSTTRIGSEL
SOC Burst SOC Burst Size Select SOC Burst Trigger
Mode Enable Determines how many Source Select
0 = disable SOCs are converted when Configures trigger to start a
1= enable sequence is started burst conversion sequence

Oh =1 SOCs converted
1h =2 SOCs converted
2h =3 SOCs converted
3h =4 SOCs converted
4h =5 SOCs converted
5h = 6 SOCs converted
6h =7 SOCs converted
7h =8 SOCs converted
8h =9 SOCs converted
9h =10 SOCs converted
Ah =11 SOCs converted
Bh =12 SOCs converted
Ch =13 SOCs converted
Dh = 14 SOCs converted
Eh =15 SOCs converted
Fh =16 SOCs converted

00h = software

0lh = CPU1 Timer O
02h = CPU1 Timer 1
03h = CPU1 Timer 2
04h = ADCEXTSOC
05h = ePWM1SOCA/C
06h = ePWM1SOCB/D
07h = ePWM2SOCA/C
08h = ePWM2SOCB/D
09h = ePWM3SOCA/C
0Ah = ePWM3SOCB/D
0Bh = ePWM4SOCA/C
0Ch = ePWM4SOCB/D
0Dh = ePWM5SOCA/C
OEh = ePWM5SOCB/D
OFh = ePWM6SOCA/C

10h = ePWM6SOCB/D
11h = ePWM7SOCA/C
12h = ePWM7SOCB/D
13h = ePWM8SOCA/C
14h = ePWM8SOCB/D
15h = ePWM9SOCA/C
16h = ePWM9SOCB/D
17h = ePWM10SOCA/C
18h = ePWM10SOCB/D
19h = ePWM11SOCA/C
1Ah = ePWM11SOCB/D
1Bh = ePWM12SOCA/C
1Ch = ePWM12SOCB/D
1Dh = CPU2 Timer 0
1Eh = CPU2 Timer 1
1Fh = CPU2 Timer 2

TMS320F2837xD Microcontroller Workshop - Analog Subsystem

Analog-to-Digital Converter (ADC)

Interrupt Select x and y Register

AdczRegs.INTSELxNy (z =a, b, ¢, ord)
Where x/y = 1/2, 3/4

15 14 13 12 11-8
reserved INTYCONT INTYE reserved INTYSEL

7 6 5 4 3-0
reserved INTXCONT INTXE reserved INTXSEL

[
ADCINTx/y EOC Source Select
00h = EOCO is trigger for ADCINTx/y

ADCINTx/ly ADCINTX/y 01h = EOCL is trigger for ADCINTx/y
Continuous Interrupt Enable 02h = EOC2 is trigger for ADCINTX/y
Mode Enable 0 =disable 03h = EOC3 is trigger for ADCINTx/y
0 = one-shot pulse 1 =enable 04h = EOC4 is trigger for ADCINTx/y

05h = EOCS5 is trigger for ADCINTx/y
06h = EOCS is trigger for ADCINTx/y
07h = EOCY is trigger for ADCINTx/y
08h = EOC8 is trigger for ADCINTx/y
09h = EOC9 is trigger for ADCINTx/y
0Ah = EOC10 is trigger for ADCINTx/y
0Bh = EOC11 is trigger for ADCINTx/y
0Ch = EOC12 is trigger for ADCINTx/y
0Dh = EOC13 is trigger for ADCINTx/y
OEh = EOC14 is trigger for ADCINTx/y
OFh = EOC15 is trigger for ADCINTx/y

generated (until flag
cleared by user)

1 = pulse generated for
each EOC

ADC Conversion Result Registers
12-Bit Mode

AdcnResultRegs. ADCRESULTX n=a-d x=0-15

A N Y O -

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

ADCINx | Digital AdcnResultRegs.
Voltage | Results ADCRESULTXx
3.0V FFFh 0000]1111|1111]1111
1.5V 7FFh 0000|0111]1111]1111
0.00073V 1h 0000]0000|0000|0001
ov Oh 0000]0000|0000|0000

¢ Single-ended — one input pin (ADCINX)
¢ External reference (VREFHI and VREFLO)

TMS320F2837xD Microcontroller Workshop - Analog Subsystem

Analog-to-Digital Converter (ADC)

ADC Conversion Result Registers
16-Bit Mode

AdcnResultRegs. ADCRESULTx n=a-d x=0-15

mel | | [[[[[[[[[[[[

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ADCINXP | ADCINxN | Digital AdcnResultRegs.
Voltage Voltage Results ADCRESULTXx
3.0V ov FFFFh 1111)2211|1122 1111
1.5V 1.5V 7FFFh 0111j2111)2211j2212
45V 3.0V - 45pv 1h 0000]0000]0000]0001
ov 3.0v Oh 0000]0000]0000]0000

¢ Differential — two input pins (ADCINXP & ADCINXN)
¢ Input voltage is the difference between the two pins
¢ External reference (VREFHI and VREFLO)

Signed Input Voltages

How Can We Handle Signed Input Voltages?

Example: -1.5V<V,,<+15V
¢ y ADCA
1) Add 1.5 volts to the Vi R $ R N
analog input 15v P ADCINO
VREFLO
GND

2) Subtract “1. 5” from the digital result

#include “F2837xD_Device.h”
#define offset OxO7FF
void main(void)

{

intl6 value; // signed

value = AdcaResultRegs.ADCRESULTO — offset;
s

TMS320F2837xD Microcontroller Workshop - Analog Subsystem

Analog-to-Digital Converter (ADC)

ADC Calibration and Reference

Built-In ADC Calibration

¢ Tlreserved OTP contains device specific calibration
data for the ADC, internal oscillators and buffered DAC

¢ The Boot ROM contains a Device_cal() routine that
copies the calibration data to their respective registers

¢ Device_cal() must be run to meet the specifications in
the datasheet

¢ The Bootloader automatically calls Device_cal() such that no
action is normally required by the user

¢ If the Bootloader is bypassed (e.g. during development)
Device_cal() should be called by the application:

#deFfine Device_cal (void (*)(void))0x70282
void main(void)

{
(*Device cal)(); // call Device_cal()
}
¢ AdcSetMode() function is called in the source code to
trim the ADC

Manual ADC Calibration

¢ If the offset and gain errors in the datasheet are unacceptable for
your application, or you want to also compensate for board level
errors (e.g. sensor or amplifier offset), you can manually calibrate
¢ Offset error (12-bit mode)
¢ Compensated in analog with
the ADCOFFTRIM register
¢ No reduction in full-scale range

¢ Configure input to VREFLO,
set ADCOFFTRIM to maximum Cy
offset error, and take areading T

¢ Re-adjust ADCOFFTRIM to VREFLO
make result zero

¢ Gain error
¢ Compensated in software
¢ Some loss in full-scale range

¢ Requires use of a second ADC input pin and an upper-range reference
voltage on that pin; see “TMS320x280x and TMS320x2801x ADC
Calibration” appnote #SPRAADS8A for more information

ADCOFFTRIM

ADC —

6-20 TMS320F2837xD Microcontroller Workshop - Analog Subsystem

Analog-to-Digital Converter (ADC)

Analog Subsystem External Reference

I______________._ ___________________ a

: Reference Generation NonInverting : ADC

| Buffers 1

| Voltage |

| T L——0— VREFHIA

| | Reference Ca |

| _l;:—o— VREFLOA

I I

| REReZEY —= : O—| VREFHIB

!'| REF3225 Cg !

| | REF3030 %'—O—I VREFLOB

|

' | REF3025 | VREFHIC

'] (or similar) - c i

i c

| %o— VREFLOC
I

I I

| |

i O—{ VREFHID

: L c, i

! F;—O— VREFLOD

! |

]

TMS320F2837xD Microcontroller Workshop - Analog Subsystem 6-21

Comparator Subsystem (CMPSS)

Comparator Subsystem (CMPSS)

Comparator Subsystem

¢ Eight Comparator
Subsystems (CMPSS)

¢ Each CMPSS has: CMPINIP/ADCINA2 2
CMPININ/ADCINA3 i
¢ Two analog comparators gmsm;z;zgg:mg‘ ¢ ADC-A
. CMPIN4P/ADCIN14 14
¢ Two programmable 12-bit ~ cvPiNaNvADCINIS 15

DACs
CMPIN3P/ADCINB2 '::m
+ Two digital filters CMPINSNIADCINS
¢ Ramp generator 8&”5%2&5232:325%% Abe.C
. . . CMPINSP/ADCINC4 4
Digital filter used to CMPINSN/ADCINGS 5
remove spurious trip CMPINTPIADCINDO
. . . CMPIN7N/ADCIND1
signals (majority vote) gmsmsmggmgg%

¢ Ramp generator used for
peak current mode control

¢ Ability to synchronize
with PWMSYNC event

ADC-D

WN RO

The F2837xD includes eight independent Comparator Subsystem (CMPSS) modules that are
useful for supporting applications such as peak current mode control, switched-mode power,
power factor correction, and voltage trip monitoring. The Comparator Subsystem modules have
the ability to synchronize with a PWMSYNC event.

6-22 TMS320F2837xD Microcontroller Workshop - Analog Subsystem

Comparator Subsystem (CMPSS)

Comparator Subsystem Block Diagram

CMPINXP Evom
[T X-Bar
Digital
DACH Filter
VALS DACH i i
VALA | DAC T ! cTripouTH | EPWM
' COMPHINV IOXOEIput Event
-Bar A
Trigger
DACSOURCE CTRIPL &
to EPwm | GPIO
X-Bar
MUX
CMPINXN —
[Digital
Filter
S| 1 vhis CTRIPOUTL
VALS VALA COMPLINV 1o Ouiput
COMPLSOURCE X-Bar
DAC Reference Comparator Truth Table
v _ DACxVALA * DACREF Voltages Output
DAGK ™ 4096 Voltage A < Voltage B 0
. Voltage A > Voltage B 1
Note: registers lock protected

Each CMPSS module is designed around a pair of analog comparators which generates a digital
output indicating if the voltage on the positive input is greater than the voltage on the negative
input. The positive input to the comparator is always driven from an external pin. The negative
input can be driven by either an external pin or an internal programmable 12-bit digital-to-analog
(DAC) as a reference voltage. Values written to the DAC can take effect immediately or be
synchronized with ePWM events. A falling-ramp generator is optionally available to the control
the internal DAC reference value for one comparator in the module. Each comparator output is
feed through a programmable digital filter that can remove spurious trip signals. The output of the
CMPSS generates trip signals to the ePWM event trigger submodule and GPIO structure.

TMS320F2837xD Microcontroller Workshop - Analog Subsystem 6-23

Digital-to-Analog Converter (DAC)

Digital-to-Analog Converter (DAC)

Digital-to-Analog Converter

. e B—3
¢ Three buffered 12-bit DACs ADC-A

DACOUTA @——Pp| 12

o

¢ Provides a programmable
reference output voltage bAcoUTCADCING ! E————————»{ 1

ADC-B
DACOUTA @————— 12

¢ Capable of driving an
external load

ADC-C

+ Ability to be synchronized pACOUTA e pf12
with PWMSYNC events

¢ Selectable reference voltage ADCD

DACOUTA @——p{ 12

The F2837xD includes three buffered 12-bit DAC modules that can provide a programmable
reference output voltage capable of driving an external load. Values written to the DAC can take
effect immediately or be synchronized with ePWM events.

6-24 TMS320F2837xD Microcontroller Workshop - Analog Subsystem

Digital-to-Analog Converter (DAC)

Buffered DAC Block Diagram
Buffered DAC Block Diagram

DACREFSEL
VDAC
VREFHI

DACV [| DACV | 12-bit Vbacout
ALS ALA | DAC

Vooa DACOUTEN

N

Vssa —
Ideal Output
* VREFHIA can supply reference
/= DAGHALN TIDACIRSE for DAC A and DAC B; VREFHIB
4096 can supply reference for DAC C

Note: registers lock protected

Two sets of DACVAL registers are present in the buffered DAC module: DACVALA and
DACVALS. DACVALA is a read-only register that actively controls the DAC value. DACVALS is a
writable shadow register that loads into DACVALA either immediately or synchronized with the
next PWMSYNC event. The ideal output of the internal DAC can be calculated as shown in the
equation below.

TMS320F2837xD Microcontroller Workshop - Analog Subsystem 6 -25

Sigma Delta Filter Module (SDFM)

Sigma Delta Filter Module (SDFM)
Sigma Delta Filter Module (SDFM)

¢ SDFM is a four-channel digital filter designed
specifically for current measurement and resolver
position decoding in motor control applications

¢ Each channel can receive an independent modulator
bit stream

¢ Bit streams are processed by four individually
programmable digital decimation filters

¢ Filters include a fast comparator for immediate
digital threshold comparisons for over-current
monitoring

¢ Filter-bypass mode available to enable data logging,
analysis, and customized filtering

The SDFM is a four-channel digital filter designed specifically for current measurement and
resolver position decoding in motor control applications. Each channel can receive an
independent delta-sigma modulator bit stream which is processed by four individually
programmable digital decimation filters. The filters include a fast comparator for immediate digital
threshold comparisons for over-current and under-current monitoring. Also, a filter-bypass mode
is available to enable data logging, analysis, and customized filtering. The SDFM pins are
configured using the GPIO multiplexer. A key benefit of the SDFM is it enables a simple, cost-
effective, and safe high-voltage isolation boundary.

6 - 26 TMS320F2837xD Microcontroller Workshop - Analog Subsystem

Sigma Delta Filter Module (SDFM)

SDFM Block Diagram
SDFM Block Diagram

PWM
CMPC/D
SDFILRESN SDFM- Sigma Delta Filter Module
A e Filter Module 1
Streams Direct M
SDINT
Comparator | Interrupt PIE
L Filter Unit
CLK1 "éPl;‘ —
trl
Sinc Fiter | — ==
e
g\‘LZKZ Filter Module 2
j L .
N3 == J V| Register VBUS32
CLK3 Filter Module 3 Map
o
g\n‘, Filter Module 4

TMS320F2837xD Microcontroller Workshop - Analog Subsystem 6-27

Lab 6: Analog-to-Digital Converter

Lab 6: Analog-to-Digital Converter
» Objective

The objective of this lab exercise is to become familiar with the programming and operation of the
on-chip analog-to-digital converter (ADC). The microcontroller (MCU) will be setup to sample a
single ADC input channel at a prescribed sampling rate and store the conversion result in a
circular memory buffer. In the second part of this lab exercise, the digital-to-analog converter
(DAC) will be explored.

Lab 6: ADC Sampling

+3.3V Toggle
GND (GPI019) (GPIO18)

(] (] data
ADC-A _ memory
jumper CPU copies result
. to buffer during
wire RESULTO ADC ISR 'g
o 5
ADCINAO .y
- 2
H : £
1 ePWM2 triggering " [}
DAC-B ' ADC on period match E e
| i using SOCA trigger every
1 View ADC
=T ! 20 ps (50 kHz) bufrerl BVWM
Table samples

Studio

Code Composer l

ePWM2

Recall that there are three basic ways to initiate an ADC start of conversion (SOC):

1. Using software
a. SOCx bit (where x = 0 to 15) in the ADC SOC Force 1 Register (ADCSOCFRC1)
causes a software initiated conversion
2. Automatically triggered on user selectable conditions
a. CPU Timer 0/1/2 interrupt
b. ePWMxSOCA / ePWMxSOCB (where x = 1 to 12)
- ePWM underflow (CTR = 0)
- ePWM period match (CTR = PRD)
- ePWM underflow or period match (CTR =0 or PRD)
- ePWM compare match (CTRU/D = CMPA/B/C/D)
c. ADC interrupt ADCINT1 or ADCINT?2
- triggers SOCx (where x = 0 to 15) selected by the ADC Interrupt Trigger SOC
Selectl/2 Register (ADCINTSOCSEL1/2)
3. Externally triggered using a pin
a. ADCSOC pin (GPIO/ADCEXTSOC)

One or more of these methods may be applicable to a particular application. In this lab exercise,
we will be using the ADC for data acquisition. Therefore, one of the ePWMs (ePWM2) will be
configured to automatically trigger the SOCA signal at the desired sampling rate (ePWM period
match CTR = PRD SOC method 2b above). The ADC end-of-conversion interrupt will be used to

TMS320F2837xD Microcontroller Workshop - Analog Subsystem

Lab 6: Analog-to-Digital Converter

prompt the CPU to copy the results of the ADC conversion into a results buffer in memory. This
buffer pointer will be managed in a circular fashion, such that new conversion results will
continuously overwrite older conversion results in the buffer. In order to generate an interesting
input signal, the code also alternately toggles a GPIO pin (GPIO18) high and low in the ADC
interrupt service routine. The ADC ISR will also toggle LED D9 on the LaunchPad as a visual
indication that the ISR is running. This pin will be connected to the ADC input pin, and sampled.
After taking some data, Code Composer Studio will be used to plot the results. A flow chart of the
code is shown in the following slide.

Lab 6: Code Flow Diagram

General Initialization ADC interr
« PLL and clocks C interrupt

* Watchdog configure
* GPIO setup

+ PIE initialization -
Main Loop ADC ISR
— l. : —| while(1) * read the ADC result

ADC Initialization * write to result buffer
. converzt cﬁangel AO gn { « adjust the buffer pointer
ePWM2 period matc « toggle the GPIO pin
*send interru% oSn EOC } e return from interrupt

to trigger ADC ISR

* setup a results buffer
in memory

! return
ePWM2 Initialization
« clear counter
 set period register
e set to trigger ADC on

period match
 set the clock prescaler
e enable the timer

Notes
e Program performs conversion on ADC channel A0 (ADCINAO pin)

e ADC conversion is set at a 50 kHz sampling rate

e ePWM2 is triggering the ADC on period match using SOCA trigger

e Data is continuously stored in a circular buffer

e GPIO18 pin is also toggled in the ADC ISR

e ADC ISR will also toggle the LaunchPad LED D9 as a visual indication that it is running

TMS320F2837xD Microcontroller Workshop - Analog Subsystem 6-29

Lab 6: Analog-to-Digital Converter

> Procedure

Open the Project

1. A project named Lab6 has been created for this lab exercise. Open the project by
clicking on Project - Import CCS Projects. The “Import CCS Eclipse Projects”
window will open then click Browse... next to the “Select search-directory” box. Navigate
to: C:\C28x\Labs\Lab6\cpu01 and click OK. Then click Finish to import the project.
All build options have been configured the same as the previous lab exercise. The files
used in this lab exercise are:

Adc.c Gpio.c
CodeStartBranch.asm Lab 5 6 7.cmd
Dac.c Main_6.c
Defaultlsr _6.c PieCtrl.c
DelayUs.asm PieVect.c
EPwm_6.cC Sinetable.c
F28x7xD_Adc.c SysCtrl.c
F2837xD_GlobalVvariableDefs.c Watchdog.-c
F2837xD_Headers_nonBIOS_cpul.cmd Xbar.c

Note: The Dac.c and SineTable.c files are used to generate a sine waveform in the
second part of this lab exercise.

Setup ADC Initialization and Enable Core/PIE Interrupts

2. InMain_6.c add code to call the InitAdca(), InitEPwm() and InitDacb()
functions. The InitEPwm() function is used to configure ePWMZ2 to trigger the ADC at
a 50 kHz rate. Details about the ePWM and control peripherals will be discussed in the
next module. The InitDacb() function will be used in the second part of this lab
exercise.
3. Edit Adc.c to configure SOCO in the ADC as follows:
e SOCO converts input ADCINAQO in single-sample mode
e SOCO0 has a 20 SYSCLK cycle acquisition window
e SOCO is triggered by the ePWM2 SOCA
e SOCO triggers ADCINT1 on end-of-conversion
e All SOCs run round-robin
Be sure to modify Adc.c and not F2837xD_Adc. c which is used for the ADC calibration.

4. Using the “PIE Interrupt Assignment Table” find the location for the ADC interrupt
“ADCA1" and fill in the following information:

PIE group #: # within group:
This information will be used in the next step.

5. Modify the end of Adc . c to do the following:
- Enable the “ADCAL” interrupt in the PIE (Hint: use the PieCtrlRegs structure)
- Enable the appropriate core interrupt in the IER register

6. Open and inspect Defaultlsr_6.c. This file contains the ADC interrupt service
routine. Save your work.

6-30 TMS320F2837xD Microcontroller Workshop - Analog Subsystem

Lab 6: Analog-to-Digital Converter

Build and Load

7. Click the “Bui 1d” button and watch the tools run in the Console window. Check for
errors in the Problems window.

8. Click the “Debug” button (green bug). A Launching Debug Session window will open.
Select only CPUL1 to load the program on (i.e. uncheck CPU2), and then click OK. Then
the CCS Debug perspective view should open, the program will load automatically, and
you should now be at the start of main(). If the device has been power cycled since the
last lab exercise, be sure to configure the boot mode to EMU_BOOT_SARAM using the
Scripts menu.

Run the Code

9. InMain_6.c place the cursor in the “main loop” section, right click on the mouse key
and select Run To Line.

Open a memory browser to view some of the contents of the ADC results buffer. The
address label for the ADC results buffer is AdcBuf (type &AdcBuf) in the “Data” memory
page. Then <enter> to view the contents of the ADC result buffer.

Note: Exercise care when connecting any jumper wires to the LaunchPad header pins
since the power to the USB connector is on!

Refer to the following diagram for the location of the pins that will need to be connected:

10. Using a jumper wire, connect the ADCINAQO (header J3, pin #30) to “GND” (header J2,
pin #20) on the LaunchPad. Then run the code again, and halt it after a few seconds.
Verify that the ADC results buffer contains the expected value of ~0x0000. Note that you
may not get exactly 0x0000 if the device you are using has positive offset error.

11. Adjust the jumper wire to connect the ADCINAO (header J3, pin #30) to “+3.3V”"
(header J1, pin #3; GP10-19) on the LaunchPad. (Note: pin # GPIO-19 has been set
to “1” in Gpio.c). Then run the code again, and halt it after a few seconds. Verify that
the ADC results buffer contains the expected value of ~OXOFFF. Note that you may
not get exactly OXOFFF if the device you are using has negative offset error.

12. Adjust the jumper wire to connect the ADCINAO (header J3, pin #30) to GPIO18 (header
J1, pin #4) on the LaunchPad. Then run the code again, and halt it after a few seconds.
Examine the contents of the ADC results buffer (the contents should be alternating
~0x0000 and ~OxOFFF values). Are the contents what you expected?

13. Open and setup a graph to plot a 50-point window of the ADC results buffer.
Click: Tools - Graph - Single Time and set the following values:

TMS320F2837xD Microcontroller Workshop - Analog Subsystem 6-31

Lab 6: Analog-to-Digital Converter

14.

15.

Acquisition Buffer Size

50

DSP Data Type

16-bit unsigned integer

Sampling Rate (Hz) 50000
Start Address AdcBuf
Display Data Size 50
Time Display Unit us

Select OK to save the graph options.

Recall that the code toggled the GPIO18 pin alternately high and low. (Also, the ADC
ISR is toggling the LED D9 on the LaunchPad as a visual indication that the ISR is
running). If you had an oscilloscope available to display GP10O18, you would expect to
see a square-wave. Why does Code Composer Studio plot resemble a triangle wave?
What is the signal processing term for what is happening here?

Recall that the program toggled the GP1018 pin at a 50 kHz rate. Therefore, a complete
cycle (toggle high, then toggle low) occurs at half this rate, or 25 kHz. We therefore
expect the period of the waveform to be 40 pus. Confirm this by measuring the period of
the triangle wave using the “measurement marker mode” graph feature. In the graph
window toolbar, left-click on the ruler icon with the red arrow. Note when you hover your
mouse over the icon, it will show “Toggle Measurement Marker Mode”. Move
the mouse to the first measurement position and left-click. Again, left-click on the
Toggle Measurement Marker Mode icon. Move the mouse to the second
measurement position and left-click. The graph will automatically calculate the difference
between the two values taken over a complete waveform period. When done, clear the
measurement points by right-clicking on the graph and select Remove All
Measurement Marks (or Ctrl+Alt+M).

Using Real-time Emulation

Real-time emulation is a special emulation feature that offers two valuable capabilities:

16.

A. Windows within Code Composer Studio can be updated at up to a 10 Hz rate while the
MCU is running. This not only allows graphs and watch windows to update, but also
allows the user to change values in watch or memory windows, and have those
changes affect the MCU behavior. This is very useful when tuning control law
parameters on-the-fly, for example.

B. It allows the user to halt the MCU and step through foreground tasks, while specified
interrupts continue to get serviced in the background. This is useful when debugging
portions of a real-time system (e.g., serial port receive code) while keeping critical
parts of your system operating (e.g., commutation and current loops in motor control).

We will only be utilizing capability “A” above during the workshop. Capability “B” is a
particularly advanced feature, and will not be covered in the workshop.

The memory and graph windows displaying AdcBuf should still be open. The jumper wire
between ADCINAO (header J3, pin #30) and GP1018 (header J1, pin #4) should still be
connected. In real-time mode, we will have our window continuously refresh at the
default rate. To view the refresh rate click:

TMS320F2837xD Microcontroller Workshop - Analog Subsystem

Lab 6: Analog-to-Digital Converter

Window = Preferences..

and in the section on the left select the “Code Composer Studio” category. Click the plus
sign (+) to the left of “Code Composer Studio” and select “Debug”. In the section on the
right notice the default setting:

e “Continuous refresh interval (milliseconds)” = 500
Click OK.

Note: Decreasing the “Continuous refresh interval” causes all enabled continuous refresh
windows to refresh at a faster rate. This can be problematic when a large number of
windows are enabled, as bandwidth over the emulation link is limited. Updating too many
windows can cause the refresh frequency to bog down. In this case you can just
selectively enable continuous refresh for the individual windows of interest.

17. Next we need to enable the graph window for continuous refresh. Select the “Single
Time” graph. In the graph window toolbar, left-click on the yellow icon with the arrows
rotating in a circle over a pause sign. Note when you hover your mouse over the icon, it
will show “Enable Continuous Refresh”. This will allow the graph to continuously refresh
in real-time while the program is running.

18. Enable the Memory Browser for continuous refresh using the same procedure as the
previous step.

19. Code Composer Studio includes Scripts that are functions which automate entering and
exiting real-time mode. Four functions are available:

e Run_Realtime_with_Reset (reset CPU, enter real-time mode, run CPU)

e Run_Realtime_with_Restart (restart CPU, enter real-time mode, run CPU)
e Full_Halt (exit real-time mode, halt CPU)

e Full_Halt_with_Reset (exitreal-time mode, halt CPU, reset CPU)

These Script functions are executed by clicking:

Scripts > Realtime Emulation Control - Function

In the remaining lab exercises we will be using the first and third above Script functions to
run and halt the code in real-time mode. Alternatively, the CPU Reset, Real-time mode,
Resume, and Suspend buttons on the Code Composer Studio tool bar can be used.

20. Run the code and watch the windows update in real-time mode. Click:
Scripts > Realtime Emulation Control - Run_Realtime_with_Reset
21. Carefully remove and replace the jumper wire from GPIO18 (header J1, pin #4). Are the
values updating in the Memory Browser and Single Time graph as expected?
22. Fully halt the CPU in real-time mode. Click:
Scripts > Realtime Emulation Control > Full_Halt

23. So far, we have seen data flowing from the MCU to the debugger in realtime. In this
step, we will flow data from the debugger to the MCU.

e Open and inspect Main_6.c. Notice that the global variable DEBUG_TOGGLE is
used to control the toggling of the GPIO18 pin. This is the pin being read with the
ADC.

TMS320F2837xD Microcontroller Workshop - Analog Subsystem 6-33

Lab 6: Analog-to-Digital Converter

e Highlight DEBUG_TOGGLE with the mouse, right click and select “Add Watch
Expression..” and then select OK. The global variable DEBUG_TOGGLE should
now be in the Expressions window with a value of “1”.

e Enable the Expressions window for continuous refresh

¢ Run the code in real-time mode and change the value to “0”. Are the results shown
in the memory and graph window as expected? Change the value back to “1”. As
you can see, we are modifying data memory contents while the processor is running
in real-time (i.e., we are not halting the MCU nor interfering with its operation in any
way)! When done, fully halt the CPU.

Setup DAC to Generate a Sine Waveform

Next, we will configure DACB to generate a fixed frequency sine wave. This signal will
appear on an analog output pin of the device (ADC-A1). Then using the jumper wire we will
connect the DACB output to the ADCA input (ADC-AQ) and display the sine wave in a graph
window.

24. Notice the following code lines in the ADCAL ISR in Defaultlsr_6.c:

//--- Write to DAC-B to_create input to ADC-AO
if(SINE_ENABLE == 1)

{ DacOutput = DacOffset + ((QuadratureTable[iQuadratureTable++] ~ 0x8000) >>5);
glse

t DacOutput = DacOffset;

1|’f(iQuadratureTable > (SINE_PTS - 1)) // Wrap the index

iQuadratureTable =0;
acbRegs.DACVALS.all = DacOutput;

O

The variable DacOffset allows the user to adjust the DC output of DACB from the
Expressions window in CCS. The variable Sine_Enable is a switch which adds a fixed
frequency sine wave to the DAC offset. The sine wave is generated using a 25-point
look-up table contained in the SineTable.c file. We will plot the sine wave in a graph
window while manually adjusting the offset.

25. Open and inspect SineTable._c. (If needed, open the Project Explorer window in the
CCS Debug perspective view by clicking View - Project Explorer). The file
consists of an array of 25 signed integer points which represent four quadrants of
sinusoidal data. The 25 points are a complete cycle. In the source code we need to
sequentially access each of the 25 points in the array, converting each one from signed
16-hit to un-signed 12-bit format before writing it to the DACVALS register of DACB.

26. Add the following variables to the Expressions window:
e Sine_Enable
e DacOffset

27. Adjust the jumper wire to connect the ADCINAO (header J3, pin #30) to DACB (header
J7, pin #70) on the LaunchPad. Refer to the following diagram for the pins that need to
be connected.

6-34 TMS320F2837xD Microcontroller Workshop - Analog Subsystem

Lab 6: Analog-to-Digital Converter

i :\.-E'HCJ:EI.._. E:B 92 .
(DO

000

28. Run the code (real-time mode) using the Script function: Scripts - Realtime
Emulation Control - Run_Realtime with_ Reset

29. At this point, the graph should be displaying a DC signal near zero. Click on the
dacOffset variable in the Expressions window and change the value to 800. This
changes the DC output of the DAC which is applied to the ADC input. The level of the
graph display should be about 800 and this should be reflected in the value shown in the
memory buffer (note: 800 decimal = 0x320 hex).

30. Enable the sine generator by changing the variable Sine_Enable in the Expressions
window to 1.

31. You should now see sinusoidal data in the graph window.
fue singeTime 0 52 Bl FF OF I v odir - # f\'|®®@$*3&|ﬁ}:v'u@: = ¥ = 0
2800

1800

800

B e e L B e s e e e L I e e e e e e e e e LI e e AL
v} +100 +200 +300 +400 +500 +600 +700 +800 +500
us

32. Try removing and re-connecting the jumper wire to show this is real data is running in
real-time emulation mode. Also, you can try changing the DC offset variable to move the
input waveform to a different average value (the maximum distortion free offset is about
2000).

33. Fully halt the code (real-time mode) by using the Script function: Scripts >
Realtime Emulation Control - Full _Halt

Terminate Debug Session and Close Project

34. Terminate the active debug session using the Terminate button. This will close the
debugger and return Code Composer Studio to the CCS Edit perspective view.

35. Next, close the project by right-clicking on Lab6 in the Project Explorer window and
select Close Project.

Optional Exercise

If you finish early, you might want to experiment with the code by observing the effects of
changing the OFFTRIM value. Open a watch window to the AdcaRegs.ADCOFFTRIM register
and change the OFFTRIM value. If you did not get 0x0000 in step 11, you can calibrate out the
offset of your device. If you did get 0x0000, you can determine if you actually had zero offset, or

TMS320F2837xD Microcontroller Workshop - Analog Subsystem 6-35

Lab 6: Analog-to-Digital Converter

if the offset error of your device was negative. (If you do not have time to work on this optional
exercise, you may want to try this later).

End of Exercise

6 - 36 TMS320F2837xD Microcontroller Workshop - Analog Subsystem

Control Peripherals

Introduction

The C2000 high-performance control peripherals are an integral component for all digital control
systems, and within the F2837xD these peripherals are common between the two CPU
subsystems. After reset they are connected to the CPU1 subsystem, and a series of CPU Select
registers are used to configure each peripheral individually to be either controlled CPU1
subsystem or CPU2 subsystem. This module starts with a review of pulse width modulation
(PWM) and then explains how the ePWM is used for generating PWM waveforms. Also, the use
of the eCAP and the eQEP will be discussed.

Module Objectives

Module Objectives

¢ Pulse Width Modulation (PWM) review

¢ Generate a PWM waveform with the
Pulse Width Modulator Module (ePWM)

¢ Use the Capture Module (eCAP) to
measure the width of a waveform

¢ Explain the function of Quadrature
Encoder Pulse Module (eQEP)

Note: Different numbers of ePWM, eCAP, and eQEP modules are available on F28x7x
devices. See the device datasheet for more information.

TMS320F2837xD Microcontroller Workshop - Control Peripherals 7-1

PWM Review

Chapter Topics

CONEIOl PeIIPNEIAIS ..ot e e e e et e e e e e e e e annbeeeaaaeeas 7-1
PWIM REVIBW ...ttt ettt ettt ettt s et e e st e e s st e e s st e e e s bt e e e nb et e e e nbne e e e annnas 7-3
BPWWIML ettt h e h bt b et eh e e bt e bt e e eh bt e e bt e e aae e e eabe e e abeeenabeeaa 7-5

ePWM Time-Base SUD-MOUUIEcooiiiiiiiieiicc e 7-7
ePWM Compare SUD-MOAUIEccceiiiiiiiiiiiee e e e rer e e e 7-11
ePWM Action Qualifier SUbB-Module ..., 7-14
Asymmetric and Symmetric Waveform Generation using the ePWMccccccciiiinnnen 7-22
PWM Computation EXAMPIEcooiiiiiiiiiie ettt e ee e e e e e e annes 7-23
ePWM Dead-Band SUD-MOTUIE...........cooiiiiiiiie et 7-24
€PWM Chopper SUD-MOAUIEooiii e 7-27
ePWM Trip-Zone and Digital Compare Sub-Modules ..., 7-30
ePWM Event-Trigger SUD-MOAUIEc.uiiiiiiiee e 7-38
High Resolution PWM (HRPWM)........uuuiiiieiiiiiiiieie ettt e e e e s s ssbatee e e e e e s s snnsnneeeaeeennannns 7-40
(<107 T TR P PP OPRPT 7-41
(210] TR TSP PPRP 7-47
Lab 7: CoNtrol PEHPNEIALScoiiiiiieee et e e 7-50

TMS320F2837xD Microcontroller Workshop - Control Peripherals

PWM Review

PWM Review

What is Pulse Width Modulation?

¢ PWM is a scheme to represent a
signal as a sequence of pulses
ofixed carrier frequency
ofixed pulse amplitude

¢ pulse width proportional to
instantaneous signal amplitude

¢ PWM energy =~ original signal energy

IIIIIIII/Ht

Original Signal PWM representation

Pulse width modulation (PWM) is a method for representing an analog signal with a digital
approximation. The PWM signal consists of a sequence of variable width, constant amplitude
pulses which contain the same total energy as the original analog signal. This property is
valuable in digital motor control as sinusoidal current (energy) can be delivered to the motor using
PWM signals applied to the power converter. Although energy is input to the motor in discrete
packets, the mechanical inertia of the rotor acts as a smoothing filter. Dynamic motor motion is
therefore similar to having applied the sinusoidal currents directly.

TMS320F2837xD Microcontroller Workshop - Control Peripherals 7-3

PWM Review

Why use PWM with Power
Switching Devices?

¢ Desired output currents or voltages are known

¢ Power switching devices are transistors
+ Difficult to control in proportional region
¢ Easy to control in saturated region

¢ PWM is adigital signal = easy for MCU to output

DC Supply DC Supply
) LUt
' . PWM
De5|rt|etci PWM approx.
signal to of desired
/\/\/ system H_HM signal
Unknown Gate Signal Gate Signal Known with PWM

Power switching devices can be difficult to control when operating in the proportional region, but
are easy to control in the saturation and cutoff regions. Since PWM is a digital signal by nature
and easy for an MCU to generate, it is ideal for use with power switching devices. Essentially,
PWM performs a DAC function, where the duty cycle is equivalent to the DAC analog amplitude
value.

7-4 TMS320F2837xD Microcontroller Workshop - Control Peripherals

ePWM

ePWM

ePWM Module Signals and Connections

A 4

ePWMx+1
__/

/_\
ePWMx-1
N
EPWMxSYNCI EPWMXTZINT
INPUT R PIE
X-Bar i EPWMXINT CLA
eqep EQEPERR - 724 EPWMxA
GPIO
syserm, Crockrai -1z5 | €PWMX v
cpy EMUSTOP — 126
EPWMxSOCA
cPWM > EPWMxSOCB | ADC
X-Bar EPWMxSYNCO

Note: the order in which the ePWM modules are connected is determined by the device synchronization scheme

The ePWM modules are highly programmable, extremely flexible, and easy to use, while being

capable of generating complex pulse width waveforms with minimal CPU overhead or

intervention. Each ePWM module is identical with two PWM outputs, EPWMxA and EPWMXxB,
and multiple modules can synchronized to operate together as required by the system application
design. The generated PWM waveforms are available as outputs on the GPIO pins. Additionally,
the EPWM module can generate ADC starter conversion signals and generate interrupts to the
PIE block. External trip zone signals can trip the output, as well as generate interrupts. The
outputs of the comparators are used as inputs to the ePWM X-Bar. Next, the internal details of

the ePWM module will be covered.

TMS320F2837xD Microcontroller Workshop - Control Peripherals

ePWM

ePWM Synchronization Scheme
SyncSocRegs.SYNCSELECT
EXTSYNCINL EXTSYNCIN2
@V@ EPWML
fffff 3 by
1) SYNCOUT
[epwi3] [ePwma] | 3 EonT et
S 1) SYNCOUT| [sYNCoUT
[ePwis] [ePwmr] | Lo
— 1 +
[ePwive] [ePwis] [ePwhzo] | . : Sl'zi;);”
! E— 1 1 Isyncout| foreo-- :
EPWMASYNCIN [epwn | ePV‘iMll | | eci\i
EPWNTSYNGIN [epwhz2] [ecap2]
EPWMZ10SYNCIN
ECAPISYNCIN
ECAP4SYNCIN

Various ePWM modules (and eCAP units) can be grouped together for synchronization.

ePWM Block Diagram

EPWMCLK \ |
! : :
Clock Compare | ! | Compare [|
Prescaler Registers ! Registers |\ !
L Compare AWIZ Dead
Time-Base : .
TBCLK Counter Logic Qualifier Band

r1d

EPWMXxSYNCI EPWMxSYNCO

Period
Register L — EPWMxA
PWM Trip
Chopper Zone b——

EPWMxB

I_T 1 TZy
Digital |~— TZ1-TZ3

Comparej+—

INPUT X-Bar
ePWM X-Bar

The ePWM module consists of eight submodules: time-base, counter-compare, action-qualifier,
dead-band generator, PWM chopper, trip-zone, digital-compare, and event-trigger.

7-6 TMS320F2837xD Microcontroller Workshop - Control Peripherals

ePWM

ePWM Time-Base Sub-Module

ePWM Time-Base Sub-Module
EPWMCLK " Event Trigger |
1 [}
1 1
Clock Compare | ! | Compare | |
Prescaler Registers ! Registers !
DR | Compare Action Dead
Vil EEsE | Logic Qualifier Band
TBCLK Counter 9
X
EPWMxSYNCI EPWMxSYNCO N
Period
Register L — EPWMXxA
PWM Trip
Chopper Zone
EPWMxB
I_T Tzy
Digital] T21-TZ3
INPUT X-Bar
Comparej*— o\ x-gar

The time-base submodule consists of a dedicated 16-bit counter, along with built-in
synchronization logic to allow multiple ePWM modules to work together as a single system. A
clock pre-scaler divides the EPWM clock to the counter and a period register is used to control
the frequency and period of the generated waveform. The period register has a shadow register,
which acts like a buffer to allow the register updates to be synchronized with the counter, thus
avoiding corruption or spurious operation from the register being modified asynchronously by the
software.

TMS320F2837xD Microcontroller Workshop - Control Peripherals

ePWM

ePWM Time-Base Count Modes

TBCTR

TBPRD

Asymmetrical
Waveform

TBCTR

TBPRD

Asymmetrical
Waveform

TBCTR

TBPRD

Symmetrical
Waveform

Count Up and Down Mode

The time-base counter operates in three modes: up-count, down-count, and up-down-count. In
up-count mode the time-base counter starts counting from zero and increments until it reaches
the period register value, then the time-base counter resets to zero and the count sequence starts
again. Likewise, in down-count mode the time-base counter starts counting from the period
register value and decrements until it reaches zero, then the time-base counter is loaded with the
period value and the count sequence starts again. In up-down-count mode the time-base counter
starts counting from zero and increments until it reaches the period register value, then the time-
base counter decrements until it reaches zero and the count sequence repeats. The up-count
and down-count modes are used to generate asymmetrical waveforms, and the up-down-count
mode is used to generate symmetrical waveforms.

TMS320F2837xD Microcontroller Workshop - Control Peripherals

ePWM

ePWM Phase Synchronization

Ext. Syncin

Phase Egn _ Syncin
OT EPWMIA
e

CTR=zero
CTR=CMPB*:§\O_ EPWM1B
X—0 "
SyncOut

To eCAP1
Syncin

Phase En Syncin

$=120° 0—0 EPWM2A

Q
CTR=zero —0
CTR=CMPB *—0 O EPWM2B
——

X =—0
SyncOut
Phaseo En Syncin E¢:120<. :
$=240 0—0 EPWM3A b]
E——

CTR=zero—o0 s
CTR=CMPB *—0 O EPWM3B

X—0 " , : .

SyncOut i ¢=240° —>

* Extended selection for CMPC and CMPD available

Synchronization allows multiple ePWM modules to work together as a single system. The
synchronization is based on a synch-in signal, time-base counter equals zero, or time-base
counter equals compare B register. Additionally, the waveform can be phase-shifted.

ePWM Time-Base Sub-Module Registers

(lab file: EPwm.c)

Name Description Structure

TBCTL Time-Base Control EPwmxRegs.TBCTL.all =
TBCTL2 Time-Base Control EPwmxRegs.TBCTL2.all =
TBSTS Time-Base Status EPwmxRegs.TBSTS.all =
TBPHS Time-Base Phase EPwmxRegs.TBPHS =
TBCTR Time-Base Counter EPwmxRegs.TBCTR =
TBPRD Time-Base Period EPwmxRegs.TBPRD =

TMS320F2837xD Microcontroller Workshop - Control Peripherals 7-9

ePWM

ePWM Time-Base Control Register

EPwmxRegs.TBCTL

Upper Register:

Phase Direction
0 = count down after sync

1 = count up after sync TBCLK = EPWMCLK / (HSPCLKDIV * CLKDIV)
N
~ ™
15-14 13 12 -10 9-7
FREE_SOFT PHSDIR CLKDIV HSPCLKDIV
Emulation Halt Behavior TB Clock Prescale High Speed TB
00 = stop after next CTR inc/dec 000=/1 (default) Clock Prescale
01 = stop when: 001 =1/2 000=/1
Up Mode; CTR = PRD 010 = /4 001=/2 (default)
Down Mode; CTR =0 011 =/8 010=/4
Up/Down Mode; CTR =0 100 =/16 011=1/6
1x = free run (do not stop) 101 =/32 100 =/8
110 =/64 101 =/10
111 =/128 110 =/12
111 =/14

(HSPCLKDIV is for legacy compatibility)

ePWM Time-Base Control Register

EPwmxRegs.TBCTL

Lower Register:
Counter Mode

00 =count up

Software Force Sync Pulse 01 = count down

0 =no action 10 = count up and down
1 =force one-time sync 11 = stop — freeze (default)
6 5-4 3 2 1-0
SWFSYNC SYNCOSEL PRDLD PHSEN CTRMODE

Sync Output Select Period Shadow Load Phase Reg. Enable
(source of EPWMxSYNCOsignal) 0 =load on CTR=0 0 =disable
00 = EPWMxSYNCI 1 =load immediately 1=CTR =TBPHS on
01=CTR=0 EPWMxSYNCI signal

10=CTR =CMPB *
11 = disable SyncOut

* CMPC and CMPD option
available in TBCTL2 register

TMS320F2837xD Microcontroller Workshop - Control Peripherals

ePWM

ePWM Compare Sub-Module

ePWM Compare Sub-Module
EPWNCLK " Event Trigger |
[} I
1 1
Clock Compare | ! | Compare | |
Prescaler Registers ! Registers !
DR Compare »| Action Dead
Vil EEsE Logic p|Qualifier Band
TBCLK | Counter 9 i
1 A
EPWMxSYNCI EPWMxSYNCO N
Period
Register L — EPWMXxA
PWM Trip
Chopper Zone
EPWMxB
I_T 1 Tzy
Digital] T21-TZ3
INPUT X-Bar
Compare «=— o\ x-ar

The counter-compare submodule continuously compares the time-base count value to four
counter compare registers (CMPA, CMPB, CMPC, and CMPD) and generates four independent
compare events (i.e. time-base counter equals a compare register value) which are fed to the
action-qualifier and event-trigger submodules. The counter compare registers are shadowed to
prevent corruption or glitches during the active PWM cycle. Typically CMPA and CMPB are used
to control the duty cycle of the generated PWM waveform, and all four compare registers can be
used to start an ADC conversion or generate an ePWM interrupt. For the up-count and down-
count modes, a counter match occurs only once per cycle, however for the up-down-count mode
a counter match occurs twice per cycle since there is a match on the up count and down count.

TMS320F2837xD Microcontroller Workshop - Control Peripherals 7-11

ePWM

ePWM Compare Event Waveforms

TBCTR

TBPRD

CMPA
CMPB

| e = compare events are fed to the Action Qualifier Sub-Module |

----- Asymmetrical
----- Waveform

TBCTR

TBPRD

CMPA
CMPB

Asymmetrical
Waveform

TBCTR

TBPRD

CMPA
CMPB

Count Down Mode

Symmetrical
Waveform

Count Up and Down Mode

CMPC and CMPD available for use as event triggers

The above ePWM Compare Event Waveform diagram shows the compare matches which are fed
into the action qualifier. Notice that with the count up and countdown mode, there are matches
on the up-count and down-count.

ePWM

Compare Sub-Module Registers

(lab file: EPwm.c)

Name Description Structure

CMPCTL Compare Control EPwmxRegs.CMPCTL.all =
CMPCTL2 Compare Control EPwmxRegs.CMPCTL2.all =
CMPA Compare A EPwmxRegs.CMPA =

CMPB Compare B EPwmxRegs.CMPB =
CMPC Compare C EPwmxRegs.CMPC =
CMPD Compare D EPwmxRegs.CMPD =

TMS320F2837xD Microcontroller Workshop - Control Peripherals

ePWM

ePWM Compare Control Register

EPwmxRegs.CMPCTL

CMPA and CMPB Shadow Full Flag
(bit automatically clears on load)

0 = shadow not full

1 =shadow full

A
I Y
15-10 9 8 7
reserved SHDWBFULL | SHDWAFULL | reserved
6 5 4 3-2 1-0
SHDWBMODE | reserved | SHDWAMODE | LOADBMODE LOADAMODE
'
CMPA and CMPB Operating Mode CMPA and CMPB Shadow Load Mode
0 = shadow mode; 00 =load on CTR=0
double buffer w/ shadow register 01 =load on CTR = PRD
1 =immediate mode; 10 =load on CTR =0 or PRD
shadow register not used 11 = freeze (no load possible)

ePWM Compare Control Register

EPwmxRegs.CMPCTL2

CMPC and CMPD Shadow Load on Sync Event

00 =no sync —use LOADCMODE/LOADDMODE
01 =when sync occurs and LOADCMODE/LOADDMODE
10 = only when sync is received

11 =reserved \\

/ Y
15-14 13-12 11-10 9-7
reserved LOADDSYNC | LOADCSYNC | reserved
6 5 4 3-2 1-0
SHDWDMODE | reserved | SHDWCMODE | LOADDMODE LOADCMODE
'
CMPC and CMPD Operating Mode CMPC and CMPD Shadow Load Mode
0 = shadow mode;) 00 =load on CTR=0
double buffer w/ shadow register 01 =load on CTR = PRD
1 =immediate mode; 10 =load on CTR =0 or PRD
shadow register not used 11 = freeze (no load possible)

TMS320F2837xD Microcontroller Workshop - Control Peripherals 7-13

ePWM

ePWM Action Qualifier Sub-Module

ePWM Action Qualifier Sub-Module
EPWMCLK " Event Trigger |
[} I
1 1
Clock Compare | ! | Compare | |
Prescaler Registers ! Registers !
DR Compare Action » Dead
Vil EEsE Logic Qualifier »| Band
TBCLK 1 Counter g v —|
EPWMxSYNCI EPWMxSYNCO .
Period
Register L — EPWMXxA
PWM Trip
Chopper Zone
EPWMxB
I_T Tzy
Digital] T21-TZ3
INPUT X-Bar
Comparej*— o\ x-gar

The action-qualifier submodule is the key element in the ePWM module which is responsible for
constructing and generating the switched PWM waveforms. It utilizes match events from the
time-base and counter-compare submodules for performing actions on the EPWMxA and
EPWMXxB output pins. These first three submodules are the main blocks which are used for
generating a basic PWM waveform.

TMS320F2837xD Microcontroller Workshop - Control Peripherals

ePWM

ePWM Action Qualifier Actions
for EPWMA and EPWMB
s)w | Time-Base Counter equals: Trigger Events: CE)PWM
utput

Force [7ero [cmPa | cmPB [TBPRD| T2 T2 | Actions

S)\(N)Z< CXA CXB)Fz 'I;él. 1;(2 Do Nothing

SlN f Cf‘ C¢B E -I:Ll -I:LZ Clear Low

T2 :
TN ENENIE N FI[F]] s
SW Z CA CB P T1 T2 Todal
T T T T T T T cggle

Tx Event Sources = DCAEVT1, DCAEVT2, DCBEVT1, DCBEVT2, TZ1, TZ2, TZ3, EPWMxXSYNCIN

The Action Qualifier actions are setting the pin high, clearing the pin low, toggling the pin, or do
nothing to the pin, based independently on count-up and count-down time-base match event.

The match events are when the time-base counter equals the period register value, the time-base
counter is zero, the time-base counter equals CMPA, the time-base counter equals CMPB, or a
Trigger event (T1 and T2) based on a comparator, trip, or sync signal. Note that zero and period
actions are fixed in time, whereas CMPA and CMPB actions are moveable in time by
programming their respective registers. Actions are configured independently for each output
using shadowed registers, and any or all events can be configured to generate actions on either

output. Also, the output pins can be forced to any action using software.

TMS320F2837xD Microcontroller Workshop - Control Peripherals

ePWM

ePWM Count Up Asymmetric Waveform

with Independent Modulation on EPWMA / B
TBCTR

1= 2T
CMPA []

o

« | K | é

z|[P] [cB CA z|[P] [c CA P

T X | X { MIX| | X 3 X

z|[P] [cB CA z|[P] [cB CA z|lP

M x| |4 X T x| [X T X
EPWMB I I

The next few figures show how the setting of the action qualifier with the compare matches are
used to modulate the output pins. Notice that the output pins for EPWMA and EPWMB are
completely independent. In the example above, the EPWMA output is being set high on the zero

match and cleared low on the compare A match. The EPWMB output is being set high on the
zero match and cleared low on the compare B match.

[P -

EPWMA

ePWM Count Up Asymmetric Waveform

with Independent Modulation on EPWMA

TBCTR

TBPRD
CMPB

CMPA

=
=

TMS320F2837xD Microcontroller Workshop - Control Peripherals

ePWM

In the example above, the EPWMA output is being set high on the compare A match and being
cleared low on the compare B match, while the EPWMB output is being toggled on the zero

match.

TBCTR
TBPRD

CMPB
CMPA

EPWMB

ePWM Count Up-Down Symmetric
Waveform

with Independent Modulation on EPWMA / B

In the example above, there are different output actions on the up-count and down-count using a
single compare register. The EPWMA and EPWMB outputs are being set high on the compare A

and B up-count matches and cleared low on the compare A and B down-count matches.

TBCTR

TBPRD
CMPB
CMPA

ePWM Count Up-Down Symmetric
Waveform

with Independent Modulation on EPWMA

TMS320F2837xD Microcontroller Workshop - Control Peripherals

ePWM

And finally in the example above, again using different output actions on the up-count and down-
count, the EPWMA output is being set high on the compare A up-count match and being cleared
low on the compare B down-count match. The EPWMB output is being cleared low on the zero
match and being set high on the period match.

ePWM Action Qualifier Sub-Module

Registers

(lab file: EPwm.c)
Name Description Structure
AQCTL AQ Control Register EPwmxRegs.AQCTL.all =
AQCTLA AQ Control Output A EPwmxRegs.AQCTLA.all =
AQCTLA2 AQ Control Output A EPwmxRegs.AQCTLA2.all =
AQCTLB AQ Control Output B EPwmxRegs.AQCTLB.all =

AQCTLB2 AQ Control Output B EPwmxRegs.AQCTLB2.all =
AQTSRCSEL | AQ T Source Select EPwmxRegs. AQTSRCSEL =
AQSFRC AQ S/W Force EPwmxRegs.AQSFRC.all =

AQCSFRC AQ Cont. S/W Force EPwmxRegs.AQCSFRC.all =

ePWM Action Qualifier Control Register

15-12 11-10 9-

EPwmxRegs.CTL

Action Qualifier A / Action Qualifier B
Operating Mode
0 = shadow mode;

double buffer w/ shadow register
1 =immediate mode;

shadow register not used

8 7 6 5 4 3-2 1-0

LDAQB [LDAQA SHDQAQ SHDWAQ |LDAQB | LDAQA
reserved SYNC | SYNG reserved reserved

BMODE AMODE | MODE | MODE

\/

11 =reserved

Action Qualifier A / Action Qualifier B Action Qualifier A/ Action Qualifier B
Shadow to Active Load on SYNC event Shadow Load Mode

00 = only on LDAQxMODE 00 =load on CTR=0
01 =on both LDAQxMODE and SYNC 01 =load on CTR = PRD
10 = only when SYNC is received 10 =load on CTR =0 or PRD

11 =freeze (no load possible)

TMS320F2837xD Microcontroller Workshop - Control Peripherals

ePWM

ePWM Action Qualifier Control Register

EPwmxRegs.AQCTLy (y =Aor B)

Action when Action when
CTR = CMPB CTR = CMPA Action when
on UP Count on UP Count CTR =0
15-12 11-10 9-8 7-6 5-4 3-2 1-0
reserved CBD CBU CAD CAU PRD ZRO
Action when Action when Action when
CTR = CMPB CTR = CMPA CTR =PRD

on DOWN Count on DOWN Count

00 = do nothing (action disabled)

01 = clear (low)

10 = set (high)

11 = toggle (low — high; high — low)

ePWM Action Qualifier Control Register

EPwmxRegs.AQCTL2y (y =Aor B)

Action when Action when

Event occurs Event occurs

on T2 in UP on Tlin UP
Count Count

15-8 7-6 5-4 3-2 1-0
reserved T2D T2U T1D T1U

| |
Action when Action when
Event occurs Event occurs
onT2in onTlin
DOWN Count DOWN Count

00 = do nothing (action disabled)

01 = clear (low)

10 = set (high)

11 = toggle (low — high; high — low)

TMS320F2837xD Microcontroller Workshop - Control Peripherals 7-19

ePWM

ePWM Action Qualifier Trigger Event
Source Select Register

EPwmxRegs.AQTSRCSEL

15-8 7-4 3-0
reserved T2SEL T1SEL
T2 Event T1 Event
Source Select Source Select

0000 = DCAEVT1

0001 = DCAEVT2

0010 = DCBEVT1

0011 = DCBEVT2
0100=TZ1

0101 =TZ22

0110=TZ3

0111 = EPWMxSYNCIN

ePWM Action Qualifier S/W Force
Register

EPwmxRegs.AQSFRC

One-Time S/W Force on Output B /A

0 =no action
1 =single s/w force event

T

15-8 7-6 5 4-3 2 1-0
reserved RLDCSF OTSFB ACTSFB OTSFA ACTSFA
AQSFRC Shadow Reload Options Action on One-Time S/W Force B /A
00 =load on event CTR =0 00 = do nothing (action disabled)
01 =load on event CTR = PRD 01 = clear (low)
10 =load on event CTR=00or CTR=PRD 10 = set (high)
11 = load immediately (from active reg.) 11 =toggle (low — high; high — low)

TMS320F2837xD Microcontroller Workshop - Control Peripherals

ePWM

15-4

ePWM Action Qualifier Continuous S/W
Force Register

EPwmxRegs.AQCSFRC

3-2 1-0

reserved

CSFB CSFA

_

Continuous S/W Force on Output B /A
00 =forcing disabled

01 =force continuous low on output
10 = force continuous high on output
11 =forcing disabled

TMS320F2837xD Microcontroller Workshop - Control Peripherals

ePWM

Asymmetric and Symmetric Waveform Generation
using the ePWM

PWM switching frequency:

The PWM carrier frequency is determined by the value contained in the time-base period register,
and the frequency of the clocking signal. The value needed in the period register is:

Asymmetric PWM: period register = (SWItchmg pe”Od) 1

timer period

switching period
2(timer period)

Symmetric PWM: period register =

Notice that in the symmetric case, the period value is half that of the asymmetric case. This is
because for up/down counting, the actual timer period is twice that specified in the period register
(i.e. the timer counts up to the period register value, and then counts back down).

PWM resolution:

The PWM compare function resolution can be computed once the period register value is
determined. The largest power of 2 is determined that is less than (or close to) the period value.
As an example, if asymmetric was 1000, and symmetric was 500, then:

Asymmetric PWM: approx. 10 bit resolution since 2'° = 1024 ~ 1000

Symmetric PWM: approx. 9 bit resolution since 2° =512 ~ 500

PWM duty cycle:

Duty cycle calculations are simple provided one remembers that the PWM signal is initially
inactive during any particular timer period, and becomes active after the (first) compare match
occurs. The timer compare register should be loaded with the value as follows:

Asymmetric PWM: TXCMPR = (100% - duty cycle) * TXPR

Symmetric PWM: TXCMPR = (100% - duty cycle) * TXPR

Note that for symmetric PWM, the desired duty cycle is only achieved if the compare registers
contain the computed value for both the up-count compare and down-count compare portions of
the time-base period.

TMS320F2837xD Microcontroller Workshop - Control Peripherals

ePWM

PWM Computation Example

Symmetric PWM Computation Example

¢ Determine TBPRD and CMPA for 100 kHz, 25% duty
symmetric PWM from a 100 MHz time base clock

foy = 100 kHz

(Tewm = 10 ps)

Compare

Counter

: " frgeik = 100 MHz
PWM Pin I | (TrecLk = 10 ns)

TBPRD = £ fteatk _ 1 100MHz _ oo,

fowy 2 100 kHz
CMPA = (100% - duty cycle)*TBPRD = 0.75*500 = 375

Asymmetric PWM Computation Example

¢ Determine TBPRD and CMPA for 100 kHz, 25% duty
asymmetric PWM from a 100 MHz time base clock

fpwm = 100 kHz
(Tewm = 10 ps)

Period
Compare

Counter

L g0 = 100 MHz _I
T =10ns
PWM Pln (TBCLK)

Frock 100 MHz
- fmeek g o 100MHz 499
TBPRD =~ 100 kHz

CMPA = (100% - duty cycle)*(TBPRD+1) - 1 = 0.75%(999+1) - 1 = 749

TMS320F2837xD Microcontroller Workshop - Control Peripherals 7-23

ePWM

ePWM Dead-Band Sub-Module

ePWM Dead-Band Sub-Module
EPWMCLK " Event Trigger |
1 [}
1 1
Clock Compare | ! | Compare | |
Prescaler Registers ! Registers !
DR Compare Action Dead
Vil EEsE Logic Qualifier Band
TBCLK | Counter 9 _|
EPWMxSYNCI EPWMxSYNCO .
Period
Register L — EPWMXxA
PWM Trip
»|Chopper Zone
EPWMxB
I_T { TZy
Digital] T21-TZ3
INPUT X-Bar
Comparej*— o\ x-gar

The dead-band sub-module provides a means to delay the switching of a gate signal, thereby
allowing time for gates to turn off and preventing a short circuit. This sub-module supports
independently programmable rising-edge and falling-edge delays with various options for
generating the appropriate signal outputs on EPWMxA and EPWMxB.

Motivation for Dead-Band

supply rail

gate signals are
complementary PWM H (

to power
switching
device

¢ Transistor gates turn on faster than they shut off
¢ Short circuit if both gates are on at same time!

7-24 TMS320F2837xD Microcontroller Workshop - Control Peripherals

ePWM

To explain further, power-switching devices turn on faster than they shut off. This issue would

momentarily provide a path from supply rail to ground, giving us a short circuit. The dead-band
sub-module alleviates this issue.

Dead-band control provides a convenient means of combating current shoot-through problems in
a power converter. Shoot-through occurs when both the upper and lower gates in the same
phase of a power converter are open simultaneously. This condition shorts the power supply and
results in a large current draw. Shoot-through problems occur because transistors open faster
than they close, and because high-side and low-side power converter gates are typically switched
in a complimentary fashion. Although the duration of the shoot-through current path is finite
during PWM cycling, (i.e. the closing gate will eventually shut), even brief periods of a short circuit
condition can produce excessive heating and over stress in the power converter and power

supply.
ePWM Dead-Band Block Diagram
PWMxA
:- ------- Rising
‘0 ! Edge
+——o S4! Delay o i T ;
Ly o——In Out — to ¢+ L_igsi: bo o _ !
B vt | | 282 ReD [o35 PwinA
! ' counter, | ! ' '
: | ._|>o-—o :] Pl e
' T . 1
------ 0 | :
Oo— ; | ; ; : :
S8 H ' H ' H 0] !
........ S Py | ; P | ¢ S7 iPWMxB
Falling _‘_Ksi"ﬂ“‘l’so | i :
fig | Hore T
Delay | 5 o E ,
2 o PoistL | ourniope OUTSWA
IN-MODE counter)
HALFCYCLE
PWMxB

Two basic approaches exist for controlling shoot-through: modify the transistors, or modify the
PWM gate signals controlling the transistors. In the first case, the opening time of the transistor
gate must be increased so that it (slightly) exceeds the closing time. One way to accomplish this
is by adding a cluster of passive components such as resistors and diodes in series with the
transistor gate, as shown in the next figure.

by-pass diode

PWM

signal
g R

Shoot-through control via power circuit modification

The resistor acts to limit the current rise rate towards the gate during transistor opening, thus
increasing the opening time. When closing the transistor however, current flows unimpeded from
the gate via the by-pass diode and closing time is therefore not affected. While this passive

TMS320F2837xD Microcontroller Workshop - Control Peripherals 7-25

ePWM

approach offers an inexpensive solution that is independent of the control microprocessor, it is
imprecise, the component parameters must be individually tailored to the power converter, and it
cannot adapt to changing system conditions.

The second approach to shoot-through control separates transitions on complimentary PWM
signals with a fixed period of time. This is called dead-band. While it is possible to perform
software implementation of dead-band, the C28x offers on-chip hardware for this purpose that
requires no additional CPU overhead. Compared to the passive approach, dead-band offers
more precise control of gate timing requirements. In addition, the dead time is typically specified
with a single program variable that is easily changed for different power converters or adapted

on-line.

ePWM Dead-Band Sub-Module Registers

(lab file: EPwm.c)

Name Description Structure

DBCTL Dead-Band Control EPwmxRegs.DBCTL.all =
DBCTL2 Dead-Band Control 2 EPwmxRegs.DBCTL2.all =
DBRED 14-bit Rising Edge Delay | EPwmxRegs.DBRED =
DBFED, 14-bit Falling Edge Delay | EPwmxRegs.DBFED =

Rising\Edge Delay = T1gc x X DBRED
Falling Edge Delay = Tgc x X DBFED

TMS320F2837xD Microcontroller Workshop - Control Peripherals

ePWM

ePWM Dead Band Control Registers

EPwmxRegs.DBCTL

15 14 13-12 11 10 9-8 7-6 5-4 3-2 1-0
SHDW | SHDW | LOAD | LOAD
HALF | DEDB ouT IN POL | OUT.
= DBFED | DBRED | FED RED A =
CYCLE | MODE | SWAP | 'W\'opE | MODE | MODE | MmoDE | MODE | SEL | MODE
S8 S7 S6 S554 S3S2 S1S0

0 =full cycle clocking
(TBCLK rate)

1 = half cycle clocking
(TBCLK*2 rate)

Operating Mode Shadow Load Mode

0 = shadow mode; 00=load on CTR=0
double buffer w/ shadow register 01 =load on CTR = PRD

1 =immediate mode; 10 =load on CTR =0 or PRD
shadow register not used 11 = freeze (no load possible)

o | s

EPwmxRegs.DBCTL2

15-3 2 1-0
SHDW | LOAD
reserved DBCTL | DBCTL
MODE | MODE
ePWM Chopper Sub-Module
ePWM Chopper Sub-Module
EPWMCLK " Event Trigger |
[} I
1
Clock Compare i Compare | |
Prescaler Registers ! Registers [!
DR Compare Action Dead
recuc | | eBase Logic Qualifier Band
Counter —|
EPWMXxSYNCI EPWMxSYNCO .
Period
Register L — EPWMxA
PWM P Trip
Chopper » Zone
EPWMxB
I_t TZy
Digital e 2172
INPUT X-Bar
Compare|*— o\ x-gar

The PWM chopper submodule is used with pulse transformer-based gate drives to control the
power switching devices. This submodule modulates a high-frequency carrier signal with the
PWM waveform that is generated by the action-qualifier and dead-band submodules.

TMS320F2837xD Microcontroller Workshop - Control Peripherals

ePWM

Programmable options are available to support the magnetic properties and characteristics of the
transformer and associated circuitry.

Purpose of the PWM Chopper

¢ Allows a high frequency carrier
signal to modulate the PWM
waveform generated by the Action
Qualifier and Dead-Band modules

¢ Used with pulse transformer-based
gate drivers to control power
switching elements

Shown in the figure below, a high-frequency carrier signal is ANDed with the ePWM outputs.
Also, this circuit provides an option to include a larger, one-shot pulse width before the sustaining
pulses.

ePWM Chopper Waveform

EPWMXA |
EPWMxB j §

CHPFREQ |

.

EPWMXA |

EPWMXxB |||| i i |||||||| § i ||||
] e | -
\ idt . ' !

OSHT —l (OSHTWTH) ;

=\

EPWMXA | ||||||||||”||| Sustaining

With One-Shot Pulse on EPWMXxA and/or EPWMxB

7-28 TMS320F2837xD Microcontroller Workshop - Control Peripherals

ePWM

ePWM Chopper Sub-Module Registers

(lab file: EPwm.c)

Structure
EPwmxRegs.PCCTL.all =

Description
PWM-Chopper Control

Name
PCCTL

ePWM Chopper Control Register

EPwmxRegs.PCCTL

Chopper CIk Freq.

000 = SYSCLKOUT/8 + 1
001 = SYSCLKOUT/8 + 2
010 = SYSCLKOUT/8 + 3
011 = SYSCLKOUT/8 + 4
100 = SYSCLKOUT/8 + 5
101 = SYSCLKOUT/8 + 6

Chopper Clk Duty Cycle
000 = 1/8 (12.5%)
001 = 2/8 (25.0%)
010 = 3/8 (37.5%)
011 = 4/8 (50.0%)
100 = 5/8 (62.5%)
101 = 6/8 (75.0%)

Chopper Enable
0 = disable (bypass)

110 = 7/8 (87.5%) 110 = SYSCLKOUT/8 = 7 1 =enable
111 = reserved 111 = SYSCLKOUT/8 + 8 \
15-11 10-8 7-5 4-1 0
reserved CHPDUTY CHPFREQ OSHTWTH CHPEN

One-Shot Pulse Width

0000 = 1 x SYSCLKOUT/8
0001 =2 x SYSCLKOUT/8
0010 = 3x SYSCLKOUT/8
0011 =4 x SYSCLKOUT/8
0100 = 5x SYSCLKOUT/8
0101 =6 x SYSCLKOUT/8
0110 =7 x SYSCLKOUT/8
0111 =8 x SYSCLKOUT/8

1000 = 9 x SYSCLKOUT/8
1001 =10 x SYSCLKOUT/8
1010 =11 x SYSCLKOUT/8
1011 =12 x SYSCLKOUT/8
1100 = 13 x SYSCLKOUT/8
1101 = 14 x SYSCLKOUT/8
1110 =15 x SYSCLKOUT/8
1111 = 16 x SYSCLKOUT/8

TMS320F2837xD Microcontroller Workshop - Control Peripherals

ePWM

ePWM Trip-Zone and Digital Compare Sub-Modules

ePWM Trip-Zone and Digital Compare
Sub-Modules
EPWMCLK " Event Trigger |
[} I
1
Clock Compare i Compare | |
Prescaler Registers ! Registers [!
DR Compare Action Dead
Vil EEsE Logic Qualifier Band
TBCLK 1 Counter = —|
EPWMXxSYNCI EPWMxSYNCO .
Period
Register L — EPWMxA
PWM Trip F—»
Chopper Zone —p

2 EPWwxB

H o— TZy

ool [0

-Bar
Compare €= .oy x-Bar

The trip zone and digital compare sub-modules provide a protection mechanism to protect the
output pins from abnormalities, such as over-voltage, over-current, and excessive temperature
rise.

Trip-Zone Features

¢ Trip-Zone has a fast, clock independent logic path to high-impedance
the EPWMxA/B output pins

¢ Interrupt latency may not protect hardware when responding to over
current conditions or short-circuits through ISR software

¢ Supports: #1) one-shot trip for major short circuits or over
current conditions

#2) cycle-by-cycle trip for current limiting operation

Over T
Current CPU
Sensors Dioial core VF\>/
Igita EPWMXxA

Compl_‘”f EPWMXTZINT — - M
ePWM X-Bar CHEEEED > o
TZ1 —TZ3 |NPUT X-Bar Mode T
eQEP1—TZ4 EQEP1ERR EPWMXB lFJ>
SYSCTRL—1Z5 CLOCKFAIL One-Shot > T
cpu—_TZ6 EMUSTOP Mode S

7-30 TMS320F2837xD Microcontroller Workshop - Control Peripherals

ePWM

The trip-zone submodule utilizes a fast clock independent logic mechanism to quickly handle fault
conditions by forcing the EPWMXxA and EPWMXxB outputs to a safe state, such as high, low, or

high-impedance, thus avoiding any interrupt latency that may not protect the hardware when

responding to over current conditions or short circuits through ISR software. It supports one-shot
trips for major short circuits or over current conditions, and cycle-by-cycle trips for current limiting
operation. The trip-zone signals can be generated externally from any GPIO pin which is mapped
through the Input X-Bar (TZ1 — TZ3), internally from an inverted eQEP error signal (TZ4), system
clock failure (TZ5), or from an emulation stop output from the CPU (TZ6). Additionally, numerous
trip-zone source signals can be generated from the digital-compare subsystem.

The power drive protection is a safety feature that is provided for the safe operation of systems
such as power converters and motor drives. It can be used to inform the monitoring program of
motor drive abnormalities such as over-voltage, over-current, and excessive temperature rise. If

the power drive protection interrupt is unmasked, the PWM output pins will be put in a safe

immediately after the pin is driven low. An interrupt will also be generated.

Digital Compare Trip Inputs

GPIO
MUX

| INPUT

TRIPIN1 & TZ1

TRIPIN2 & TZ2

| X-BAR

\4

TRIPIN3 & TZ3

TRIPIN6

TRIPIN4

TRIPINS

TRIPIN7

Digital
. | Compare

ePWM

TRIPINS

\4

TRIPIN9

X-BAR

TRIPIN10

TRIPIN11

TRIPIN12

TRIPIN14 (ECCDBLERR)

TRIPIN15 (PIEERR)

TRIPIN15

TRIPIN14

TRIPIN1 & TZ1

TRIPIN2 & TZ2

TRIPIN3 & TZ3

DCAHTRIPSEL
DCALTRIPSEL
DCBHTRIPSEL
DCBLTRIPSEL

TRIPING

TRIPIN4

TRIPINS !

TRIPIN7 !

TRIPIN8 |}

TRIPINO |

TRIPIN10 |

TRIPINIL

TRIPIN12 !

Sub-
Module

TRIP COMBO

The digital compare submodules receive their trip signals from the Input X-BAR and ePWM X-

BAR.

TMS320F2837xD Microcontroller Workshop - Control Peripherals

ePWM

The ePWM X-BAR is used to route various internal and external signals to the ePWM modules.
Eight trip signals from the ePWM X-BAR are routed to all of the ePWM modules.

— CTRIPH TRIPIN4
CMPSS1 — CTRIPL TRIPINS All
i TRIPIN7
TRIPIN
H TR\P\NS ePWM
hd TRIPIN10
|— cTRIPH TRIPINLL Modules
CMPSS8 | CTRIPL TRIPINI2
b_‘ INPUTL
INPUT2
[EPWM/ECAP sync |— extsmeour — INPuTS INPUT X-Bar
INPUTS
| ADCSOCAO |— ADCSOCA ——»| INPUTS
ePWM FLTL.COMPH -
ADCSOCB FLT1.COMPL A
| _ADCsocBO |— — Bar] :
ADCA — EVT1toEVT4 —F~— FLTAC‘OMPH_ SD1
ADCB T EVTLOEVTE — FLTA.COMPL -
ADCC — EVTLoEVT4 —ep)
ADCD — EVTL1t0EVT4 —<—pf
FLTLCOMPH
ECAP1 — EcAPLOUT —» FLT1.COMPL -
ECAP2 — ECAP20UT —» ‘_q__l H
ECAP3 —— ECAP3.0UT —»f . sSD2
FLT4.COMPH -
ECAP4 —— ECAP4.0OUT ——»
ECAP5 —— ECAP5.0UT —> FLT4.COMPL -
ECAP6 | — EcAPs.OUT —» ‘_G—_I

The ePWM X-BAR architecture block diagram shown below is replicated 8 times. The ePWM X-
BAR can select a single signal or logically OR up to 32 signals. The table in the figure defines the
various trip sources that can be multiplexed to the trip-zone and digital compare submodules.

ePWM X-Bar Architecture

EPwmXbarRegs.register

TRIPXMUXENABLE

TRIPINX

TRIPOUTPUTINV

o
,k\...

.
L]
%%2 This block diagram is replicated 8 times
31.2 Note: TRIPLOCK register locks the
31.3 1 configuration for the ePWM X-Bar
TRIPXMUX16TO31CFG.MUX31
MUX 0 1 2 3 MUX 0 1 2 3
0 CMPSS1.CTRIPH CMPSS1.CTRIPH_OR_CTRIPL | ADCAEVT1 ECAP1.0UT 16 SD1FLT1.COMPH SD1FLT1.COMPH_OR_COMPL
1 CMPSS1.CTRIPL INPUTXBARL ADCCEVT1 17 SD1FLT1.COMPL
2 CMPSS2.CTRIPH CMPSS2.CTRIPH_OR_CTRIPL | ADCAEVT2 ECAP2.0UT 18 SD1FLT2.COMPH SD1FLT2.COMPH_OR_COMPL
3 CMPSS2.CTRIPL INPUTXBAR2 ADCCEVT2 19 SD1FLT2.COMPL
4 CMPSS3.CTRIPH CMPSS3.CTRIPH_OR_CTRIPL | ADCAEVT3 ECAP3.0UT 20 SD1FLT3.COMPH SD1FLT3.COMPH_OR_COMPL
5 CMPSS3.CTRIPL INPUTXBAR3 ADCCEVT3 21 SD1FLT3.COMPL
6 CMPSS4.CTRIPH CMPSS4.CTRIPH_OR_CTRIPL | ADCAEVT4 ECAP4.0UT 22 SD1FLT4.COMPH SD1FLT4.COMPH_OR_COMPL
7 CMPSS4.CTRIPL INPUTXBAR4 ADCCEVT4 23 SD1FLT4.COMPL
8 CMPSS5.CTRIPH CMPSS5.CTRIPH_OR_CTRIPL | ADCBEVT1 ECAP5.0UT 24 SD2FLT1.COMPH SD2FLT1.COMPH_OR_COMPL
9 CMPSS5.CTRIPL INPUTXBARS ADCDEVTL 25 SD2FLT1.COMPL
10 CMPSS6.CTRIPH CMPSS6.CTRIPH_OR_CTRIPL | ADCBEVT2 ECAP6.0UT 26 SD2FLT2.COMPH SD2FLT2.COMPH_OR_COMPL
11 CMPSS6.CTRIPL INPUTXBAR6 ADCDEVT2 21 SD2FLT2.COMPL
12 CMPSS7.CTRIPH CMPSS7.CTRIPH_OR_CTRIPL | ADCBEVT3 28 SD2FLT3.COMPH SD2FLT3.COMPH_OR_COMPL
13 CMPSST.CTRIPL ADCSOCA ADCDEVT3 29 SD2FLT3.COMPL
14 CMPSS8.CTRIPH CMPSS8.CTRIPH_OR_CTRIPL | ADCBEVT4 | EXTSYNCOUT 30 SD2FLT4.COMPH SD2FLT4.COMPH_OR_COMPL
15 CMPSS8.CTRIPL ADCSOCB ADCDEVT4 31 SD2FLT4.COMPL

TMS320F2837xD Microcontroller Workshop - Control Peripherals

ePWM

Purpose of the Digital Compare
Sub-Module

¢ Generates ‘compare’ events that can:
¢ Trip the ePWM
¢ Generate a Trip interrupt
¢ Sync the ePWM
¢ Generate an ADC start of conversion
¢ Digital compare module inputs are:
¢ Input X-Bar
¢ ePWM X-Bar
¢ Trip-zone input pins
¢ A compare event is generated when one or more
of its selected inputs are either high or low

¢ Optional ‘Blanking’ can be used to temporarily
disable the compare action in alignment with
PWM switching to eliminate noise effects

Digital Compare Sub-Module Signals

Time-Base Sub-Module

| ocan Digital Trip DCAEVT1—>| Generate PWM Sync ||
TRIPINI & TZ1, : N Egﬂgaﬁé P Event-Trigger Sub-Module
TRIPIN2 & TZ2 : blanking t—| Generate SOCA |
TRIPIN3 & TZ3 Digitél Trip < Trip-Zone Sub-Module | |

Trip PWMA Output

Event A2 |
DCAL P
TRIPINA Compare : b

: Generate Trip Interrupt g

[— : ! DCAEVT2
—_— ! 1
°« ; ‘
« ' Time-Base Sub-Module '
- s DCBEVT1 N
TRIPM— DCBH Digital Trip ——| Generate PWM Sync [!
—_— Event B1 E " | P
: —{ Compare |<---- vent-Trigger Sub-Module ! :
—TRIPINI4, 1 ‘ - I Generate SOCB |
TRIPINIS 1 blanking -
—_— | Digital Trip |<..--2 Trip-Zone Sub-Module
TRIP COMBO DCBL Event B2 Trip PWMB Output
Compare - b
‘ Generate Trip Interrupt | ; :
‘ ! DCBEVT2 co
DCTRIPSEL TZDCSEL DCACTL / DCBCTL ----- !

The digital-compare subsystem compares signals external to the ePWM module, such as a signal
from the CMPSS analog comparators, to directly generate PWM events or actions which are then
used by the trip-zone, time-base, and event-trigger submodules. These ‘compare’ events can trip
the ePWM module, generate a trip interrupt, sync the ePWM module, or generate an ADC start of

TMS320F2837xD Microcontroller Workshop - Control Peripherals 7-33

ePWM

conversion. A compare event is generated when one or more of its selected inputs are either
high or low. The signals can originate from any external GPIO pin which is mapped through the
Input X-Bar and from various internal peripherals which are mapped through the ePWM X-Bar.
Additionally, an optional ‘blanking’ function can be used to temporarily disable the compare action
in alignment with PWM switching to eliminate noise effects.

Digital Compare Events

¢ The user selects the input for each of
DCAH, DCAL, DCBH, DCBL

¢ Each A and B compare uses its
corresponding DCyH/L inputs (y = A or B)

¢ The user selects the signal state that
triggers each compare from the following

choices:
i. DCyH - low DCyL - don’t care
ii. DCyH - high DCyL - don’t care
iii. DCyL - low DCyH - don't care

iv. DCyL - high
v. DCyL = high

DCyH - don't care
DCyH - low

ePWM Digital Compare and Trip-Zone
Sub-Module Registers

(lab file: EPwm.c)

Name Description Structure

DCACTL DC A Control EPwmxRegs.DCACTL.all =
DCBCTL DC B Control EPwmxRegs.DCBCTL.all =
DCTRIPSEL DC Trip Select EPwmxRegs.DCTRIPSEL .all =

DCAHTRIPSEL
DCALTRIPSEL
DCBHTRIPSEL
DCBLTRIPSEL
TZDCSEL
TZCTL

TZSEL

TZEINT

AH OR Input Select
AL OR Input Select
BH OR Input Select
BL OR Input Select
Digital Compare
Trip-Zone Control
Trip-Zone Select
Enable Interrupt

EPWMxRegs.DCAHTRIPSEL.all
EPwmxRegs.DCALTRIPSEL .all
EPwmxRegs.DCBHTRIPSEL .all
EPwmxRegs.DCBLTRIPSEL .all
EPwmxRegs.TZDCSEL .all =
EPwmxRegs.TZCTL.all =
EPwmxRegs.TZSEL.all =
EPwmxRegs.TZEINT.all =

Refer to the Technical Reference Manual for a complete listing of registers

TMS320F2837xD Microcontroller Workshop - Control Peripherals

ePWM

ePWM Digital Compare Trip Select
Register

EPwmxRegs.DCTRIPSEL

Digital Compare B

Digital Compare B
High Input Source Select

Low Input Source Select

15-12 11-8
DCBLCOMPSEL DCBHCOMPSEL
7-4 3-0
DCALCOMPSEL DCAHCOMPSEL

Digital Compare A

Digital Compare A
High Input Source Select

Low Input Source Select

0000 =TRIPIN1 & TZ1 | 0100 = TRIPINS | 1000 = TRIPIN9 1100 = reserved
0001 =TRIPIN2 & TZ2 | 0101 = TRIPIN6 | 1001 = TRIPIN10 1101 = TRIPIN14
0010 = TRIPIN3 & TZ3 | 0110 = TRIPIN7 1010 = TRIPIN11 1110 = TRIPIN15
0011 = TRIPIN4 0111 = TRIPIN8 1011 = TRIPIN12 1111 = TRIP Combo

ePWM Trip-Zone Digital Compare Event
Select Register

EPwmxRegs. TZDCSEL

15-12

11-9

8-6

5-3

2-0

reserved

DCBEVT2

DCBEVT1

DCAEVT2

DCAEVT1

\/

Digital Compare Output B
Event 2/1 Select

Digital Compare Output A
Event 2/1 Select

000 = event disable

001 = DCyH - low, DCyL - don’t care
010 = DCyH - high, DCyL = don’t care
011 =DCyL - low, DCyH - don’t care
100 = DCyL - high, DCyH = don’t care
101 = DCyL - high, DCyH > low

11x = reserved

wherey =AorB

TMS320F2837xD Microcontroller Workshop - Control Peripherals

ePWM

ePWM Digital Compare Control Register
EPwmxRegs.DCyCTL (y = A or B)

DCyEVT2 Source Force DCyEVT1 SOC DCyEVT1 Source Force

Sync Signal Select Generation Sync Signal Select

0 =synchronous 0 =disable 0 =synchronous

1 =asynchronous 1 =enable 1 =asynchronous

15 - 10 9 8 7-4 3 2 1 0

EVT2FRC |[EVT2SRC EVT1 EVT1 | EVT1FRC |EVT1SRC
reserved | SyNCseL | seL |'e®Ved| SYNCE | SOCE | SYNCSEL | SEL

DCyEVT2 Source DCyEVT1 SYNC DCyEVT1 Source
Signal Select Generation Signal Select
0 = DCYEVT2 signal 0 =disable 0 = DCyEVT1 signal
1 =DCEVTFILT signal 1 =enable 1 = DCEVTFILT signal

ePWM Trip-Zone Control Register

EPwmxRegs.TZCTL

15-12 11-10 9-8 7-6 5-4 3-2 1-0
reserved DCBEVT2 |DCBEVT1|DCAEVT2 |DCAEVT1 TZB TZA

L |

Digital Compare Output Digital Compare Output TZ1 to TZ6 Action on
Event 2/1 Action Event 2/1 Action EPWMxB / EPWMxA

on EPWMxB on EPWMxA

00 = high impedance

01 =force high

10 = force low

11 = do nothing (disable)

7-36 TMS320F2837xD Microcontroller Workshop - Control Peripherals

ePWM

ePWM Trip-Zone Select Register

EPwmxRegs.TZSEL

One-Shot Trip Zone

(event only cleared under S/W
control; remains latched)

0 = disable as trip source
1 =enable as trip source

/\

15 14 13 12 1 10 9 8
DCBEVT1|DCAEVT1| OSHT6 | OSHT5 | OSHT4 | OSHT3 | OSHT2 | OSHTL

7 6 5 4 3 2 1 0
DCBEVT2|DCAEVT2| CBC6 CBC5 CBC4 CBC3 CBC2 CBC1
\/ /
Cycle-by-Cycle Trip Zone
(event cleared when CTR = 0;
i.e. cleared every PWM cycle)
0 = disable as trip source
1 =enable as trip source
ePWM Trip-Zone Enable Interrupt
Register
EPwmxRegs.TZEINT
15-7 6 5 4 3 2 1 0
reserved ([DCBEVT2|DCBEVT1|DCAEVT2 | DCAEVT1 OST CBC reserved
Digital Compare Digital Compare One-Shot Cycle-by-Cycle
Output B Event 2/1 Output A Event 2/1 Interrupt Enable Interrupt Enable
Interrupt Enable Interrupt Enable 0 =disable 0 = disable
0 =disable 0 =disable 1 =enable 1 =enable
1 =enable 1 =-enable

TMS320F2837xD Microcontroller Workshop - Control Peripherals

ePWM

ePWM Event-Trigger Sub-Module
ePWM Event-Trigger Sub-Module

EPWMCLK

I |

l : :

1 1

Clock Compare | ! | Compare ||
Prescaler Registers ! Registers |7 !
Tiriz-BBgse Compare w Dead

TBCK | sounter Logic Qualifier Band

!

EPWMxSYNCI EPWMxSYNCO N
Period
Register L — EPWMxA
PWM Trip
Chopper Zone
EPWMxB
I_t 1 Tzy
oigia [0
-Bar
Comparef«— .oy x-Bar

The event-trigger submodule manages the events generated by the time-base, counter-compare,
and digital-compare submodules for generating an interrupt to the CPU and/or a start of
conversion pulse to the ADC when a selected event occurs.

ePWM Event-Trigger Interrupts and SOC

crr=0 4
CTR=PRD | PP Ty

cTR=o0orPRO T 1 T L L & f
CTRU = CMPA | R O O O O
CTRD = CMPA |
CTRU=CMPB T i \ i | |
CTRD=CMPB i i | _ i | i | i
ctRu=empc L T L i L
ctRo=cwpc i i A b4
CTRU:CMPD*+
cTRD=cmPD L+t i 4 bbb 4

TMS320F2837xD Microcontroller Workshop - Control Peripherals

ePWM

These event triggers can occur when the time-base counter equals zero, period, zero or period,
the up or down count match of a compare register. Recall that the digital-compare subsystem
can also generate an ADC start of conversion based on one or more compare events. Notice
counter up and down are independent and separate.

ePWM Event-Trigger Sub-Module

Registers

(lab file: EPwm.c)

Name

Description

Structure

ETSEL
ETPS

ETFLG
ETCLR
ETFRC

Event-Trigger Selection
Event-Trigger Pre-Scale
Event-Trigger Flag
Event-Trigger Clear
Event-Trigger Force

EPwmxRegs.ETSEL .all =
EPwmxRegs.ETPS.all =

EPwmxRegs.ETFLG.all =
EPwmxRegs.ETCLR.all =
EPwmxRegs.ETFRC.all =

Refer to the Technical Reference Manual for a complete listing of registers

The event-trigger submodule also incorporates pre-scaling logic to issue an interrupt request or
ADC start of conversion at every event or up to every fifteenth event.

ePWM Event-Trigger Selection Register

EPwmxRegs.ETSEL

Enable SOCB / A

Enable EPWMXINT

0 =disable 0 =disable
1 =enable 1 =enable
15 14 - 12 11 10-8 7-4 3 2-0
SOCBEN| SOCBSEL |SOCAEN | SOCASEL reserved | INTEN | INTSEL

EPWMxSOCB / A Select

000 = DCBEVT1 / DCAEVT1
001=CTR=0

010=CTR = PRD

011 =CTR =0o0r PRD

100 = CTRU = CMPA

101 = CTRD = CMPA

110 = CTRU = CMPB

111 = CTRD = CMPB

EPWMXINT Select

000 = reserved
001=CTR=0
010=CTR =PRD

011 =CTR =0o0r PRD
100 = CTRU = CMPA
101 = CTRD = CMPA
110 = CTRU = CMPB
111 = CTRD = CMPB

TMS320F2837xD Microcontroller Workshop - Control Peripherals

ePWM

High Resolution PWM (HRPWM)
High-Resolution PWM (HRPWM)

PWM Period
Regular
Device Clock TUUULUUUVUUVUVVUUUUUUUULIUUUUUUUUUY - PWM Step
i i.e. 10
.e. 100MHD) ||| TN P EEEEE Ty Getons)

(fixed Time-Base/2)

HRPWM divides a clock Calibration Logic tracks the

cycle into smaller steps _m ________ m number of Micro Steps per
called Micro Steps clock to account for

(Step Size ~= 150 ps) | Calibration Logic | i variations caused by
Temp/Volt/Process

| HRPWM
FEEEEEETEEEETETETEETETE D Micro Step (=150 ps)

¢ Significantly increases the resolution of conventionally derived digital PWM

¢ Uses 8-bit extensions to Compare registers (CMPxHR), Period register
(TBPRDHR) and Phase register (TBPHSHR) for edge positioning control

¢ Typically used when PWM resolution falls below ~9-10 bits which occurs at
frequencies greater than ~200 kHz (with system clock of 100 MHz)

¢ Not all ePWM outputs support HRPWM feature (see device datasheet)

The ePWM module is capable of significantly increase its time resolution capabilities over the
standard conventionally derived digital PWM. This is accomplished by adding 8-bit extensions to
the counter compare register (CMPxHR), period register (TBPRDHR), and phase register
(TBPHSHR), providing a finer time granularity for edge positioning control. This is known as
high-resolution PWM (HRPWM) and it is based on micro edge positioner (MEP) technology. The
MEP logic is capable of positioning an edge very finely by sub-dividing one coarse system clock
of the conventional PWM generator with time step accuracy on the order of 150 picoseconds. A
self-checking software diagnostics mode is used to determine if the MEP logic is running
optimally, under all operating conditions such as for variations caused by temperature, voltage,
and process. HRPWM is typically used when the PWM resolution falls below approximately 9 or
10 bits which occurs at frequencies greater than approximately 200 kHz with an EPWMCLK of
100 MHz.

TMS320F2837xD Microcontroller Workshop - Control Peripherals

eCAP

eCAP

Capture Module (eCAP)

D | L

Timer
| Trigger Q
\(pin
Timestamp
Values

¢ The eCAP module timestamps transitions on a
capture input pin
¢ Can be used to measure the time width of a pulse

| WT |

¢ Auxiliary PWM generation

The capture units allow time-based logging of external signal transitions. It is used to accurately
time external events by timestamping transitions on the capture input pin. It can be used to
measure the speed of a rotating machine, determine the elapsed time between pulses, calculate
the period and duty cycle of a pulse train signal, and decode current/voltage measurements
derived from duty cycle encoded current/voltage sensors.

Capture units can be configured to trigger an A/D conversion that is synchronized with an
external event. There are several potential advantages to using the capture for this function over
the ADCSOC pin associated with the ADC module. First, the ADCSOC pin is level triggered, and
therefore only low to high external signal transitions can start a conversion. The capture unit
does not suffer from this limitation since it is edge triggered and can be configured to start a
conversion on either rising edges or falling edges. Second, if the ADCSOC pin is held high
longer than one conversion period, a second conversion will be immediately initiated upon
completion of the first. This unwanted second conversion could still be in progress when a
desired conversion is needed. In addition, if the end-of-conversion ADC interrupt is enabled, this
second conversion will trigger an unwanted interrupt upon its completion. These two problems
are not a concern with the capture unit. Finally, the capture unit can send an interrupt request to
the CPU while it simultaneously initiates the A/D conversion. This can yield a time savings when
computations are driven by an external event since the interrupt allows preliminary calculations to
begin at the start-of-conversion, rather than at the end-of-conversion using the ADC end-of-
conversion interrupt. The ADCSOC pin does not offer a start-of-conversion interrupt. Rather,
polling of the ADCSOC bit in the control register would need to be performed to trap the
externally initiated start of conversion.

TMS320F2837xD Microcontroller Workshop - Control Peripherals 7-41

eCAP

eCAP Module Block Diagram - capture Mode
CAP1POL
_,| Capture 1 Polarity | __
Register Select 1
CAP2POL
|| Capture 2 o Polarity |_|
Register 5 Select 2 PRESCALE
A o
Ti m3e2 -SBtIa:mp e Event
i] = | Prescale
Counter 2 CAP3POL ECAPx
f | | Capture 3 w Polarity |_| pin
CPUX.SYSCLK Register Select 3
CAP4POL
Capture 4 . Polarity
| Register Select 4 [T

The eCAP module captures signal transitions on a dedicated input pin and sequentially loads a
32-bit time-base counter value in up to four 32-bit time-stamp capture registers (CAP1 — CAP4).
By using a 32-bit counter, rollover is minimized. Independent edge polarity can be configured as
rising or falling edge, and the module can be run in either one-shot mode for up to four time-
stamp events or continuous mode to capture up to four time-stamp events operating as a circular
buffer. The capture input pin is routed through the Input X-Bar, allowing any GPIO pin on the
device to be used as the input. Also, the input capture signal can be pre-scaled and interrupts
can be generated on any of the four capture events. The time-base counter can be run in either
absolute or difference (delta) time-stamp mode. In absolute mode the counter runs continuously,
whereas in difference mode the counter resets on each capture

TMS320F2837xD Microcontroller Workshop - Control Peripherals

eCAP

eCAP Module Block Diagram - apwm Mode

[Shadowed

Period shadow
_ _ Period Register | “mode
mmgggate Register (CAP3)
(CAP1)
32-Bit PWM
Time-Stamp Compare —————
Counter Logic ECAP
pin
CPUx.SYSCLK
) diat Compare
Immgdgae Register |compare shadow
(CAP2) Register | “mode
| Shadowed (CAP4)

If the module is not used in capture mode, the eCAP module can be configured to operate as a
single channel asymmetrical PWM module (i.e. time-base counter operates in count-up mode).

eCAP Module Registers

(lab file: ECap.c)

Name

Description

Structure

ECCTL1
ECCTL2
TSCTR
CTRPHS
CAP1
CAP2
CAP3
CAP4
ECEINT
ECFLG
ECCLR
ECFRC

Capture Control 1
Capture Control 2
Time-Stamp Counter
Counter Phase Offset
Capture 1

Capture 2

Capture 3

Capture 4

Enable Interrupt
Interrupt Flag
Interrupt Clear
Interrupt Force

ECapxRegs.ECCTL1.all =
ECapxRegs.ECCTL2.all =
ECapxRegs.TSCTR =
ECapxRegs.CTRPHS =
ECapxRegs.CAP1 =
ECapxRegs.CAP2 =
ECapxRegs.CAP3 =
ECapxRegs.CAP4 =
ECapxRegs.ECEINT.all =
ECapxRegs.ECFLG.all =
ECapxRegs.ECCLR.all =
ECapxRegs.ECFRC.all =

TMS320F2837xD Microcontroller Workshop - Control Peripherals

eCAP

eCAP Control Register 1

ECapxRegs.ECCTL1

Upper Register:

CAP1 -4 Load
on Capture Event
0 =disable
1 =-enable
15-14 13-9 8
FREE_SOFT PRESCALE CAPLDEN
Emulation Control Event Filter Prescale Counter
00 = TSCTR stops immediately 00000 = divide by 1 (bypass)
01 = TSCTR runs until equals 0 00001 = divide by 2
1X = free run (do not stop) 00010 = divide by 4
00011 = divide by 6

00100 = divide by 8

. .

11110 = divide by 60
11111 = divide by 62

eCAP Control Register 1

ECapxRegs.ECCTL1

Lower Register:

Counter Reset on Capture Event

0 = no reset (absolute time stamp mode)
1 =reset after capture (difference mode)

T

7 6 5 4 3 2 1 0
CTRRST4 |CAP4POL [CTRRST3 |CAP3POL |[CTRRST2|CAP2POL |CTRRST1 |CAP1POL

T\ =

Capture Event Polarity
0 =trigger on rising edge
1 =trigger on falling edge

7-44 TMS320F2837xD Microcontroller Workshop - Control Peripherals

eCAP

eCAP Control Register 2

ECapxRegs.ECCTL2
Upper Register:

Capture / APWM mode

0 = capture mode
1=APWM mode

15-11 10 9 8
reserved APWMPOL | CAP_APWM | SWSYNC

APWM Output Polarity Software Force

(valid only in APWM mode) Counter Synchronization
0 = active high output 0 =no effect
1 = active low output 1 =TSCTR load of current

module and other modules
if SYNCO_SEL bits = 00

eCAP Control Register 2

ECapxRegs.ECCTL2

Lower Register:

Re-arm Continuous/One-Shot
Coun.ter Sync-In (capture mode only) (capture mode only)
0 =disable 0 = no effect 0 = continuous mode
1 =enable 1 =arm sequence 1 =one-shot mode
7-6 5 4 3 2-1 0

SYNCO_SEL | SYNCI_EN | TSCTRSTOP | REARM | STOP_WRAP | CONT_ONESHT

Sync-Out Select Time Stamp Stop Value for One-Shot Mode/
00 = sync-in to sync-out ~ Counter Stop Wrap Value for Continuous Mode
01 =CTR = PRD event 0 =stop (capture mode only)

generates sync-out 1 =run 00 = stop/wrap after capture event 1
1X =disable 01 = stop/wrap after capture event 2

10 = stop/wrap after capture event 3
11 = stop/wrap after capture event 4

TMS320F2837xD Microcontroller Workshop - Control Peripherals

eCAP

eCAP Interrupt Enable Register

ECapxRegs.ECEINT

CTR = CMP CTR = Overflow Capture Event 3 Capture Event 1
Interrupt Enable Interrupt Enable Interrupt Enable Interrupt Enable

N N \ /

15-8 7 6 5 4 3 2 1 0
reserved| CTR=CMP |CTR=PRD |CTROVF |CEVT4 |CEVT3 |CEVT2 |CEVT1 |reserved

CTR =PRD Capture Event 4 Capture Event 2
Interrupt Enable Interrupt Enable Interrupt Enable

0 = disable as interrupt source
1 =enable as interrupt source

The capture unit interrupts offer immediate CPU notification of externally captured events. In
situations where this is not required, the interrupts can be masked and flag testing/polling can be
used instead. This offers increased flexibility for resource management. For example, consider a
servo application where a capture unit is being used for low-speed velocity estimation via a
pulsing sensor. The velocity estimate is not used until the next control law calculation is made,
which is driven in real-time using a timer interrupt. Upon entering the timer interrupt service
routine, software can test the capture interrupt flag bit. If sufficient servo motion has occurred
since the last control law calculation, the capture interrupt flag will be set and software can
proceed to compute a new velocity estimate. If the flag is not set, then sufficient motion has not
occurred and some alternate action would be taken for updating the velocity estimate. As a
second example, consider the case where two successive captures are needed before a
computation proceeds (e.g. measuring the width of a pulse). If the width of the pulse is needed
as soon as the pulse ends, then the capture interrupt is the best option. However, the capture
interrupt will occur after each of the two captures, the first of which will waste a small number of
cycles while the CPU is interrupted and then determines that it is indeed only the first capture. If
the width of the pulse is not needed as soon as the pulse ends, the CPU can check, as needed,
the capture registers to see if two captures have occurred, and proceed from there.

TMS320F2837xD Microcontroller Workshop - Control Peripherals

eQEP

eQEP

What is an Incremental Quadrature
Encoder?

A digital (angular) position sensor

photo sensors spaced 6/4 deg. apart
V slots spaced 0 deg. apart 0/4
, light source (LED
~U . _ v io (LED)
S ~ 0

Vs ch. A m
cne 1L LILTL

shaft rotation

Incremental Optical Encoder Quadrature Output from Photo Sensors

The eQEP module interfaces with a linear or rotary incremental encoder for determining position,
direction, and speed information from a rotating machine that is typically found in high-
performance motion and position-control systems.

How is Position Determined from
Quadrature Signals?

Position resolution is /4 degrees

increment decrement

(00) (11)
(AB) = (10) 5(01) counter counter

[4

llegal
€meee Transitions; | > @
generate
phase error

interrupt

|
|
|
|
|
|
|
Ch.A i
|
|
|
|
|
|

-

Ch.B

|
|
|
|
I
|
|
|
|
|
|
|
! !
| v
|

|

|

|

Quadrature Decoder
State Machine

TMS320F2837xD Microcontroller Workshop - Control Peripherals

eQEP

A quadrature decoder state machine is used to determine position from two quadrature signals.

eQEP Module Block Diagram

Measure the elapsed time
between the unit position events;
used for low speed measurement

Quadrature
Generate periodic Capture —
interrupts for velocity Quadrature - | | Direction -
calculations clock mode count mode
I\/llonli(tors_ tr&e quadrature
clock to indicate proper
operation of the motion w
3_2-Bit Unit control system EQEPXB/XDIR
Time-Base OEP Quadrature|*
Decoder EQEPXI
T Watchdog L EQEPX
CPUX.SYSCLK EQEPXS
l——

Position/Counter
Compare

Generate the direction and

clock for the position counter
Generate a sync output in quadrature count mode
and/or interrupt on a

position compare match

The inputs include two pins (QEPA and QEPB) for quadrature-clock mode or direction-count
mode, an index pin (QEPI), and a strobe pin (QEPS). These pins are configured using the GPIO
multiplexer and need to be enabled for synchronous input. In quadrature-clock mode, two square
wave signals from a position encoder are inputs to QEPA and QEPB which are 90 electrical
degrees out of phase. This phase relationship is used to determine the direction of rotation. If
the position encoder provides direction and clock outputs, instead of quadrature outputs, then
direction-count mode can be used. QEPA input will provide the clock signal and QEPB input will
have the direction information. The QEPI index signal occurs once per revolution and can be
used to indicate an absolute start position from which position information is incrementally
encoded using quadrature pulses. The QEPS strobe signal can be connected to a sensor or limit
switch to indicate that a defined position has been reached.

TMS320F2837xD Microcontroller Workshop - Control Peripherals

eQEP

eQEP Module Connections

Ch. A

Quadrature
[Capture :

EQEPXA/XCLK

32-Bit Unit EQEPXB/XDIR
Quadrature

Time-Base
QEP — D,
T Watchdog Ecedey EQEPXI Index
EQEPXS Strobe

CPUx.SYSCLK

from homing sensor

Position/Counter
Compare

The above figure shows a summary of the connections to the eQEP module.

TMS320F2837xD Microcontroller Workshop - Control Peripherals

Lab 7: Control Peripherals

Lab 7: Control Peripherals
» Objective

The objective of this lab exercise is to become familiar with the programming and operation of the
control peripherals and their interrupts. ePWM1A will be setup to generate a 2 kHz, 25% duty
cycle symmetrical PWM waveform. The waveform will then be sampled with the on-chip analog-
to-digital converter and displayed using the graphing feature of Code Composer Studio. Next,
eCAP1 will be setup to detect the rising and falling edges of the waveform. This information will
be used to determine the width of the pulse and duty cycle of the waveform. The results of this
step will be viewed numerically in a memory window.

Lab 7: Control Peripherals

ePWM1 dat
. ata
TB Counter CPU copies
memor
Compare jumper ADC result to y
Action Qualifier wire RESULTO buffer during -
ADC ISR £
o 3
eCAP1 ADC- o
T A — ;
1 - -
: -
Capture 3 Register : E o
:
View ADC
buffer PWM
ePWM2 triggering samples
ADC on period match
using SOCA trigger every
20 ps (50 kHz) ePWM2 Code Composer
Studio

> Procedure

Open the Project

1. A project named Lab7 has been created for this lab exercise. Open the project by
clicking on Project - Import CCS Projects. The “Import CCS Eclipse Projects”
window will open then click Browse... next to the “Select search-directory” box. Navigate
to: C:\C28x\Labs\Lab7\cpu01 and click OK. Then click Finish to import the project.
All build options have been configured the same as the previous lab exercise. The files
used in this lab exercise are:

7-50 TMS320F2837xD Microcontroller Workshop - Control Peripherals

Lab 7: Control Peripherals

Adc.c Gpio.c
CodeStartBranch.asm Lab 5 6 7.cmd
Dac.c Main_7.c
Defaultlsr _7.c PieCtrl.c
DelayUs.asm PieVect.c
ECap.c SineTable.c
EPwm.c SysCtrl.c
F2837xD_Adc.c Watchdog-c
F2837xD_GlobalVariableDefs.c Xbar.c

F2837xD_Headers_nonBIOS_cpul.cmd

Note: The ECap . c file will be added and used with eCAP1 to detect the rising and falling
edges of the waveform in the second part of this lab exercise.

Setup Shared I/0 and ePWM1
2. Edit Gpio.c and adjust the shared I/O pin in GPIOO0 for the PWM1A function.

3. In EPwm.c, setup ePWM1 to implement the PWM waveform as described in the objective
for this lab exercise. The following registers need to be modified: TBCTL (set clock
prescales to divide-by-1, no software force, sync and phase disabled), TBPRD, CMPA,
CMPCTL (load on 0 or PRD), and AQCTLA (set on up count and clear on down count for
output A). Software force, deadband, PWM chopper and trip action has been disabled.
(Hint — notice the last steps enable the timer count mode and enable the clock to the
ePWM module). Directly make use of the global variable names for the TBPRD and
CMPA values which have been set using #define in the beginning of Lab . h file. Within
the Project Explorer window, the Lab . h file is located in the include folder under
/Lab_commonl/include. (As a challenge, you could calculate the values for TBPRD and
CMPA). Notice that ePWM2 has been initialized earlier in the code for the ADC lab
exercise. Save your work.

Build and Load

4. Click the “Bui Id” button and watch the tools run in the Console window. Check for
errors in the Problems window.

5. Click the “Debug” button (green bug). A Launching Debug Session window will open.
Select only CPUL1 to load the program on (i.e. uncheck CPU2), and then click OK. Then
the CCS Debug perspective view should open, the program will load automatically, and
you should now be at the start of main(). If the device has been power cycled since the
last lab exercise, be sure to configure the boot mode to EMU_BOOT_SARAM using the
Scripts menu.

Run the Code — PWM Waveform

6. Using a jumper wire, connect the PWM1A (header J4, pin #40) to ADCINAO (header J3,
pin #30) on the LaunchPad. Refer to the following diagram for the pins that need to be
connected.

TMS320F2837xD Microcontroller Workshop - Control Peripherals 7-51

Lab 7: Control Peripherals

7.

10.

=
&

™ n =

Open a memory browser to view some of the contents of the ADC results buffer. The
address label for the ADC results buffer is AdcBuf (type &AdcBuf) in the “Data” memory
page. We will be running our code in real-time mode, and we will need to have the
memory window continuously refresh.

Run the code (real-time mode) using the Script function: Scripts > Realtime
Emulation Control - Run_Realtime_with_Reset. Watch the window update.
Verify that the ADC result buffer contains the updated values.

Open and setup a graph to plot a 50-point window of the ADC results buffer.
Click: Tools > Graph > Single Time and set the following values:

Acquisition Buffer Size 50

DSP Data Type 16-bit unsigned integer
Sampling Rate (Hz) 50000

Start Address AdcBuf

Display Data Size 50

Time Display Unit us

Select OK to save the graph options.

The graphical display should show the generated 2 kHz, 25% duty cycle symmetric PWM
waveform. The period of a 2 kHz signal is 500 ps. You can confirm this by measuring the
period of the waveform using the “measurement marker mode” graph feature. Disable
continuous refresh for the graph before taking the measurements. In the graph window
toolbar, left-click on the ruler icon with the red arrow. Note when you hover your mouse
over the icon, it will show “Toggle Measurement Marker Mode”. Move the mouse to
the first measurement position and left-click. Again, left-click on the Toggle
Measurement Marker Mode icon. Move the mouse to the second measurement
position and left-click. The graph will automatically calculate the difference between the
two values taken over a complete waveform period. When done, clear the measurement
points by right-clicking on the graph and select Remove All Measurement Marks.
Then enable continuous refresh for the graph.

Frequency Domain Graphing Feature of Code Composer Studio

11.

Code Composer Studio also has the ability to make frequency domain plots. It does this
by using the PC to perform a Fast Fourier Transform (FFT) of the DSP data. Let's make

TMS320F2837xD Microcontroller Workshop - Control Peripherals

Lab 7: Control Peripherals

a frequency domain plot of the contents in the ADC results buffer (i.e. the PWM
waveform).

Click: Tools > Graph > FFT Magnitude and set the following values:

Acquisition Buffer Size 50

DSP Data Type

16-bit unsigned integer

Sampling Rate (Hz) 50000
Start Address AdcBuf
Data Plot Style Bar
FFT Order 10

Select OK to save the graph options.

12. On the plot window, hold the mouse left-click key and move the marker line to observe
the frequencies of the different magnitude peaks. Do the peaks occur at the expected
frequencies?

13. Fully halt the CPU (real-time mode) by using the Script function: Scripts >
Realtime Emulation Control -> Full _Halt.

Setup eCAP1 to Measure Width of Pulse

The first part of this lab exercise generated a 2 kHz, 25% duty cycle symmetric PWM
waveform which was sampled with the on-chip analog-to-digital converter and displayed
using the graphing feature of Code Composer Studio. Next, eCAP1 will be setup to detect
the rising and falling edges of the waveform. This information will be used to determine the
period and duty cycle of the waveform. The results of this step will be viewed numerically in
a memory window and can be compared to the results obtained using the graphing features
of Code Composer Studio.

14. Add (copy) ECap . c to the project from C:\C28x\Labs\Lab7\source.

15. In Main_7.c, add code to call the InitECap()function. There are no passed
parameters or return values, so the call code is simply:

InitECap();

16. Edit Xbar . c and adjust the input selection register INPUT7SELECT for GP1024 (header
J4, pin #34) to feed the eCAP1 function. Simply set the register to 24.

17. Open and inspect the eCAP1 interrupt service routine (ECAP1_INT_ISR) in the file
Defaultlsr_7.c. Notice that PwmDuty is calculated by CAP2 — CAPL1 (rising to falling
edge) and that PwmPeriod is calculated by CAP3 — CAP1 (rising to rising edge).

18. In ECap.-c, setup eCAPL1 to calculate PWM_duty and PWM_period. The following
registers need to be modified: ECCTL2 (continuous mode, re-arm disable, and sync
disable), ECCTL1 (set prescale to divide-by-1, configure capture event polarity without
reseting the counter), and ECEINT (enable desired eCAP interrupt).

19. Using the “PIE Interrupt Assignment Table” find the location for the eCAP1 interrupt
“ECAPL1_INT” and fill in the following information:

PIE group #: # within group:

TMS320F2837xD Microcontroller Workshop - Control Peripherals 7-53

Lab 7: Control Peripherals

20.

This information will be used in the next step.

Modify the end of ECap.c to do the following:

- Enable the “ECAP1” interrupt in the PIE (Hint: use the PieCtrIRegs structure)
- Enable the appropriate core interrupt in the IER register

Build and Load

21.

Save all changes to the files and build the project by clicking Project - Build
Project, or by clicking on the “Bui 1d” button if you have added it to the tool bar. Select
Yes to “Reload the program automatically”.

Run the Code — Pulse Width Measurement

22.

23.

24,

25.

26.

Using a jumper wire, connect the PWM1A (header J4, pin #40) to ECAP1 (header J4, pin
#34, feed from the Input X-bar using GP1024) on the LaunchPad. Refer to the
following diagram for the pins that need to be connected.

Open a memory browser to view the address label PwmPeriod. (Type &PwmPeriod in
the address box). The address label PwmDuty (address &PwmDuty) should appear in
the same memory browser window. Scroll the window up, if needed.

Set the memory browser properties format to “32-Bit UnSigned Int”. We will be running
our code in real-time mode, and we will need to have the memory browser continuously
refresh.

Run the code (real-time mode) by using the Script function: Scripts - Realtime
Emulation Control - Run_Realtime with_Reset. Notice the values for
PwmDuty and PwmPeriod.

Fully halt the CPU (real-time mode) by using the Script function: Scripts >
Realtime Emulation Control - Full_Halt.

Questions:

How do the captured values for PwmDuty and PwmPeriod relate to the compare register
CMPA and time-base period TBPRD settings for ePWM1A?

What is the value of PwmDuty in memory?
What is the value of PwmPeriod in memory?

How does it compare with the expected value?

TMS320F2837xD Microcontroller Workshop - Control Peripherals

Lab 7: Control Peripherals

Optional Exercise — Modulate the PWM Waveform

If you finish early, you might want to experiment with the code by observing the effects of
changing the ePWM1 CMPA register using real-time emulation. Be sure that the jumper wire is
connecting PWMZ1A (header J4, pin #40) to ADCINAO (header J3, pin #30), and the Single Time
graph is displayed. The graph must be enabled for continuous refresh.

a) Run the code in real-time mode.

b) Open an Expressions window to the EPwm1Regs.CMPA register — in EPwm.c highlight
the “EPwm1Regs” structure and right click, then select Add Watch Expression... and
then OK.

¢) Inthe Expressions window open “EPwm1Regs”, then open “CMPA” and open “bit”.

d) The Expressions window must be enabled for continuous refresh.

e) Under “bit” change the “CMPA” 18750 value (within a range of 2500 and 22500).

f) Notice the effect on the PWM waveform in the graph.

You have just modulated the PWM waveform by manually changing the CMPA value. Next, we
will modulate the PWM automatically by having the ADC ISR change the CMPA value.

a) In Defaultlsr_7.c notice the code in the ADCAL interrupt service routine used to modulate
the PWM1A output between 10% and 90% duty cycle.

b) In Main.c add “PWM_MODULATE" to the Expressions window using the same procedure
above.

c) Then with the code running in real-time mode, change the “PWM_MODULATE" from 0 to
1 and observe the PWM waveform in the graph. Also, in the Expressions window notice
the CMPA value being updated.

(If you do not have time to work on this optional exercise, you may want to try this later).

Terminate Debug Session and Close Project

27. Terminate the active debug session using the Terminate button. This will close the
debugger and return Code Composer Studio to the CCS Edit perspective view.

28. Next, close the project by right-clicking on Lab7 in the Project Explorer window and
select Close Project.

End of Exercise

TMS320F2837xD Microcontroller Workshop - Control Peripherals 7-55

Lab 7: Control Peripherals

7 -56 TMS320F2837xD Microcontroller Workshop - Control Peripherals

Direct Memory Access

Introduction

This module explains the operation of the direct memory access (DMA) controller. The DMA has
six channels with independent PIE interrupts.

Module Objectives

Module Objectives

¢ Understand the operation of the
Direct Memory Access (DMA)
controller

¢ Show how to use the DMA to transfer
data between peripherals and/or
memory without intervention from
the CPU

The DMA module provides a hardware method of transferring data between peripherals and/or
memory without intervention from the CPU, effectively freeing up the CPU for other functions.
Each CPU subsystem has its own DMA and using the DMA is ideal when an application requires
a significant amount of time spent moving large amounts of data from off-chip memory to on-chip
memory, or from a peripheral such as the ADC result register to a memory RAM block, or
between two peripherals. Additionally, the DMA is capable of rearranging the data for optimal
CPU processing such as binning and “ping-pong” buffering.

Specifically, the DMA can read data from the ADC result registers, transfer to or from memory
blocks GO through G15, IPC RAM, EMIF, transfer to or from the McBSP and SPI, and also modify
registers in the ePWM. A DMA transfer is started by a peripheral or software trigger. There are
six independent DMA channels, where each channel can be configured individually and each
DMA channel has its own unique PIE interrupt for CPU servicing. All six DMA channels operate
the same way, except channel 1 can be configured at a higher priority over the other five
channels. Atits most basic level the DMA is a state machine consisting of two nested loops and
tightly coupled address control logic which gives the DMA the capability to rearrange the blocks of
data during the transfer for post processing. When a DMA transfers is completed, the DMA can
generate an interrupt

TMS320F2837xD Microcontroller Workshop - Direct Memory Access 8-1

Direct Memory Access (DMA)

Chapter Topics

DITECT MBMIOTY ACCESS . uitttiiitie e e ettt et e e e e et be e et e e e s e e e be et e e ea e e s e s ab bbbt e e ee e e s e annbbeeeeeaeeeaannbbeeaaaaaeas 8-1
Direct Memory ACCESS (DIMA) ... ittt e e e e et e e e e e e e e sab e aeaaaeeas 8-3

2 F TS (o @] o 1T = L4) o 1SR 8-4
1Y N T T] o] TR 8-6
Channel Priority MOOESc..uviiiiiee i e ccieiee e st e e e e e s s e e e e e e st e e e e e e e s snnrenneeeeeesennnes 8-9
1Y N I o o 10T | g o | PP 8-10
DY AN LT 1] (=] £ TP PTP PP UUUPPPRTTPT 8-11

Lab 8: Servicing the ADC With DIMAeeeiii i a e e e e e e e e s nanaeees 8-15

TMS320F2837xD Microcontroller Workshop - Direct Memory Access

Direct Memory Access (DMA)

Direct Memory Access (DMA)

DMA Triggers, Sources, and Destinations

PWM2

I

ADCA/B/C/D (1-4, EVT)
IPC MSG RAM |« MXEVTA/B MREVTA/B
XINT1-5 TINTO-2

PWM11

CPIE
ADC i DINTCH1:6 : » MCBSP |[«——
— | H
Result 0-15
_ < SPl |e—
| DmA]
1
GS0 RAM p| 6-channels SDFM |[¢&——
°
: D Triggers PWM1 ——
GS15 RAM
—
—
—
—

YYVVYY

g, e
S USBA EPe RXT-3 CAP
“software
L DAC

DMA / CLA Common Peripheral Access

Common peripherals can be accessed by the CPU and either DMA or CLA

CPUx Peripheral Frame 1 >
CPUx.CLA
CPUX.DMA CPUx Peripheral Frame |2 >

CPUXx.SECMSEL

CPUSELX.PERY- |

CLA Access / DMA Access

ePWM/HRPWM, eCAP, eQEP,
CMPSS, DAC, SDFM

PE2 SPI A/BIC, McBSP A/B, uPP
(uPP has no DMA access)

PF1

CpuSysRegs.SECMSEL 15-4 3.2 1-0

| reserved | PF2SEL | PF1SEL |

X0 = connected to CLA *
x1 = connected to DMA

Note: CPUSELX bit associated with each peripheral .
defines if the peripheral is connected to CPU1 or CPU2 * Default (lock bit protected)

TMS320F2837xD Microcontroller Workshop - Direct Memory Access 8-3

Direct Memory Access (DMA)

Basic Operation

DMA Definitions

+ Word
¢ 16 or 32 bits
¢ Word size is configurable per DMA channel

¢ Burst

¢ Consists of multiple words

¢ Smallest amount of data transferred at one time
¢ Burst Size

¢ Number of words per burst

¢ Specified by BURST_SIZE register

¢ 5-bit ‘N-1’ value (maximum of 32 words/burst)

¢ Transfer

¢ Consists of multiple bursts
¢ Transfer Size

¢ Number of bursts per transfer

¢ Specified by TRANSFER_SIZE register
¢ 16-bit ‘N-1’ value - exceeds any practical requirements

Simplified State Machine Operation

The DMA state machine at its most basic
level is two nested loops

’ Start Transfer """""""““““““““““‘“'.

Transfer Size times

DMA can be configured to

End Transfer }--- re-initialize at the end of the ----

transfer (continuous mode)

8-4 TMS320F2837xD Microcontroller Workshop - Direct Memory Access

Direct Memory Access (DMA)

Basic Address

Active pointers

Pointer shadow registers
copied to active pointers at
start of transfer

Signed value added to active
pointer after each word

Signhed value added to active
pointer after each burst

Control Registers

32
| SRC_ADDR |
| DST_ADDR |

SRC_ADDR_SHADOW |
DST_ADDR_SHADOW |

| SRC_BURST STEP |
| DST_BURST_STEP |

| SRC_TRANSFER_STEP|
| DST_TRANSFER_STEP|

3 words/burst
2 bursts/transfer

Simplified State Machine Example

Start Transfer

Wait for event

A

to start/continue
transfer

Read/Write Data

Moved Add Burst Step
“Burst Size” to Address
Words? Pointer

Moved N Add Transfer
“Transfer Size” Step to Address
Bursts? Pointer

Y

A\ 4

End Transfer

TMS320F2837xD Microcontroller Workshop - Direct Memory Access

Direct Memory Access (DMA)

Mode #1:

at start of
transfer

¢ Each DMA channel has its
own PIE interrupt

¢ The mode for each
interrupt can be configured
individually

¢ The CHINTMODE bit in the
MODE register selects the
interrupt mode

Mode #2:

at end of
transfer

Interrupt €---------+-

Interrupt € ==-------

DMA Interrupts

v
Wait for event

to start/continue

transfer

Read/Write Data

Moved
“Burst Size”
Words?

Moved
“Transfer Size”
Bursts?

A

Add Burst Step
to Address
Pointer

Add Transfer
Step to Address
Pointer

A4

End Transfer

DMA Examples

BURST_SIZE* 0x0001
TRANSFER_SIZE* 0x0001

* Size registers are N-1

Source Registers

2 words/burst
2 bursts/transfer

Simple Example

Objective: Move 4 words from memory location 0xF00O to
memory location 0x4000 and interrupt CPU at end of transfer

Start Transfer

Wait for event

to start/continue
transfer

Addr Value

SRC_ADDR

SRC_ADDR_SHADOW
SRC_BURST_STEP
SRC_TRANSFER_STEP

0x0000F000
0x0001
0x0001

Destination Registers

DST_ADDR

DST_ADDR_SHADOW
DST_BURST_STEP
DST_TRANSFER_STEP

0x00004000
0x0001
0x0001

0xF000
0xF001
0xF002
0xF003

Addr
0x4000
0x4001
0x4002
0x4003

Ox1111

0x2222

0x3333

0x4444

Value

Read/Write Data

Moved Add Burst Step
“Burst Size” to Address
ords? Pointer

Moved Add Transfer

“Transfer Size”
Bursts?

Step to Address
Pointer

> [nterrupt to PIE

End Transfer

Note: This example could also have been done using 1 word/burst and 4 bursts/transfer, or 4 words/burst
and 1 burst/transfer. This would affect Round-Robin progression, but not interrupts.

TMS320F2837xD Microcontroller Workshop - Direct Memory Access

Direct Memory Access (DMA)

Data Binning Example
Objective: Bin 3 samples of 5 ADC channels, then interrupt the CPU
GS3 RAM
0xF000
ADCA Results CHO 0xF001
0xF002
3rd Conversion Sequence 0xF003
CH1 0XxF004
0x0B00 | CHO 0xF005
0x0B01 | CH1 OxF006
0x0B02 | CH2 CH2 0xF007
0x0B03 | CH3 0xF008
0x0B04 | CH4 0xF009
CH3 OXFOO0A
OxFOOB
OXFOOC
CH4 0XxFO0D
OXFOOE

Data Binning Example Register Setup
Objective: Bin 3 samples of 5 ADC channels, then interrupt the CPU

ADC Registers:

SOCO — SOC4 configured to CHO — CH4, respectively,
ADCA configured to re-trigger (continuous conversion)

. GS3 RAM
DMA Registers: -

BURST_SIZE* 5 words/burst 0xF000

TRANSFER_SIZE* 3 bursts/transfer 8;’2885
SRC_ADDR_SHADOW [0x00000B00

SRC_BURST_STEP [0x0001 ADCA Results 8?:288‘31

SRC_TRANSFER_STEP [__OxFFFC | (-4) 0x0B00 [CHO OXE005

DST_ADDR_SHADOW [0x0000F000 | starting address** 0x0B0O1 |CH1 0xF006

DST BURST _STEP [0x0003 | 0x0B02 |CH2 0xF007

DST_TRANSFER_STEP OXFFF5 (-12) 0x0B03 |CH3 0xF008

0x0B04 [CH4 0OxF009

OxFOOA

0OxFO0B

0xF00C

0xFOOD

* Size registers are N-1 0xFOOE
** Typically use a relocatable symbol in your code, not a hard value

TMS320F2837xD Microcontroller Workshop - Direct Memory Access 8-7

Direct Memory Access (DMA)

Ping-Pong Buffer Example

Objective: Buffer ADC ch. 0 ping-pong style, 50 samples per buffer

ADCA Result Regqister GSO0 RAM
0x0B00. ADCRESULTO 0xC140 ™
SOCO configured to ADCINAO
with 1 conversion per trigger 50 word
>~ ‘Ping’ buffer
DMA
= < ’ Interrupt
50 word
>~ ‘Pong’ buffer
DMA
Interrupt

Ping-Pong Example Register Setup

Objective: Buffer ADC ch. 0 ping-pong style, 50 samples per buffer

ADC Registers:
|Convert ADCA Channel ADCINAO — 1 conversion per trigger (i.e. ePWM2SOCA) |
DMA Registers:

BURST_SIZE* 0x0000 1 word/burst
TRANSFER_SIZE* 0x0031 | 50 bursts/transfer

SRC_ADDR_SHADOW | 0x00000B0Q0 | starting address
SRC_BURST_STEP |_don'tcare | since BURST_SIZE =0

SRC_TRANSFER_STEP [__0x0000 o Addess
Words? Pointer
DST_ADDR_SHADOW [0x0000C140] starting address**
v~
e
Y

DST_BURST_STEP | _don'tcare | since BURST_SIZE =0

DST_TRANSFER_STEP 0x0001

Other: [DMA configured to re-init after transfer (CONTINUOUS = 1) |

* Size registers are N-1
** DST_ADDR_SHADOW must be changed between ping and pong buffer address in
the DMA ISR. Typically use a relocatable symbol in your code, not a hard value.

8-8 TMS320F2837xD Microcontroller Workshop - Direct Memory Access

Direct Memory Access (DMA)

Channel

Priority Modes

-

-

-

¢ Channel 1 High Priority Mode:

Channel Priority Modes

¢ Round Robin Mode:

All channels have equal priority

After each enabled channel has
transferred a burst of words, the
next enabled channel is serviced
in round robin fashion

Same as Round Robin except CH1
can interrupt DMA state machine

If CH1 trigger occurs, the current
word (not the complete burst) on
any other channel is completed
and execution is halted

CH1 is serviced for complete burst

When completed, execution
returns to previous active channel

This mode is intended primarily
for the ADC, but can be used by
any DMA event configured to
trigger CH1

DMA
event?

Priority Modes and the State Machine

Start Transfer

Wait for event

Point where other
pending channels
are serviced]

ya

/' N

to start/continue
transfer

Read/Write Data

Point where
CH1 can
interrupt other — | Moved
channels in “Burst Size”
CHZ1 Priority Mode Words?

Moved
“Transfer Size”
Bursts?

Y

Add Burst Step
to Address

Pointer

Add Transfer
Step to Address

Pointer

v

End Transfer

TMS320F2837xD Microcontroller Workshop - Direct Memory Access

Direct Memory Access (DMA)

DMA Throughput

DMA Throughput

¢ 4 cycles/word (5 for McBSP reads)

¢ 1 cycle delay to start each burst

¢ 1 cycle delay returning from CH1
high priority interrupt

¢ 32-bit transfer doubles throughput
(except McBSP, which supports 16-bit transfers only)

Example: 128 16-bit words from ADC to RAM
8 bursts * [(4 cycles/word * 16 words/burst) + 1] = 520 cycles

Example: 64 32-bit words from ADC to RAM
8 bursts * [(4 cycles/word * 8 words/burst) + 1] = 264 cycles

DMA vs. CPU Access Arbitration

¢ DMA has priority over CPU

¢ If a multi-cycle CPU access is already in
progress, DMA stalls until current CPU
access finishes

¢ The DMA will interrupt back-to-back CPU
accesses

¢ Can the CPU be locked out?

¢ Generally No!

¢DMA is multi-cycle transfer; CPU will sneak
in an access when the DMA is accessing the
other end of the transfer (e.g. while DMA
accesses destination location, the CPU can
access the source location)

8-10 TMS320F2837xD Microcontroller Workshop - Direct Memory Access

Direct Memory Access (DMA)

DMA Registers

DMA Registers

DmaRegs.name (lab file: Dma.c)

Register

Description

DMACTRL
PRIORITYCTRL1

DMA Control Register
Priority Control Register 1

MODE
CONTROL
BURST_SIZE
BURST_COUNT
SRC_BURST_STEP
DST_BURST_STEP
TRANSFER_SIZE
TRANSFER_COUNT
SRC_TRANSFER_STEP
DST_TRANSFER_STEP
SRC_ADDR_SHADOW
SRC_ADDR
DST_ADDR_SHADOW
DST_ADDR
DMACHSRCSELX (x =1 0r2)

DMA CHx Registers
A

Mode Register

Control Register

Burst Size Register

Burst Count Register

Source Burst Step Size Register

Destination Burst Step Size Register
Transfer Size Register

Transfer Count Register

Source Transfer Step Size Register
Destination Transfer Step Size Register
Shadow Source Address Pointer Register
Active Source Address Pointer Register
Shadow Destination Address Pointer Register
Active Destination Address Pointer Register
Trigger Source Selection Register

Refer to the Technical Reference Manual for a complete listing of registers

15-2

DMA Control Register

DmaRegs.DMACTRL

Hard Reset

0 = writes ignored (always reads back 0)
1 =reset DMA module

\

1 0

reserved

PRIORITYRESET | HARDRESET

Priority Reset

0 = writes ignored (always reads back 0)

1 =reset state-machine after any pending
burst transfer complete

TMS320F2837xD Microcontroller Workshop - Direct Memory Access

Direct Memory Access (DMA)

Priority Control Register 1

DmaRegs.PRIORITYCTRL1

15-1 0
reserved CH1PRIORITY

DMA CH1 Priority

0 = same priority as other channels
1 = highest priority channel

Mode Register

DmaRegs.CHx.MODE

Channel Interrupt Data Size Mode One Shot Mode
0 =disable 0 = 16-bit transfer 0 = one burst transfer per trigger
1 =enable 1 = 32-bit transfer 1 = subsequent burst transfers
/ occur without additional trigger
~
15 14 13-12 11 10
CHINTE DATASIZE reserved CONTINUOUS ONESHOT

Continuous Mode

Peripheral Overflow 0= DMA

. = stops

Interr_upt Trigger Inter(upt Enable 1 = DMA re-initializes
0 =disable 0 =disable
1 =enable 1 =enable

—— \

9 8 7 6-5 4-0
CHINTMODE | PERINTE | OVRINTE reserved PERINTSEL
Channel Interrupt Generation Peripheral Interrupt Source Select
0 = at beginning of transfer Set bits to the channel number
1 = at end of transfer See Trigger Sources on next slide

8-12 TMS320F2837xD Microcontroller Workshop - Direct Memory Access

Direct Memory Access (DMA)

¢ Selects the Trigger Source for each DMA channel

DMA Trigger Source Selection Registers

¢ Each channel can be triggered by up to 256 interrupt sources
+ Select ‘no peripheral’ if trigger is generated by software
¢ Default value = 0x00
¢ See “Peripheral Interrupt Trigger Sources” table on next slide

DmacClaSrcSelRegs.DMACHSRCSEL1

31-24 23-16 15-8 7-0

CH4 CH3 CH2 CH1
DmacClaSrcSelRegs.DMACHSRCSEL2

31-24 23-16 15-8 7-0

reserved reserved CH6 CH5

Note: DMACHSRCSELLOCK register can be used to lock above registers (lock bit for each register)

Peripheral Interrupt Trigger Sources

0 | No Peripheral 13 ADCCINT3 36 | EPWM1SOCA 49 | EPWM7SOCB 70 TINT2 109 SPITXDMAA
1 ADCAINTL 14 ADCCINT4 37 | EPWM1SOCB 50 | EPWM8SOCA 71 MXEVTA 110 SPIRXDMAA
2 ADCAINT2 15 ADCCEVT 38 | EPWM2SOCA 51 | EPWM8SOCB 72 MREVTA 11 SPITXDMAB
3 ADCAINT3 16 ADCDINT1 39 | EPWM2SOCB 52 | EPWM9SOCA 73 MXEVTB 112 SPIRXDMAB
4 ADCAINT4 17 ADCDINT2 40 | EPWM3SOCA 53 | EPWM9SOCB 74 MREVTB 13 SPITXDMAC
5 ADCAEVT 18 ADCDINT3 41 | EPWM3SOCB 54 | EPWM10SOCA 95 SD1FLT1 114 SPIRXDMAC
6 ADCBINTL 19 ADCDINT4 42 | EPWM4SOCA 55 | EPWM10SOCB 96 SD1FLT2 131 | USBA_EPx_RX1
7 ADCBINT2 20 ADCDEVT 43 | EPWM4SOCB 56 | EPWMI11SOCA 97 SD1FLT3 132 | USBA_EPx_TX1
8 ADCBINT3 29 XINTL 44 | EPWM5SOCA 57 | EPWM11SOCB 98 SD1FLT4 133 | USBA_EPx_RX2
9 ADCBINT4 30 XINT2 45 | EPWM5SOCB 58 | EPWM12SOCA 99 SD2FLT1 134 | USBA_EPx_TX2
10 ADCBEVT 31 XINT3 46 | EPWMGSOCA 59 | EPWM12SOCB | 100 SD2FLT2 135 | USBA_EPx_RX3
1 ADCCINT1 32 XINT4 47 | EPWMGSOCB 68 TINTO 101 SD2FLT3 136 | USBA_EPx_TX3
12 ADCCINT2 33 XINTS 48 | EPWM7SOCA 69 TINTL 102 SD2FLT4

Note: values not shown in table are reserved

// Set DMA Channel 2 to trigger on EPWM1SOCA

DmaClaSrcSelRegs.DMACHSRCSEL1.bit.CH2 = 36;

TMS320F2837xD Microcontroller Workshop - Direct Memory Access

Direct Memory Access (DMA)

Control Register

DmaRegs.CHx.CONTROL

Overflow Flag * Burst Status *
0 =no overflow 0 =no activity

* =read-only

1 = overflow 1 =servicing burst
N 7
15 14 13 12 11 10-9 8
reserved| OVRFLG |RUNSTS | BURSTSTS |TRANSFERRST reserved PERINTFLG
Run Status * Transfer Status * Peripheral Interrupt Trigger Flag *

0 = channel disabled 0 =no activity 0 = no interrupt event trigger
1 =channel enabled 1 =transferring 1 =interrupt event trigger

Error Clear Peripheral Interrupt Force Run
0 = no effect 0 = no effect 0 = no effect
1 =clear SYNCERR 1 =sets event and PERINTFLG 1=run
7 6-5 4 3 2 1 0
ERRCLR reserved PERINTCLR | PERINTFRC | SOFTRESET | HALT RUN
Peripheral Interrupt Clear Soft Reset Halt
0 = no effect 0 =no effect 0 = no effect
1 =clears event and PERINTFLG 1 = default state 1 =halt

TMS320F2837xD Microcontroller Workshop - Direct Memory Access

Lab 8: Servicing the ADC with DMA

Lab 8: Servicing the ADC with DMA

» Objective

The objective of this lab exercise is to become familiar with operation of the DMA. In the previous
lab exercise, the CPU was used to store the ADC conversion result in the memory buffer during
the ADC ISR. In this lab exercise the DMA will be configured to transfer the results directly from
the ADC result registers to the memory buffer. ADC channel A0 will be buffered ping-pong style
with 50 samples per buffer. As an operational test, the 2 kHz, 25% duty cycle symmetric PWM
waveform (ePWM1A) will be displayed using the graphing feature of Code Composer Studio.

Lab 8: Servicing the ADC with DMA

ePWM1 ADC DMA
TB Counter ADCINAO | RESULTO
Compare
Action Qualifier
jumper i
wire g
; data
memory

ePWM2 triggering ADC on period
match using SOCA trigger every

20 ps (50 kHz)

CPU writes dat
SR to Adc‘:l\lgnufefiurziinzgi
DMA ISR
. . data
Objective: memory
Configure the DMA to buffer Displa
ADCA Channel A0 ping-pong using G&s

style with 50 samples per buffer

» Procedure

Open the Project

1. A project named Lab8 has been created for this lab exercise. Open the project by
clicking on Project - Import CCS Projects. The “Import CCS Eclipse Projects”
window will open then click Browse... next to the “Select search-directory” box. Navigate
to: C:\C28x\Labs\Lab8\cpu01 and click OK. Then click Finish to import the project.
All build options have been configured the same as the previous lab exercise. The files
used in this lab exercise are:

TMS320F2837xD Microcontroller Workshop - Direct Memory Access 8-15

Lab 8: Servicing the ADC with DMA

Adc.c

CodeStartBranch.asm Gpio.c
Dac.c Lab 8.cmd
Defaultlsr_8.c Main_8.c
DelayUs.asm PieCtrl.c
Dma.c PieVect.c
ECap.c SineTable.c
EPwm.c SysCtrl.c
F2837xD_Adc.c Watchdog.-c
F2837xD_GlobalVariableDefs.c Xbar.c

F2837xD_Headers_nonBIOS_cpul.cmd

Inspect Lab_8.cmd

2. Openand inspect Lab_8.cmd. Notice that a section called “dmaMemBufs” is being
linked to RAMGS4. This section links the destination buffer for the DMA transfer to a DMA
accessible memory space. Close the inspected file.

Setup DMA Initialization

The DMA controller needs to be configured to buffer ADC channel AO ping-pong style with 50
samples per buffer. One conversion will be performed per trigger with the ADC operating in
single sample mode.

3. Edit Dma.c to implement the DMA operation as described in the objective for this lab
exercise. Configure the DMA Channel 1 Mode Register (MODE) so that the peripheral
interrupt source select is set to channel 1. Enable the peripheral interrupt trigger and set
the channel for interrupt generation at the start of transfer. Configure for 16-bit data
transfers with one burst per trigger and auto re-initialization at the end of the transfer.
Enable the channel interrupt. Configure the DMA Trigger Selection Register
(DMACHSRCSELX) so that the ADCAINT1 is the peripheral interrupt trigger source. In
the DMA Channel 1 Control Register (CONTROL) clear the error and peripheral interrupt
bits. Enable the channel to run.

4. Open Main_8.c and add a line of code in main() to call the InitDma() function.
There are no passed parameters or return values. You just type

Initbma();

at the desired spotin main().

Setup PIE Interrupt for DMA

Recall that ePWM2 is triggering the ADC at a 50 kHz rate. In the previous lab exercise, the ADC
generated an interrupt to the CPU, and the CPU read the ADC result register in the ADC ISR.
For this lab exercise, the ADC is instead triggering the DMA, and the DMA will generate an
interrupt to the CPU. The CPU will read the ADC result register in the DMA ISR.

5. Edit Adc.c to comment out the code used to enable the ADCA1 interrupt in PIE group 1.
This is no longer being used. The DMA interrupt will be used instead.

6. Using the “PIE Interrupt Assignment Table” find the location for the DMA Channel 1
interrupt “DMA_CH1" and fill in the following information:

PIE group #: # within group:

This information will be used in the next step.

TMS320F2837xD Microcontroller Workshop - Direct Memory Access

Lab 8: Servicing the ADC with DMA

7. Modify the end of Dma.c to do the following:

- Enable the “DMA_CH1" interrupt in the PIE (Hint: use the PieCtrIRegs structure)
- Enable the appropriate core interrupt in the IER register

8. Open and inspect Defaultlsr_8.c. Notice that this file contains the DMA interrupt
service routine. Save all modified files.

Build and Load

9. Click the “Bui 1d” button and watch the tools run in the Console window. Check for
errors in the Problems window.

10. Click the “Debug” button (green bug). A Launching Debug Session window will open.
Select only CPUL1 to load the program on (i.e. uncheck CPU2), and then click OK. Then
the CCS Debug perspective view should open, the program will load automatically, and
you should now be at the start of main(). If the device has been power cycled since the
last lab exercise, be sure to configure the boot mode to EMU_BOOT_SARAM using the
Scripts menu.

Run the Code — Test the DMA Operation

Note: For the next step, check to be sure that the jumper wire connecting PWM1A (header J4,
pin #40) to ADCINAO (header J3, pin #30) is in place on the LaunchPad.

11. Run the code in real-time mode using the Script function: Scripts > Realtime
Emulation Control - Run_Realtime_with_Reset. Open and watch the
memory browser update. Verify that the ADC result buffer contains updated values.

12. Open and setup a graph to plot a 50-point window of the ADC results buffer.
Click: Tools > Graph - Single Time and set the following values:

Acquisition Buffer Size 50

DSP Data Type 16-bit unsigned integer
Sampling Rate (Hz) 50000

Start Address AdcBuf

Display Data Size 50

Time Display Unit us

Select OK to save the graph options.

13. The graphical display should show the generated 2 kHz, 25% duty cycle symmetric PWM
waveform. Notice that the results match the previous lab exercise.

14. Fully halt the CPU (real-time mode) by using the Script function: Scripts -
Realtime Emulation Control - Full_Halt.

TMS320F2837xD Microcontroller Workshop - Direct Memory Access 8-17

Lab 8: Servicing the ADC with DMA

Terminate Debug Session and Close Project

15. Terminate the active debug session using the Terminate button. This will close the
debugger and return Code Composer Studio to the CCS Edit perspective view.

16. Next, close the project by right-clicking on Lab8 in the Project Explorer window and
select Close Project.

End of Exercise

TMS320F2837xD Microcontroller Workshop - Direct Memory Access

Control Law Accelerator

Introduction

This module explains the operation of the control law accelerator (CLA). The CLA is an
independent, fully programmable, 32-bit floating-point math processor. It executes algorithms
independently and in parallel with the CPU. This extends the capabilities of the C28x CPU by
adding parallel processing. The CLA has direct access to the ADC result registers. Additionally,
the CLA has access to all ePWM, high-resolution PWM, eCAP, eQEP, CMPSS, DAC, SDFM,
SPI, McBSP, uPP and GPIO data registers. This allows the CLA to read ADC samples “just-in-
time” and significantly reduces the ADC sample to output delay enabling faster system response
and higher frequency operation. The CLA responds to peripheral interrupts independently of the
CPU. Utilizing the CLA for time-critical tasks frees up the CPU to perform other system,
diagnostics, and communication functions concurrently.

Module Objectives

Module Objectives

¢ Explain the purpose and operation of the
Control Law Accelerator (CLA)

¢ Describe the CLA initialization procedure

¢ Review the CLA registers, instruction set,
and programming flow

TMS320F2837xD Microcontroller Workshop - Control Law Accelerator 9-1

Control Law Accelerator (CLA)

Chapter Topics

CONEIOl LAW ACCEIEIALONttt e e e e sb e e e e e e e e e snabbeeeaaaeeas 9-1
Control Law ACCEIErator (CLA) ...ooii ettt e e e e e e e e anbeee s 9-3
(O I 2] o Tod g D= Vo - o o RSP 9-4
CLA Memory and REQISIEr ACCESSuuuriiiieeeiiiitieieet e e e ss sttt er e e e e s sstnreeeeeeessssnrenneeeeessennes 9-4
O I T PSP PURTPPRRPRI 9-5
CLA Control and EXECULION REQISTEISuvviieeiiiiiiiiieie e sesiiie e e e e e s sstereeee e e e s s snnreareeeeeeeeannes 9-6
CLA REOISIEIS ..ttt ettt e e oottt e e e e e e e bbbttt e e e e e e e nnbbbeeeeaaeeesnnbeneaaaaeeaannne 9-7
CLA INIHIANZALION ..ttt ettt e e e e e e ab bt e e e e e e e e snbbrreeeaaeeeannes 9-10
CLA Task ProgramimMing............eeoiao oottt e et e e e e absbe e e e e e e e s snnbsseeeaaeesaannes 9-11
CLA C Language Implementation and ReStHCHONSccuvviiiiiiiiiiiiiiiecee e 9-11
CLA Assembly Language Implementation...............oeiiioiiiiiiieiee e 9-14
CLA COUE DEDUQGGING ettt ettt ettt e e e e e aab bt e e e e e e e snnbebeeeaaeeeaannes 9-17
Lab 9: CLA Floating-Point FIR FIlLErccoiiiiiiiiiiie et 9-18

TMS320F2837xD Microcontroller Workshop - Control Law Accelerator

Control Law Accelerator (CLA)

Control Law Accelerator (CLA)

Control Law Accelerator (CLA)

—1 ADC C28x CPU —

JAVAVAVA=: S PWME 1T
— ——
—ICMP CLA —

¢ The CLA is a 32-bit floating-point processor that responds
to peripheral triggers and executes code independent of
the main CPU

¢ Designed for fast trigger response and oriented toward
math computations

¢ Direct access to ePWM, HRPWM, eCAP, eQEP, ADC result,
CMPSS, DAC, SDFM, SPI, McBSP, GPIO and uPP registers

¢ Frees up the CPU for other tasks (communications and
diagnostics)

The CLA is an independent 32-bit floating-point math hardware accelerator which executes real-
time control algorithms in parallel with the main C28x CPU, effectively doubling the computational
performance. Each CPU subsystem has its own CLA that responds directly to peripheral triggers,
which can free up the C28x CPU for other tasks, such as communications and diagnostics. With
direct access to the various control and communication peripherals, the CLA minimizes latency,
enables a fast trigger response, and avoids CPU overhead. Also, with direct access to the ADC
results registers, the CLA is able to read the result on the same cycle that the ADC sample
conversion is completed, providing “just-in-time” reading, which reduces the sample to output
delay.

TMS320F2837xD Microcontroller Workshop - Control Law Accelerator 9-3

Control Law Accelerator (CLA)

CLA Block Diagram

CLA Block Diagram
Task Triggers
(Peripheral Interrupts)
Task1 Trigger
Task?2 Trigger
Task3 Trigger
Task4 Trigger MPERINTL.8 CLA CLA_INT1-8\| p) |INTLL C28x
Task5 Trigger Control & Execution LVF, LUF INT12 | CPU
: Registers
Task6 Trigger
Task7 Trigger
Task8 Trigger
CLA Program Bus
CLA Data Bus
Program Data MSG RAMs Registers Registers Registers
RAM RAM CPU to CLA ePWM | eCAP SPIA/B/IC | |ADC Results
CLAto CPU | | HRPWM | eQEP McBSP A/B GPIO Data
CMPSS | DAC uPP
SDFM

CLA Memory and Register Access

CLA Program Memory

+ Contains CLA program code
+ Mapped to the CPU at reset
+ Initialized by the CPU

e

LSO - LS5 RAM LSO - LS5 RAM

Message RAMs

+ Used to pass data between
the CPU and CLA

+ Always mapped to both
the CPU and CLA

PF1

PF2

CLA Memory and Register Access

Program Data MSG RAMs Registers Registers Registers
RAM RAM CPU to CLA ePWM | eCAP SPIA/B/C | |ADC Results
CLAto CPU | | HRPWM | eQEP McBSP A/B GPIO Data
(2Kw each) (2Kweach) “(128w128w) | CMPSS | DAC uPP
SDFM
\ J

CLA Data Memory

+ Contains variables and coefficients
used by the CLA program code

+ Mapped to the CPU at reset

+ Initialized by CPU
Note: CPU1.CLAL1 has access to EMIF2 for data only

y

Peripheral Register Access

« Provides direct access to peripherals

+ Either the CLA or DMA can have
access to a PF, but not both

+ CPUxXx.SECMSEL register selects CLA
or DMA per PF (default is CLA)

The CLA has access to the LSx RAM blocks and each memory block can be configured to be
either dedicated to the CPU or shared between the CPU and CLA. After reset the memory block

TMS320F2837xD Microcontroller Workshop - Control Law Accelerator

Control Law Accelerator (CLA)

is mapped to the CPU, where it can be initialized by the CPU before being shared with the CLA.
Once it is shared between the CPU and CLA it then can be configured to be either program
memory or data memory. When configured as program memory it contains the CLA program
code, and when configured as data memory it contains the variable and coefficients that are used
by the CLA program code. Additionally, dedicated message RAMs are used to pass data
between the CPU and CLA, and CLA and CPU.

CLA Tasks

CLA Tasks

Task Triggers
(Peripheral Interrupts

Taskl Trigger
Task?2 Trigger
Task3 Trigger

Task4 Trigger C LA
MPERINT1-8

Task5 Trigger Control & Execution
Registers

INT11 | C28%
INT12 | CPU

CLA_INT1-8

LVF, LUF e

Task6 Trigger
Task7 Trigger
Task8 Trigger

fidiid

¢ A Task is similar to an interrupt service routine
¢ CLA supports 8 Tasks (Task1-8)

¢ Atask is started by a peripheral interrupt trigger
¢ Triggers are enabled in the CLAITASKSRCSELX register

¢ When atrigger occurs the CLA begins execution at
the associated task vector entry (MVECT1-8)

¢ Once atask begins it runs to completion (no nesting)

Programming the CLA consists of initialization code, which is performed by the CPU, and tasks.
A task is similar to an interrupt service routine, and once started it runs to completion. Tasks can
be written in C or assembly code, where typically the user will use assembly code for high
performance time-critical tasks, and C for non-critical tasks. Each task is capable of being
triggered by a variety of peripherals without CPU intervention, which makes the CLA very efficient
since it does not use interrupts for hardware synchronization, nor must the CLA do any context
switching. Unlike the traditional interrupt-based scheme, the CLA approach becomes
deterministic. The CLA supports eight independent tasks and each is mapped back to an event
trigger. Since the CLA is a software programmable accelerator, it is very flexible and can be
modified for different applications.

TMS320F2837xD Microcontroller Workshop - Control Law Accelerator 9-5

Control Law Accelerator (CLA)

Software Triggering a Task

¢ Tasks can also be started by a software trigger
using the CPU

¢ Method #1: Write to Interrupt Force Register (MIFRC) register

15-8 7 6 5 4 3 2 1 0
reserved INT8 | INT7 [INT6 | INTS | INT4 [INT3 |INT2 | INT1

asm("" EALLOW™); //enable protected register access

ClalRegs-MIFRC.bit.INT4 = 1; //start task 4

asm(" EDIS™); //disable protected register access

¢ Method #2: Use IACK instruction

asm(** IACK #0x0008"); //set bit 3 in MIFRC to start task 4

More efficient — does not require EALLOW
Note: Use of IACK requires ClalRegs.MCTL.bit.IACKE =1

CLA Control and Execution Registers

CLA Control and Execution Registers

CLAITASKSRCSELX MIFR MIER

s e N 1] \
Task — = CLA_INT1-8
o o . CLA LVF, LUF bIE INT11 | C28x
Source (3 ° .
. . . Core INT12 | CPU
Triggers [™\l o] NG
= MRO
: MR1
MIFRC MARD
MR2
MAR1
MPC +—{MVECT1-8| 4 [WR3
Program l Data
Memory CLA Program Bus CLA Data Bus Memory

CLAL1TASKSRCSELx — Task Interrupt Source Select (Task 1-8)

MVECT1-8 — Task Interrupt Vector (MVECT1/2/3/4/5/6/7/8)

LSXxCLAPGM — Memory Map Configuration (LSO — LS5 RAM)

MPC - 16-bit Program Counter (initialized by appropriate MVECTX register)
MRO-3 — CLA Floating-Point Result Registers (32 bit)

MARO-1 — CLA Auxiliary Registers (16 bit)

L IR IR R R R 4

9-6 TMS320F2837xD Microcontroller Workshop - Control Law Accelerator

Control Law Accelerator (CLA)

CLA Registers

CLA Regqisters

Register Description

MCTL Control Register

LSXMSEL Memory Selection CPU/CLA Register
LSxCLAPGM CLA Program/Data Memory Register
CLA1TASKSRCSELX| Task Source Select Register (x = 1-2)
MIFR Interrupt Flag Register

MIER Interrupt Enable Register

MIFRC Interrupt Force Register

MICLR Interrupt Flag Clear Register

MIOVF Interrupt Overflow Flag Register
MICLROVF Interrupt Overflow Flag Clear Register
MIRUN Interrupt Run Status Register
MVECTX Task x Interrupt Vector (x = 1-8)

MPC CLA 16-bit Program Counter

MARX CLA Auxiliary Register x (x = 0-1)
MRXx CLA Floating-Point 32-bit Result Register (x = 0-3)
MSTF CLA Floating-Point Status Register

CLA Control Register

ClalRegs.MCTL

IACK Enable g Reset
0 = CPU IACK instruction ignored 1 = CLA reset
1 =CPU IACK instruction triggers a task (registers set
\ to defa{tstate)
15-3 2 1 0
reserved IACKE [SOFTRESET|HARDRESET

Soft Reset

0 =no effect
1=CLAreset
(stop current task)

TMS320F2837xD Microcontroller Workshop - Control Law Accelerator 9-7

Control Law Accelerator (CLA)

CLA Memory Configuration Registers

MemCfgRegs.LSxMSEL
31-12 11-10 9-8 7-6 5-4 3-2 1-0

reserved MSEL_LS5[MSEL_LS4 | MSEL_LS3 | MSEL_LS2 [MSEL_LS1 [MSEL_LSO

\ _
hd

Master Select for LS RAM

00 = memory is dedicated to CPU

01 = memory is shared between CPU and CLA
1x =reserved

MemCfgRegs.LSxCLAPGM
31-6 5 4 3 2 1 0

reserved |CLAPGM_LS5|CLAPGM_LS4|CLAPGM_LS3|CLAPGM_LS2|CLAPGM_LS1|CLAPGM_LSO

h'd
Selects LS RAM as program or data CLA memory

0 = CLA data memory
1 =CLA program memory

Note: register lock protected

CLA Task Source Selection Registers

Selects the Trigger Source for each Task
¢ Each task can be triggered by up to 256 interrupt sources
Select ‘Software’ if task is unused or software triggered
¢ Default value = Software = 0x00
¢ See “CLA Interrupt Trigger Sources” table on next slide

DmacClaSrcSelRegs.CLA1TASKSRCSEL1
31-24 23-16 15-8 7-0
TASK4 TASK3 TASK2 TASK1

DmacClaSrcSelRegs.CLA1TASKSRCSEL?2
31-24 23-16 15-8 7-0
TASK8 TASK7 TASK6 TASKS5

Note: CLAITASKSRCSELLOCK register can be used to lock above registers (lock bit for each register)

9-8 TMS320F2837xD Microcontroller Workshop - Control Law Accelerator

Control Law Accelerator (CLA)

CLA Task Interrupt Trigger Sources

Software 13 | ADCCINT3 36 | EPWMIINT 69 TINT1 84 | EQEP2INT

o

1| ADCAINT1 14 | ADCCINT4 37 | EPWM2INT 70 TINT2 85 | EQEP3INT

2| ADCAINT2 15 | ADCCEVT 38 [EPWMSINT 71 MXEVTA 87 | HRCAPLINT

3| ADCAINT3 16 | ADCDINT1 39 [EPWMA4INT 72 MREVTA 88 | HRCAP2INT

4| ADCAINT4 17 | ADCDINT2 40 | EPWMSINT 73 MXEVTB 95 SD1INT

5| ADCAEVT 18 | ADCDINT3 41| EPWMGINT T4 MREVTB 96 SD2INT

6 | ADCBINT1 19 [ADCDINT4 42 | EPWMTINT 75| ECAPIINT | 107 UPP1INT

7| ADCBINT2 20 | ADCDEVT 43 | EPWMSINT 76 | ECAP2INT | 109 [SPITXINTA

8 | ADCBINT3 29 XINT1 44 | EPWMOINT 77 | ECAP3INT 110 | SPIRXINTA
9| ADCBINT4 30 XINT2 45 | EPWMI0INT 78 | ECAPAINT 111 | SPITXINTB
10 | ADCBEVT 31 XINT3 46 | EPWMILINT 79 | ECAPSINT 112 | SPIRXINTB
11 | ADCCINT1 32 XINT4 47 | EPWMI12INT 80 | ECAPGINT 113 | SPITXINTC
12 | ADCCINT2 33 XINTS 68 TINTO 83 | EQEPIINT 114 | SPIRXINTC

Note: values not shown in table are reserved

// Set EPWM1INT to trigger CLA Task5
DmaClaSrcSelRegs .CLALITASKSRCSEL2.bit.TASK5 = 36;

CLA Interrupt Enable Register

ClalRegs.MIER

15-8 7 6 5 4 3 2 1 0
reserved INT8 | INT7 [INT6 | INTS | INT4 | INT3 |INT2 | INT1

N

0 =task interrupt disable (default)
1 =task interrupt enable

ClalRegs-MIER.bit.INT2 = 1; //enable Task 2 interrupt
ClalRegs-MIER.all = 0x0028; //enable Task 6 and 4 interrupts

TMS320F2837xD Microcontroller Workshop - Control Law Accelerator 9-9

Control Law Accelerator (CLA)

CLA Initialization

CLA Initialization

Performed by the CPU during software initialization

=

Copy CLA task code from flash to CLA program RAM
Initialize CLA data RAMs, as needed

* Populate with data coefficients, constants, etc.

3. Configure the CLA registers

* Enable the CLA clock (PCLKCRS3 register)

* Populate the CLA task interrupt vectors (MVECT1-8 registers)

. Select the desired task interrupt sources (CLA1TASKSRCSELX register)
.

If desired, set ClalRegs.MCTL.bit.IACKE = 1 to enable IACK instruction
to start tasks using software (avoids EALLOW)

. Map CLA program RAM and data RAMs to CLA space

Configure desired CLA task completion interrupts in the PIE
Enable CLA task triggers in the MIER register

Initialize the desired peripherals to trigger the CLA tasks

Data can passed between the CLA and CPU via message RAMs or allocated CLA Data RAM

Enabling CLA Supportin CCS

Set the “Specify CLA support” project option to ‘clal’ -

¢ When creating a new CCS project, choosing a device
variant that has the CLA will automatically select this
option, so normally no user action is required

Processor Options ==
[#-Resource
- General
-Buid Configuration: [Debug [Active] 7| Manage configurations...
) C2000 Compiler
. ~Processor Options
Processor version (—slicon_version,) [2s =l
H erformance Advisor
| @ Advanced Options [¥ Option deprecated, set by default (arge_memory_model, -ml)
[=)- C2000 Linker ¥ Unified memary (—unified_memary, -mt)
| Eesc Optons Specify CLA support (—la_support) 2
i Specify floating paint support (—flaat_support) [fou32 =l
..C2000 Hex Uity [Disabled]
-Debug Specify TMU support (—tmu_support) IlmuD |
Specify VCU support (~vcu_support) [veu2 =l

9-10 TMS320F2837xD Microcontroller Workshop - Control Law Accelerator

Control Law Accelerator (CLA)

CLA Task Programming

CLA Task Programming

¢ Can be written in C or assembly code

¢ Assembly code will give best performance
for time-critical tasks

¢ Writing in assembly may not be so bad!
¢ CLA programs in floating point

¢ Often not that much code in a task

¢ Commonly, the user will use assembly for
critical tasks, and C for non-critical tasks

CLA C Language Implementation and Restrictions

CLA C Language Implementation

¢ Supports C only (no C++ or GCC extension support)
¢ Different data type sizes than C28x CPU and FPU

TYPE CPU and FPU CLA
char 16 bit 16 bit
short 16 bit 16 bit
int 16 bit 32 bit
long 32 bit 32 bit
long long 64 bit 32 bit
float 32 bit 32 bit
double 32 bit 32 bit
long double 64 bit 32 bit
pointers 32 bit 16 bit

¢ CLA architecture is designed for 32-bit data types
¢ 16-bit computations incur overhead for sign-extension
¢ 16-bit values mostly used to read/write 16-bit peripheral registers
¢ Thereis no SW or HW support for 64-bit integer or floating point

TMS320F2837xD Microcontroller Workshop - Control Law Accelerator

-11

Control Law Accelerator (CLA)

CLA C Language Restrictions o2

¢ No initialization support for global and static
local variables

¢ Initialized global variables should be declared in a
.c file instead of the .clafile

.c file: .cla file:
intlé_t x=5; extern intlé_t x;

¢ For initialized static variables, easiest solution is to
use an initialized global variable instead

¢ No recursive function calls
¢ No function pointers

intlé_t x; // valid
intlé t x=5; // not valid

CLA C Language Restrictions o2

¢ No support for certain fundamental math

operations

¢ integer division: z = x/y;

¢ modulus (remainder): z = x%y;

¢ unsigned 32-bit integer compares
uint32 1; 1if(i < 10) {.} // not valid
int32 i; if(i
vuintle i; ifQ
intle i; if@
float32 x; 1f(x

¢ No standard C math library functions, but Tl
provides some function examples (next slide)

10) {.} 77/ valid
10) {.} 77/ valid
10) {.} 77/ valid
10) {.} 77/ valid

NN NN

TMS320F2837xD Microcontroller Workshop - Control Law Accelerator

Control Law Accelerator (CLA)

C2000Ware™ - CLA Software Support

¢ Tl provides some examples of floating-point math CLA functions

5 workspace_v7 - CCS Edit - T1 Resource Explores - Code Composer Staidio = =loix|

Fn Eb Viw Maigate Project R Scipts Window Hep 1 5 2837x_acos

o, e — ey . ;]
Resource Explorer | 1 2837w asin s
: X | 5 2837x atan O A=
] s
“ " Examples \ 1= 2837x_atan2 T

| 15 2837x_atan2PU

1 = 2837x_cos
wwreoe CLAMath L

= 2837x_cosPU
1 2 2837x_div

s

1
I
I
1
1
1
1
1
1
1
1
1

I 2 2837x_exp 1
: 2837 eplo 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

s

1= 2837x_exp2

s

= 2837x_expN
| 2 2837« isart
Examples

s

1 = 2837x In
: & 2837x_logl0

s

1 2837x_logN

s

1 (& 2837xsin

s

an : bZéB?x,smcos
1 2 2837x_sinPU

| 2837 sqrt
o oo o oo o -

CLA Compiler Scratchpad Memory Area

¢ For local and compiler generated temporary variables
¢ Static allocation, used instead of a stack
¢ Defined in the linker command file

Lab.cmd

MEMORY
{

}
SECTIONS
{

/*** CLA Compiler Required Sections ***/
.scratchpad : > RAMLSO, PAGE = 1

TMS320F2837xD Microcontroller Workshop - Control Law Accelerator 9-13

Control Law Accelerator (CLA)

CLA Task C Code Example

ClaTasks_C.cla ———_

{

#include "Lab.h"

[— H
nterrupt void ClalTaskl (void) ¢ .claextension

causes the c2000
compiler to invoke

: the CLA compiler
__mdebugstop();

: +«— & All code within this
xDelay[0] = (float32)AdcaResultRegs. ADCRESULTO; file is placed in the
Y = coeffs[a] * xDelay[4]: section “ClalProg
xDeIa:y[4] = xDelay[3]; \’ C Peripheral

: Register Header File
xDelay[1] = xDelay[0]; references can be
Y = Y + coeffs[0] * xDelay[0]; used in CLA C and
ClaFilteredOutput = (Uintl6)Y; assembly code

¢ Closing braces are
replaced with
MSTOP instructions
when compiled

CLA Assembly Language Implementation

CLA Assembly Language
Implementation

¢ Same instruction format as the CPU and FPU
¢ Destination operand on the left

¢ Source operand(s) on the right

¢ Same mnemonics as FPU, with a leading “M”

CPU: MPY ACC, T, locl6
FPU: MPYF32 ROH, R1H, R2H
CLA: MMPYF32 MRO, MR1, MR2
NS
Destination Operand Source Operands

TMS320F2837xD Microcontroller Workshop - Control Law Accelerator

Control Law Accelerator (CLA)

CLA Assembly Instruction Overview
Type Example Cycles
Load (Conditional) MMOV32 MRa, mem32{, CONDF} 1
Store MMOV32 mem32, MRa 1
Load with Data Move MMOVD32 MRa, mem32 1
Store/Load MSTF MMOV32 MSTF,mem32 1
Compare, Min, Max MCMPF32 MRa,MRb 1
Absolute, Negative Value MABSF32 MRa,MRb 1
Unsigned Integer to Float MUI16TOF32 MRa,meml6 1
Integer to Float MI32TOF32 MRa, mem32 1
Float to Integer & Round MF32TO116R MRa,MRb 1
Float to Integer MF32TO132 MRa,MRb 1
Multiply, Add, Subtract MMPYF32 MRa,MRb,MRc 1
1/X (16-bit Accurate) MEINVF32 MRa,MRb 1
1/Sqrt(x) (16-bit Accurate) MEISQRTF32 MRa,MRb 1
Integer Load/Store MMOV16 MRa,mem16 1
Load/Store Auxiliary Register MMOV16 MAR, mem16 1
Branch/Call/Return (conditional delayed) MBCNDD 16bitdest {,CNDF} 1-7
Integer Bitwise AND, OR, XOR MAND32 MRa,MRb,MRc 1
Integer Add and Subtract MSUB32 MRa,MRb,MRc 1
Integer Shifts MLSR32 MRa,#SHIFT 1
Write Protection Enable/Disable MEALLOW 1
Halt Code or End Task MSTOP 1
No Operation MNOP 1

See the Technical Reference Manual for a complete listing of instructions

CLA Assembly Parallel Instructions

¢ Parallel instructions are ‘built-in” and not free form
¢ You cannot just combine two regular instructions

¢ Operates as a single instruction with a single opcode
¢ Performs two operations in a single cycle

¢ A parallel instruction is recognized by the parallel bars
¢ Example: Add + Parallel Store

MADDF32 MR3, MR3, MR1

Il MMOV32 @ Var, MR3

Instruction Example Cycles
Multiply MMPYF32 MRa,MRb,MRc 1
& Parallel Add/Subtract 1 WSERE [l BRe. iR
Multiply, Add, Subtract MADDF32 MRa,MRb,MRc
& Parallel Store ||| MEOER MEmEZIRE !
Multiply, Add, Subtract, MAC MADDF32 MRa,MRb,MRc
& Parallel Load Il MMOV32 MRe, mem32 1

TMS320F2837xD Microcontroller Workshop - Control Law Accelerator

Control Law Accelerator (CLA)

CLA Assembly Addressing Modes

¢ Two addressing modes: Direct and Indirect

¢ Both modes can access the lower 64Kx16 of memory only:
¢ All of the CLA data space
¢ Both message RAMs
¢ Shared peripheral registers

¢ Direct — Populates opcode field with 16-bit address of the variable

example 1: MMOV32 MR1, @ VarA
example 2: MMOV32 MR1, @ EPwmlRegs.CMPA.all

¢ Indirect — Uses the address in MARO or MAR1 to access memory;
after the read or write MARO/MARL is incremented by a
16-bit signed value

example 1: MMOV32 MRO, *MARO[2]++
example 2: MMOV32 MR1, *MAR1[-2]++

CLA Task Assembly Code Example

ClaTasks.asm

.cdecls "Lab.h" +—
.sect "ClalProg"

¢ .cdecls directive used
to include the C
header file in the CLA
assembly file

_ClalTaskl: ; FIR filter

: L L
MUIL6TOF32 MR2, @ AdcaResultRegs.ADCRESULTO | @ .Sect directive used to

MMPYF32 MR2, MR1, MRO place CLA assembly
- code in its own
: section

MADDF32 MR3, MR3, MR2

SR ITORVRZ RS e CPeripheral Register

MMOV16 @ _ClaFilteredOutput, MR2 Header File references
: can be used in CLA
assembly code

MSTOP ; End of task

—~& MSTOP instruction

ClalTask2:
=L used at the end of the
: task
MSTOP
_ClalTask3:
MSTOP

9-16 TMS320F2837xD Microcontroller Workshop - Control Law Accelerator

Control Law Accelerator (CLA)

Lab.h
#include "F2837xD_Cla_typedefs.h" |

#include “F2837xD_Device.h"
extern interrupt void ClalTaskl1();

extern interrupt void ClalTask2();

extern interrupt void ClalTask8() ;\

Cla.c

\
™~

#include "Lab.h"

// Initialize CLA task interrupt vectors
ClalRegs.MVECT1 = (uintl6_t)(&ClalTaskl);
ClalRegs.MVECT2 = (uintl6_t)(&ClalTask2);

ClalRegs.MVECT7 = (uintl6_t)(&ClalTask7);
ClalRegs.MVECT8 = (uintl6_t)(&ClalTask8);

CLA Initialization Code Example

Defines data types and
special registers
specific to the CLA

Defines register bit
field structures

CLA task prototypes
are prefixed with the
‘interrupt’ keyword

CLA task symbols are
visible to all C28x CPU
and CLA code

CLA Code Debugging

CLA Code Debugging

¢ The CLA and CPU are debugged from the same JTAG port
¢ You can halt, single-step, and run the CLA independent of the CPU

¢ A CLA single step execute one pipeline cycle, whereas a CPU single
step executes one instruction (and flushes the pipeline)

1. Insert a breakpoint in the CLA code

2. Connect to the CLA target in CCS
¢ This enables CLA breakpoints
3. Runthe CPU target

¢ This allows source-level debug

5. Debug the CLA code

¢ Insert a MDEBUGSTOP instruction(s) in the code where desired then rebuild/reload
¢ In C code, can use __mdebugstop() intrinsic, or asm(* MDEBUGSTOP”)
¢ When the debugger is not connected, the MDEBUGSTOP acts like an MNOP

¢ CLAtask will trigger (via peripheral interrupt or software)
¢ CLA executes instructions until MDEBUGSTORP is hit
4. Load the code symbols into the CLA context in CCS

¢ Needs to be done only once per debug session unless the .out file changes

¢ Can single-step the code, or run to the next MDEBUGSTOP or to the end of the task
¢ If another task is pending, it will start at the end of the previous task
6. Disconnect the CLA target to disable CLA breakpoints, if desired

TMS320F2837xD Microcontroller Workshop - Control Law Accelerator

Lab 9: CLA Floating-Point FIR Filter

Lab 9: CLA Floating-Point FIR Filter

>

Objective

The objective of this lab exercise is to become familiar with operation and programming of the
CLA. Inthis lab exercise, the ePWM1A generated 2 kHz, 25% duty cycle symmetric PWM
waveform will be filtered using the CLA. The CLA will directly read the ADC result register and a
task will run a low-pass FIR filter on the sampled waveform. The filtered result will be stored in a
circular memory buffer. Note that the CLA is operating concurrently with the CPU. As an
operational test, the filtered and unfiltered waveforms will be displayed using the graphing feature
of Code Composer Studio.

Lab 9: CLA Floating-Point FIR Filter

ePWM1 ADC CLA

TB Counter ADCINAO | RESULTO ClalTask1l
Compare ClalTask?2
Action Qualifier I:I :

wire

jumper ¥ ClalTask8

ePWM2 triggering ADC on period
match using SOCA trigger every data
20 ps (50 kHz) memory

ePWM2

CPU copies
result to
buffer during
CLA ISR

—

Display
using CCS

pointer rewind

Recall that a task is similar to an interrupt service routine. Once a task is triggered it runs to
completion. In this lab exercise two tasks will be used. Task 1 contains the low-pass filter. Task
8 contains a one-time initialization routine that is used to clear (set to zero) the filter delay chain.

Since there are tradeoffs between the conveniences of C programming and the performance
advantages of assembly language programming, three different task scenarios will be explored:

1. Filter and initialization tasks both in C
2. Filter task in assembly, initialization task in C
3. Filter and initialization tasks both in assembly

These three scenarios will highlight the flexibility of programming the CLA tasks, as well as show
the required configuration steps for each. Note that scenarios 1 and 2 are the most likely to be
used in a real application. There is little to be gained by putting the initialization task in assembly
with scenario 3, but it is shown here for completeness as an all-assembly CLA setup.

TMS320F2837xD Microcontroller Workshop - Control Law Accelerator

Lab 9: CLA Floating-Point FIR Filter

> Procedure

Open the Project

1. A project named Lab9 has been created for this lab exercise. Open the project by
clicking on Project - Import CCS Projects. The “Import CCS Eclipse Projects”
window will open then click Browse... next to the “Select search-directory” box. Navigate
to: C:\C28x\Labs\Lab9\cpu01 and click OK. Then click Finish to import the project.
All build options have been configured the same as the previous lab exercise. The files
used in this lab exercise are:

Adc.c F2837xD_GlobalVariableDefs.c
Cla_ 9.c F2837xD_Headers_nonBIOS_cpul.cmd
ClaTasks.asm Gpio.-c

ClaTasks C.cla Lab 9.cmd
CodeStartBranch.asm Main_9.c

Dac.c PieCtrl._.c

Defaultilsr 9 10.c PieVect.c

DelayUs.asm SineTable.c

Dma.c SysCtrl.c

ECap.c Watchdog.-c

EPwm.c Xbar.c

F2837xD_Adc.c

Note: The ClaTasks.asnm file will be added during the lab exercise.

Enabling CLA Support in CCS

2. Open the build options by right-clicking on Lab9 in the Project Explorer window and
select Properties. Then under “C2000 Compiler” select “Processor Options”.
Notice the “Specify CLA support” is set to clal. This is needed to compile and
assemble CLA code. Click OK to close the Properties window.

Inspect Lab_9.cmd

3. Open and inspect Lab_9.cmd. Notice that a section called “ClalProg” is being linked
to RAMLS4. This section links the CLA program tasks to the CPU memory space. Two
other sections called “ClalDatal” and “ClalData?2” are being linked to RAMLS1 and
RAMLS2, respectively, for the CLA data. These memory spaces will be mapped to the
CLA memory space during initialization. Also, notice the two message RAM sections
used to pass data between the CPU and CLA.

We are linking CLA code directly to the CLA program RAM because we are not yet using
the flash memory. CCS will load the code for us into RAM, and therefore the CPU wiill
not need to copy the CLA code into the CLA program RAM. In the flash programming lab
exercise later in this workshop, we will modify the linking so that the CLA code is loaded
into flash, and the CPU will do the copy.

4. The CLA C compiler uses a section called .scratchpad for storing local and compiler
generated temporary variables. This scratchpad memory area is allocated using the
linker command file. Notice .scratchpad is being linked to RAMLSO. Close the
Lab_9.cmd linker command file.

TMS320F2837xD Microcontroller Workshop - Control Law Accelerator 9-19

Lab 9: CLA Floating-Point FIR Filter

Setup CLA Initialization

During the CLA initialization, the CPU memory block RAMLS4 needs to be configured as CLA
program memory. This memory space contains the CLA Task routines. A one-time force of the
CLA Task 8 will be executed to clear the delay buffer. The CLA Task 1 has been configured to
run an FIR filter. The CLA needs to be configured to start Task 1 on the ADCAINT1 interrupt
trigger. The next section will setup the PIE interrupt for the CLA.

5. Open ClaTasks_C.cla and notice Task 1 has been configured to run an FIR filter.
Within this code the ADC result integer (i.e. the filter input) is being first converted to
floating-point, and then at the end the floating-point filter output is being converted back
to integer. Also, notice Task 8 is being used to initialize the filter delay line. The .cla
extension is recognized by the compiler as a CLA C file, and the compiler will generate
CLA specific code.

6. EditCla_9.c to implement the CLA operation as described in the objective for this lab
exercise. Set RAMLSO, RAMLS1, RAMLS2, and RAMLS4 memory blocks as shared
between the CPU and CLA. Configure the RAMLS4 memory block to be mapped to CLA
program memory space. Configure the RAMLSO, RAMLS1 and RAMLS2 memory blocks to
be mapped to CLA data memory space. Note that the RAMLSO memory block will be
used for the CLA C compiler scratchpad. Set Task 1 peripheral interrupt source to
ADCAINT1 and set the other Task peripheral interrupt source inputs to “software” (i.e.
none). Enable CLA Task 1 interrupt. Enable the use of the IACK instruction to trigger a
task, and then enable Task 8 interrupt.

7. Open Main_9.c and add a line of code in main() to call the InitCla() function.
There are no passed parameters or return values. You just type

InitClaQ;
at the desired spot in main().

8. InMain_9.c comment out the line of code in main() that calls the Initbma() function.
The DMA is no longer being used. The CLA will directly access the ADC RESULTO
register.

Setup PIE Interrupt for CLA

Recall that ePWM2 is triggering the ADC at a 50 kHz rate. In the Control Peripherals lab exercise
(i.e. ePWM lab), the ADC generated an interrupt to the CPU, and the CPU read the ADC result
register in the ADC ISR. Then in the DMA lab exercise, the ADC instead triggered the DMA, and
the DMA generated an interrupt to the CPU, where the CPU read the ADC result register in the
DMA ISR. For this lab exercise, the ADC is instead triggering the CLA, and the CLA will directly
read the ADC result register and run a task implementing an FIR filter. The CLA will generate an
interrupt to the CPU, which will store the filtered results to a circular buffer implemented in the
CLA ISR.

9. Remember that in Adc . c we commented out the code used to enable the ADCA1
interrupt in PIE group 1. This is no longer being used. The CLA interrupt will be used
instead.

10. Using the “PIE Interrupt Assignment Table” find the location for the CLA Task 1 interrupt
“CLA1_1" and fill in the following information:

PIE group #: # within group:

This information will be used in the next step.

TMS320F2837xD Microcontroller Workshop - Control Law Accelerator

Lab 9: CLA Floating-Point FIR Filter

11. Modify the end of Cla_9.c to do the following:

- Enable the “CLA1_1" interrupt in the PIE (Hint: use the PieCtrIRegs structure)
- Enable the appropriate core interrupt in the IER register

12. Open and inspect Defaultlsr_9 10.c. Notice that this file contains the CLA interrupt
service routine. Save all modified files.

Build and Load

13. Click the “Bui 1d” button and watch the tools run in the Console window. Check for
errors in the Problems window.

14. Click the “Debug” button (green bug). A Launching Debug Session window will open.
Select only CPUL1 to load the program on (i.e. uncheck CPU2), and then click OK. Then
the CCS Debug perspective view should open, the program will load automatically, and
you should now be at the start of main(). If the device has been power cycled since the
last lab exercise, be sure to configure the boot mode to EMU_BOOT_SARAM using the
Scripts menu.

Run the Code — Test the CLA Operation (Tasks in C)

Note: For the next step, check to be sure that the jumper wire connecting PWM1A (header J4,
pin #40) to ADCINAO (header J3, pin #30) is in place on the LaunchPad.

15. Run the code in real-time mode using the Script function: Scripts > Realtime
Emulation Control - Run_Realtime_with_Reset. Open and watch the
memory browser window update. Verify that the ADC result buffer contains updated
values.

16. Setup a dual-time graph of the filtered and unfiltered ADC results buffer. Click:
Tools > Graph - Dual Time and set the following values:

Acquisition Buffer Size 50

DSP Data Type 16-bit unsigned integer
Sampling Rate (Hz) 50000

Start Address A AdcBufFiltered

Start Address B AdcBuf

Display Data Size 50

Time Display Unit us

17. The graphical display should show the filtered PWM waveform in the Dual Time A display
and the unfiltered waveform in the Dual Time B display. You should see that the results
match the previous lab exercise.

18. Fully halt the CPU (real-time mode) by using the Script function: Scripts >
Realtime Emulation Control -> Full _Halt.

TMS320F2837xD Microcontroller Workshop - Control Law Accelerator 9-21

Lab 9: CLA Floating-Point FIR Filter

Change Task 1 to FIR Filter in Assembly

Previously, the initialization and filter tasks were implemented in C. In this part, we will not be
using the C implementation of the FIR filter located at Task 1 in ClaTasks_C.cla. Instead,
we will add ClaTasks.asm to the project and use the assembly implementation of the FIR
filter located at Task 1 in this file. The CLA setup code in Cla_9.c and the filter initialization
C-code located at Task 8 in ClaTasks_C.cla will not need to change.

19. Open ClaTasks_C.cla and at the beginning of Task 1 change the #if preprocessor
directive from 1 to 0. The sections of code between the #if and #endif will not be
compiled. This has the same effect as commenting out this code. We need to do this to
avoid a conflict with the Task 1 in ClaTask.asnm file.

20. Add (copy) ClaTasks.asm to project from C:-\C28x\Labs\Lab9\source.

21. Open ClaTasks.asm and notice that the .cdecls directive is being used to include the C
header file in the CLA assembly file. Therefore, we can use the Peripheral Register
Header File references in the CLA assembly code. Next, notice Task 1 has been
configured to run an FIR filter. Within this code special instructions have been used to
convert the ADC result integer (i.e. the filter input) to floating-point and the floating-point
filter output back to integer. Notice at Task 2 the assembly preprocessor .if directive is
setto 0. The assembly preprocessor .endif directive is located at the end of Task 8.
With this setting, Tasks 2 through 8 will not be assembled, again avoiding a conflict with
Task 2 through 8 in the ClaTasks_C.clafile. Save all modified files.

Build and Load

22. Build the project by clicking Project - Build Project, or by clicking on the
“Bui Id” button (if it has been added to the tool bar). Select Yes to “Reload the program
automatically”.

Run the Code — Test the CLA Operation (Tasks in C and ASM)

23. Run the code in real-time mode using the Script function: Scripts > Realtime
Emulation Control - Run_Realtime_with_Reset, and watch the graph window
update. To confirm these are updated values, carefully remove and replace the jumper
wire to ADCINAO. (Remember the graph must be enabled for continuous refresh). The
results should be the same as before.

24. Fully halt the CPU (real-time mode) by using the Script function: Scripts >
Realtime Emulation Control - Full_Halt.

Change All Tasks to Assembly

In this part, we will be using the assembly implementation of the FIR filter and filter delay line
initialization routine located at Task 1 and Task 8, respectively, in the ClaTasks . asm file.
The setup in Cla_9.c will remain the same. The ClaTasks_C.cla is no longer needed
and will be excluded from the build. As a result, the CLA C compiler is not used and the CLA
C compiler scratchpad area allocated by the linker command file will not be needed.

25. Open ClaTasks.asm and at the beginning of Task 2 change the assembly preprocessor
.if directive to 1. Recall that the assembly preprocessor .endif directive is located at the
end of Task 8. Now Task 2 through Task 8 will be assembled, along with Task 1.

26. Exclude ClaTasks_C.cla from the project to avoid conflicts with ClaTasks.asm. In

the Project Explorer window right-click on ClaTasks_C.cla and select “Exclude from
Build”. This file is no longer needed since all of the tasks are now in ClaTasks.asm.

TMS320F2837xD Microcontroller Workshop - Control Law Accelerator

Lab 9: CLA Floating-Point FIR Filter

Build and Load

27. Build the project by clicking Project - Build Project, or by clicking on the
“Bui Id” button (if it has been added to the tool bar). Select Yes to “Reload the program
automatically”.

Run the Code — Test the CLA Operation (Tasks in ASM)

28. Run the code in real-time mode using the Script function: Scripts > Realtime
Emulation Control - Run_Realtime_with_Reset, and watch the graph window
update. To confirm these are updated values, carefully remove and replace the jumper
wire to ADCINAQ. The results should be the same as before.

29. Fully halt the CPU (real-time mode) by using the Script function: Scripts ->
Realtime Emulation Control > Full_Halt.

Terminate Debug Session and Close Project

30. Terminate the active debug session using the Terminate button. This will close the
debugger and return Code Composer Studio to the CCS Edit perspective view.

31. Next, close the project by right-clicking on Lab9 in the Project Explorer window and
select Close Project.

End of Exercise

TMS320F2837xD Microcontroller Workshop - Control Law Accelerator 9-23

Lab 9: CLA Floating-Point FIR Filter

Lab 9 Reference: Low-Pass FIR Filter

Bode Plot of Digital Low Pass Filter
Coefficients: [1/16, 4/16, 6/16, 4/16, 1/16]

Sample Rate: 50 kHz

LowePass Filter Magnitude

o o o
= [a7] (]

o
(]

Magnitude (dimensionless)

a 0.5 1 1.5 2 245
Freguency (Hz) « 10

Lowi-Pass Filter Phase

-100

"o 200

Fhase (deg)

=300

|
0.4 1 14 2 245

-400 : : :
a .
Frequency (Hz) <10

9-24 TMS320F2837xD Microcontroller Workshop - Control Law Accelerator

System Design

Introduction

This module discusses various aspects of system design. Details of the emulation and analysis
block along with JTAG will be explored. Flash memory programming and the Code Security
Module will be described.

Module Objectives

Module Objectives

¢ Emulation and Analysis Block
¢ External Memory Interface (EMIF)

¢ Flash Configuration and

Memory Performance
¢ Flash Programming

¢ Dual Code Security Module (DCSM)

TMS320F2837xD Microcontroller Workshop - System Design 10-1

Emulation and Analysis Block

Chapter Topics

SYSTEIM DESIGN ..ttt et e e e s e bt et e e e e e e e e abab e e e e e e e e e e anbbbeeeeaaeeeannbneeeas 10-1
Emulation and ANAlYSiS BIOCKuuiiiiiiiiiiiieei et 10-3
External Memory Interface (EMIF)oo e 10-5
Flash Configuration and Memory PerformancCeoooouuiiiiiiieiiiiiiiiiieeeeee e 10-7
Flash Programiming ...ttt e e e e e et b bre e e e e e e e s nnbeeeeas 10-10
Dual Code Security MOAUIE (DCSM)ciiiiiiiiiiiiiiiee ettt a e e 10-12
Lab 10: Programming the FIash............oooriiiii e 10-16

10-2 TMS320F2837xD Microcontroller Workshop - System Design

Emulation and Analysis Block

Emulation and Analysis Block

JTAG Emulation System

(based on IEEE 1149.1 Boundary Scan Standard)

System Under Test

SCAN IN

TMS320C2000
Texas Instrumants
SCAN OUT

s

¢ > Debug —

Probe

Some Available Debug Probes

XDS100 CLASS -
BlackHawk: USB100
Spectrum Digital: XDS100

These debug probes are ultra-low cost, and
have an unlimited free license for use with
Code Composer Studio

XDs200 CL,ASS) These debug probes offer a balance of low
BlackHawk: USB200 cost with good performance compared to the
Spectrum Digital: XDS200 XDS100 class debug probes

Note: XDS510 CLASS debug probes are not recommended (obsolete); and for C2000, XDS560 CLASS debug
probes are not recommended since they are expensive and do not offer any advantage over the XDS200
CLASS debug probes

Emulation Connections to the Device

Vce (3.3V)
GND Vce (3.3V)
TMS320F28x7x Debug Header
31 Emuo PD P
14
EMU1
— 2| —— 4
TRST |4 TRST GND
1
™S < ™S GND L8
8
TDI—< 31 Toi GND
7 10
TDO > TDO GND
11 12
TCK . TCK GND
9 \Y
TCK_RET GND

-: If distance between device and header is greater than 6 inches

TMS320F2837xD Microcontroller Workshop - System Design 10-3

Emulation and Analysis Block

On-Chip Emulation Analysis Block:
Capabilities

Two hardware analysis units can be configured to provide
any one of the following advanced debug features:

Analysis Configuration Debug Activity

2 Hardware Breakpoints —» Halt on a specified instruction
(for debugging in Flash)

2 Address Watchpoints —> A memory location is getting
corrupted; halt the processor when
any value is written to this location

1 Address Watchpoint with Data ==» Halt program execution after a
specific value is written to a variable

1 Pair Chained Breakpoints —> Halton a specified instruction only
after some other specific routine has
executed

On-Chip Emulation Analysis Block:
Hardware Breakpoints and Watchpoints

C# _accin i [y o) Fuemiin Hated

Hat SR o trum Address
Drvw BMUPH [fake Hemary Wakn

5 Sip ot) 5 Debugger Frespanse

Cunreri Courd 00 Condtion
Acton Heman raled Action Feman Haed
= Hecelawon Miscelanenus
Grogn U iy Group Ded ot Groagy
Ham bregor Name ‘Watchooint
xmmmuhﬂdhdwmum "%ﬁ&z’lﬁmﬂhwﬂm
Canel Cancel
Hardware Breakpoint Hardware Watchpoint
Properties Properties

10-4 TMS320F2837xD Microcontroller Workshop - System Design

External Memory Interface (EMIF)

External Memory Interface (EMIF)

External Memory Interface (EMIF)

¢ Provides a means for the CPU, DMA, and CLA to connect
to various memory devices

¢ Support for synchronous (SDRAM) and asynchronous
(SRAM, NOR Flash) memories

¢ F2837xD includes two EMIFs
¢ EMIF1 — 16/32-bit interface shared between CPU1 and CPU2
¢ EMIF2 — 16-bit interface dedicated to CPU1

CPU1

: : CPUL
CPUL.DMAL . 160328t (T A 16-Bit
<:> Arbiter/ Interface Arbiter/ Interface
cpuz | Memory KEMEMIFLC——) Memory (CoNEMIF2C——)
<:> Protection CPUL.CLAL, |Protection
:CPUZ.DMAl: G .

EMIF1 shared between CPU1 & CPU2

EMIF2 dedicated to CPU1

External Memory Interface Signals

EMIF
Chip select EMIF_nCS[0] —
Column address strobe EMIF_nCAS —— SDRAM
Row address strobe EMIF_nRAS —— Interface
SDRAM clock EMIF_CLK F—
Clock enable EMIF_CKE ——
Chip select pins EMIF_nCS[4:2] ——
Output enable EMIF_nOE —— Asynchronous
Wait input with programmable polarity EMIF_WAIT «—— | Interface
Asynchronous read/write control EMIF_RnW ——
Write enable EMIF_nWE ——
Bank address pins EMIF_BA[1:0] — | Shared SDRAM
Byte enable pins EMIF_nDQM[x:0] —— — and asynchronous
Data bus EMIF_D[x:0] j«— | Interface
Address bus EMIF_A[x:0] ——

TMS320F2837xD Microcontroller Workshop - System Design

10-5

External Memory Interface (EMIF)

Configurations for EMIF1 and EMIF2

EMIF1 EMIF2
Maximum Data Width 32-Bit 16-Bit
Maximum Address Width | 22-Bit (some pins muxed) 12-Bit
SDRAM CSx Support 1 (Cs0) 1 (CS0)
ASRAM CSx Support 3 (CS2, CS3, Cs4) 1(Cs2)

¢ Synchronous (SDRAM) Memory Support:
¢ One, two, and four banks of SDRAMs
¢ Devices with eight, nine, ten, and eleven column address
¢ CAS latency of two or three clock cycles
¢ Self-refresh and power-down modes

¢ Asynchronous (SRAM and NOR Flash) Memory Support:
¢ External “Wait” input for slower memories
¢ Programmable read and write cycle timings: setup, hold, strobe
¢ Programmable data bus width, and select strobe option
¢ Extended Wait option with programmable timeout

EMIF Performance

TMS320F2837x at 200 MHz SYSCLK

Memory Access CPU Throughput
Type Type Cycles (Mword/s)
ASRAM read 9 22
DRAM read 14 14.3
ASRAM write 5 40
DRAM write 9 22.2

Notes: 1. A ‘word’ can be a 16- or 32-bit access

2. ASRAM assumed to have ta(A) of 10 or 12 ns (access time)

3. TMS320F2837x
a. ASRAM read setup/strobe/hold timings are 1/4/1, add 2 cycles bus start, 1 cycle data latency to CPU - 9 cycles

(successive reads that are back-to-back do not incur the 1 cycle data latency, so 8*N+1 cycles for N “RPT" transfers)

b. ASRAM write setup/strobe/hold timings are 1/1/1, add 2 cycles bus start = 5 cycles
c. ASRAM read assumes ta(OE) < 5 ns (This is typical for 10 or 12 ns ASRAM)
d. DRAM read, 100 MHz DRAM -> 14 cycles
e. DRAM write, 100 MHz DRAM > 9 cycles

10-6 TMS320F2837xD Microcontroller Workshop - System Design

Flash Configuration and Memory Performance

Flash Configuration and Memory Performance

Basic Flash Operation

¢ RWAIT bit-field in the FRDCNTL register specifies the number of
random accesses wait states

¢ OTP reads are hardwired for 10 wait states (RWAIT has no effect)

¢ Must specify the number of SYSCLK cycle wait-states;
Reset defaults are maximum value (15)

¢ Flash/OTP reads returned after (RWAIT + 1 SYSCLK cycles)
¢ Flash configuration code should not be run from the Flash memory

FlashCtrIRegs.FRDCNTL.bit. RWAIT = 0x3; // Setting for 200 MHz |

31

12 11

8

7

0

reserved

RWAIT

reserved

*** Refer to the F28x7x datasheet for detailed numbers ***
For 200 MHz, RANDWAIT =3

k— 16—
Aligned
128-bit
fetch k—— 128 —I |nstruction
128 fetch
2-level deep
fetch buffer
128-bit data
cache
Flash or OTP

16 or 32
dispatched

Data read either from
program or data memory

Speeding Up Execution in Flash / OTP

C28x
core
decoder
unit

Enable prefetch mechanism:
FlashCtrIRegs.FRD_INTF_CTRL.bit. PREFETCH_EN = 1;
Enable data cache:
FlashCtrIRegs.FRD_INTF_CTRL.bit. DATA_CACHE_EN =1,

TMS320F2837xD Microcontroller Workshop - System Design

10-7

Flash Configuration and Memory Performance

Code Execution Performance

¢ Assume 200 MHz SYSCLKOUT and single-cycle
execution for each instruction

Internal RAM: 200 MIPS

Fetch up to 32 bits every cycle = 1 instruction/cycle

Flash: 200 MIPS
Assume RWAIT=3, prefetch buffer enabled
Fetch 128 bits every 4 cycles:
(128 bits) / (32-bits per instruction worst-case) = 4 instructions/4 cycles

PC discontinuity will degrade this, while 16-bit instructions can help

Benchmarking in control applications has shown actual performance of about
90% efficiency, yielding approximately 180 MIPS

Data Access Performance
¢ Assume 200 MHz SYSCLKOUT

Memory 16-bit access 32-bit access Notes
(words/cycle) (words/cycle)
Internal RAM 1 1
Flash 0.73 0.57 Assumes RWAIT = 3,

‘sequential’ access

(8 words/11 cycles)

(4 words/7 cycles)

flash data cache enabled,
all 128 bits in cache are used

Flash
random access

0.25
(1 word/4 cycles)

0.25
(1 word/4 cycles)

Assumes RWAIT =3

¢ Internal RAM has best data performance — put time critical data here
¢ Flash performance often sufficient for constants and tables

¢ Note that the flash instruction fetch pipeline will also stall during a
flash data access

¢ For best flash performance, arrange data so that all 128 bits in a
cache line are utilized (e.g. sequential access)

10-8 TMS320F2837xD Microcontroller Workshop - System Design

Flash Configuration and Memory Performance

Flash / OTP Power Modes

¢ Power configuration settings save power by putting Flash/OTP to
‘Sleep’ or ‘Standby’ mode; Flash will automatically enter ‘Active’
mode if a Flash/OTP access is made
¢ At reset Flash/OTP is in sleep mode
¢ Operates in three power modes:
¢ Sleep (lowest power)
¢ Standby (shorter transition time to active)
¢ Active (highest power)
¢ After an access is made, Flash/OTP can automatically power down
to ‘Standby’ or ‘Sleep’ (active grace period set in user
programmable counters)

Setting Flash charge pump fallback power mode to active:

FlashCtrIRegs.FPAC1.hit. PMPPWR = 0x1; // O: sleep, 1: active

Setting fallback power mode to active:

FlashCtrIRegs.FBFALLBACK.bit. BNKPWRO0 = 0x3; // 0: sleep, 1: standby,
/I 2: reserved, 3: active

Error Correction Code (ECC) Protection

¢ Provides capability to screen out Flash/OTP memory faults (enabled at reset)
¢ Single error correction and double error detection (SECDED)
¢ For every 64-bits of Flash/OTP, 8 ECC check bits are calculated and
programmed into ECC memory
¢ ECC check bits are programmed along with Flash/OTP data
¢ During an instruction fetch or data read operation the 64-bit data/8-bit ECC are
processed by the SECDED to determine one of three conditions:
4 No error occurred

& Acorrectable error (single bit data error) occurred
Anon-correctable error (double bit data error or address error) occurred

P ECC (15:8) o — Single-bit data error
- v SECDED —> Address/double-bit data error
. Data(127:64) _ — Single-bit error position
Flash |« >
— Corrected data out
and | 128-bit aligned
OTP | ECC (7:0) > — Single-bit data error
SECDED [Address/double-bit data error
Data (63:0) — Single-bit error position
- " — Corrected data out

FlashEccRegs.ECC_ENABLE.bit. ENABLE = OxA; // OXA enable; other values disable

TMS320F2837xD Microcontroller Workshop - System Design

10-9

Flash Programming

Flash Programming

Flash Programming Basics

¢ The device CPU performs the flash programming

¢ The CPU executes Flash utility code from RAM that reads the Flash
data and writes it into the Flash

¢ We need to get the Flash utility code and the Flash data into RAM

FLASH «—— CPU

Flash f
Utility || ===~ - Emulator |—-> JTAG |— ————————— >
Code
RAM
| >RS232 [> SCI L-->
———————————— > SPlI F--> A
- 1
———————————— > 12C F-->_ o /
Flash = SL__--7
Data || m - m e e e e m o > CAN --3/& B
@
———————————— >| USB - =
Jl| mmmmm e ——— >| GPIO i———-> F28x7x

Flash Programming Basics

¢ Sequence of steps for Flash programming:

Algorithm Function
1. Erase - Set all bits to one
2. Program - Program selected bits with zero
3. Verify - Verify flash contents

¢ Minimum Erase size is a sector
¢ Minimum Program size is a bit!

¢ Important not to lose power during erase step:
If CSM passwords happen to be all zeros, the
CSM will be permanently secured!

¢ Chance of this happening is quite small! (Erase
step is performed sector by sector)

10-10

TMS320F2837xD Microcontroller Workshop - System Design

Flash Programming

Flash Programming Utilities

¢ JTAG Emulator Based
+ CCS on-chip Flash programmer (Tools - On-Chip Flash)
+ CCS UniFlash (TI universal Flash utility)
« BlackHawk Flash utilities (requires Blackhawk emulator)
« Elprotronic FlashPro2000
+ Spectrum Digital SDFlash JTAG (requires SD emulator)
¢ SCI Serial Port Bootloader Based
+ CodeSkin C2Prog
+ Elprotronic FlashPro2000
¢ Production Test/Programming Equipment Based
+ BP Microsystems programmer
+ Data l/O programmer
¢ Build your own custom utility
+ Can use any of the ROM bootloader methods
+ Can embed flash programming into your application
+ Flash API algorithms provided by TI

* Tl web has links to all utilities (http://www.ti.com/c2000)

TMS320F2837xD Microcontroller Workshop - System Design 10-11

Dual Code Security Module (DCSM)

Dual Code Security Module (DCSM)
Dual Code Security Module (DCSM)

¢ DCSM offers protection for two zones — zone 1 & zone 2
(Note: For dual-core devices each CPU has a DCSM)

¢ Each zone has its own dedicated secure OTP
¢ Contains security configurations for each zone

¢ The following on-chip memory can be secured:

¢ Flash — each sector individually

¢ LS0-5 RAM — each block individually

¢ D0-1 RAM — each block individually

¢ CLA —Includes CLA message RAMs

¢ Datareads and writes from secured memory are only
allowed for code running from secured memory

¢ All other data read/write accesses are blocked:

JTAG emulator/debugger, ROM bootloader, code running in
external memory or unsecured internal memory

Zone Selection

¢ Each securable on-chip memory resource can
be allocated to either zone 1 (Z1), zone 2 (Z2),
or as non-secure
& DcsmZ1Regs.Z1 _GRABSECTR register:
¢ Allocates individual Flash sectors to zone 1 or non-secure
& DcsmZ2Regs.Z2_GRABSECTR register:
¢ Allocates individual Flash sectors to zone 2 or non-secure
¢ DcsmZ1Regs.Z1_GRABRAMR register:
¢ Allocates LS0-5, D0O-1, and CLA1 to zone 1 or non-secure
& DcsmZ2Regs.Z2_GRABRAMR register:

¢ Allocates LSO0-5, DO-1, and CLA1 to zone 2 or non-secure

Technical Reference Manual contains a table to resolve mapping conflicts

10-12 TMS320F2837xD Microcontroller Workshop - System Design

Dual Code Security Module (DCSM)

CSM Passwords

Zx_CSMPSWDO
Zx_CSMPSWD1
Zx_CSMPSWD2
Zx_CSMPSWD3

¢ Each zone is secured by its own 128-bit (four 32-bit
words) user defined CSM password

¢ Passwords for each zone is stored in its dedicated
OTP location
¢ Location based on a zone-specific link pointer

¢ 128-bit CSMKEY registers are used to secure and
unsecure the device

¢ Password locations for each zone can be locked and
secured by programming PSWDLOCK fields in the
OTP with any value other than “1111” (OxF)

Zone Select Bits in OTP

Zx-LINKPOINTER Address offset of
| Zone-Select block

[|
xxx11111111111111111111111111111 0x020
xxx11111111111111111111111111110 | Ox030 Zone Select Block
xxx1111111111111111111111111110x | Ox040 B
xxx111111111111111111111111110xx | 0x050 Addr. Offset | 32-bit Content
xxx11111111111111111111111110xxx | Ox060
xxx1111111111111111111111110xxxx | 0x070 0x0 ZXEXEONLYRAM
Xxx111111111111111111111110xxxxx | 0x080 o
xxx11111111111111111111110xxxxxx | O0x090 0x2 2XEXEONLYSECT
xxx11111111112111111111110xxXxxxXxX | OxO0AOQ 0x4 Zx-GRABRAM
xxx1111111111211111111110XXXXXXXX | OX0BO —<
Xxx11111111111111111110XXXXXXXXX | 0x0CO 0x6 ZX-GRABSECT
Xxx1111111111111111110XXXXXXXXXX | 0x0DO
xxx111111111111111110XXXXXXXXXXX | OXOEO 0x8 Zx-CSMPSWDO
XXx111111111111111T0XXXXXXXXXXXX | OXOFO
XXXL1111111111111LOXXXXOKNNKK | Ox100 B EGCE NGV
XXX1111111111111T0XXXXXXXXXXXXXX | 0x110 0xC Zx-CSMPSWD2
XXX11111111111TTOXXXXXXXXXXXXXXX | 0x120
XXX111111111TTTOXXXXXXXXXXXXXXXX | 0x130 OxE Zx-CSMPSWD3

XXX111111111TIOXXXXXXXXXXXXXXXXX | 0x140
XXX11111111TTOXXXXXXXXXXXXXXXXXX | 0x150

XXX11111111TOXXXXXXXXXXXXXXXXXXX | 0x160 i i i i
XXX1111111TOXXXXXXXXXXXXXXXXXXXX | 0x170 ¢ Fmall |Indké)0|nter Val.ue IS“ h
XxX111111LOXXXXXXXXXXXXXXXXXXXXX | 0x180 resolved by comparing all three
XXX1111TLOXXXXXXXXXXXXXXXXXXXXXX | 0x190 individual link pointer values

XXX1LLTTTOXXXXXXXXXXXXXXXXXXXXXXX | OX1AO0

XXXLLTTIOXXXXXXXXXXXXXXXXXXXXXXXX | 0x1BO (b|t'W'Se voting IOg'C)

XXXLLLOXXXXXXXXXXXXXXXXXXXXXXXXX | 0x1CO ¢ OTPvalue“1” programmed as
XXX L LOXXXXXX XXX XXX XXX XXXXXXXXXXX | 0x1DO « An X
XXX LOXXXXXXXXXXXXXXXXXXXXXXXXXXX | OX1EQ 0" (no erase operation)

XXXOXXXXXKXXXXXKKKXXXXXXXXXXXXXX | OX1FO

TMS320F2837xD Microcontroller Workshop - System Design

10-13

Dual Code Security Module (DCSM)

Zone Select Block - Linker Pointer

Zone 1 OTP FLASH Zone 2 OTP FLASH
0x78000 | Z1-LINKPOINTERL Three link pointers 0x78200 | Z2-LINKPOINTER1
0x78002 Reserved need to be 0x78202 Reserved
0x78004 | Z1-LINKPOINTER2 programmed with 0x78204 | Z2-LINKPOINTER2

the same value

0x78006 Reserved (not ECC 0x78206 Reserved
0x78008 | Z1-LINKPOINTER3 protected) 0x78208 | Z2-LINKPOINTER3
0x7800A Reserved 0x7820A Reserved
0x78010 | Z1-PSWDLOCK 0x78210 | Z2-PSWDLOCK
0x78012 Reserved 0x78212 Reserved
0x78014 Z1-CRCLOCK 0x78214 Z2-CRCLOCK
0x78016 Reserved Zone Select Block 0x78216 Reserved
0x78018 Reserved Addr. Offset | 32-bit Content 0x78218 Reserved
0x7801A Reserved 0x0 Zx-EXEONLYRAM 0x7821A Reserved
0x7801E | Z1-BOOTCTRL 0x2 Zx-EXEONLYSECT 0x7821E | Z2-BOOTCTRL
0x78020 | ZoneSelectBlockl | J 0x4 Zx-GRABRAM 0x78220 | ZoneSelectBlockl

(16 x 16-bits) 0x6 Zx-GRABSECT (16 x 16-bits)
0x78030 ZoneSelectBlock2 0x8 Zx-CSMPSWDO 0x78230 ZoneSelectBlock2

(16 x 16-bits) (16 x 16-bits)

OXA Zx-CSMPSWD1

L] L] L] L]

. . oxC Zx-CSMPSWD2 . .
0x781F0 | ZoneSelectBlockn OxE Zx-CSMPSWD3 0x783F0 | ZoneSelectBlockn

(16 x 16-bits) (16 x 16-bits)

Secure and Unsecure the CSM

¢ The CSM is always secured after reset

¢ To unsecure the CSM:
¢ Perform a dummy read of each CSMPSWD(0,1,2,3)
register (passwords in the OTP)
¢ Write the correct password to each
CSMKEY(0,1,2,3) register
¢ Passwords are all OxFFFF on new devices

¢ When passwords are all OxFFFF, only a read of
each password location (PWL) is required to
unsecure the device

¢ The bootloader does these dummy reads and
hence unsecures devices that do not have
passwords programmed

10-14 TMS320F2837xD Microcontroller Workshop - System Design

Dual Code Security Module (DCSM)

CSM Caveats

¢ Never program all the PWL'’s as 0x0000
¢ Doing so will permanently lock the zone

¢ Programming the PSWDLOCK field with any
other value than “1111” (OxF) will lock and
secure the password locations

¢ Remember that code running in unsecured
RAM cannot access data in secured memory
¢ Don’t link the stack to secured RAM if you have

any code that runs from unsecured RAM

¢ Do not embed the passwords in your code!
¢ Generally, the CSM is unsecured only for debug
¢ Code Composer Studio can unsecure the zone

CSM Password Match Flow

Yes Zone
Start permanently
locked
Zone secure
after reset or
runtime
Dummy reads of CSM Write CSM password
PWL of secure zone (that — of that zone into
needs to be unsecure) CSMKEYX registers
|)

Zone
Unsecure

TMS320F2837xD Microcontroller Workshop - System Design 10-15

Lab 10: Programming the Flash

Lab 10: Programming the Flash

» Objective

The objective of this lab exercise is to program and execute code from the on-chip flash memory.
The TMS320F28379D device has been designed for standalone operation in an embedded
system. Using the on-chip flash eliminates the need for external non-volatile memory or a host
processor from which to bootload. In this lab exercise, the steps required to properly configure
the software for execution from internal flash memory will be covered.

Lab 10: Programming the Flash

ePWM1 ADC CLA
TB Counter ADCINAO | RESULTO _EEegl
Compare I:I _ClalTask2
Action Qualifier :
j 4
R : _ClalTasks
ePWM2 triggering
ADC on period match @ data
using SOCA trigger every memory
20 ps (50 kHz) ePWM2

CPU copies
result to
buffer during
CLA ISR

Objective:
¢ Program system into Flash Memory

—

¢ Learn use of CCS Flash Programmer Display
using CCS
¢ DO NOT PROGRAM PASSWORDS

pointer rewind

> Procedure

Open the Project

1. A project named Lab10 has been created for this lab exercise. Open the project by
clicking on Project - Import CCS Projects. The “Import CCS Eclipse Projects”
window will open then click Browse... next to the “Select search-directory” box. Navigate
to: C:\C28x\Labs\Lab10\cpu01 and click OK. Then click Finish to import the
project. All build options have been configured the same as the previous lab exercise.
The files used in this lab exercise are:

10- 16 TMS320F2837xD Microcontroller Workshop - System Design

Lab 10: Programming the Flash

Adc.c F2837xD_GlobalVariableDefs.c
Cla_10.c F2837xD_Headers_nonBIOS_cpul.cmd
ClaTasks.asm Flash.c

ClaTasks C.cla Gpio.-c

CodeStartBranch.asm Lab_10.cmd

Dac.c Main_10.c

Defaultlsr_9 10.c PieCtrl.c

DelayUs.asm PieVect.c

Dma.c SineTable.c

ECap.c SysCtrl.c

EPwm.c Watchdog.-c

F2837xD_Adc.c Xbar.c

Note: The Flash.c file will be added during the lab exercise.

Link Initialized Sections to Flash

Initialized sections, such as code and constants, must contain valid values at device power-up.
Stand-alone operation of an embedded system means that no debug probe (emulator) is
available to initialize the device RAM. Therefore, all initialized sections must be linked to the on-
chip flash memory.

Each initialized section actually has two addresses associated with it. First, it has a LOAD
address which is the address to which it gets loaded at load time (or at flash programming time).
Second, it has a RUN address which is the address from which the section is accessed at
runtime. The linker assigns both addresses to the section. Most initialized sections can have the
same LOAD and RUN address in the flash. However, some initialized sections need to be loaded
to flash, but then run from RAM. This is required, for example, if the contents of the section
needs to be modified at runtime by the code.

2. Open and inspect the linker command file Lab_10.cmd. Notice that the first flash sector
has been divided into two blocks named BEGIN_FLASH and FLASH_A. The FLASH_A
flash sector origin and length has been modified to avoid conflicts with the other flash
sector spaces. The remaining flash sectors have been combined into a single block
named FLASH_BCDEFGHIJKLMN. See the reference slide at the end of this lab
exercise for further details showing the address origins and lengths of the various flash
sectors used.

3. Edit Lab_10.cmd to link the following compiler sections to on-chip flash memory block
FLASH_BCDEFGHIJKLMN:

Compiler Sections:

text .cinit .const .econst .pinit .switch

Copying Interrupt Vectors from Flash to RAM

The interrupt vectors must be located in on-chip flash memory and at power-up needs to be
copied to the PIE RAM as part of the device initialization procedure. The code that performs this
copy is located in InitPieCtrl(). The C-compiler runtime support library contains a memory copy
function called memcpy() which will be used to perform the copy.

4. Open and inspect InitPieCtrl() in PieCtrl .c. Notice the memcpy() function used to
initialize (copy) the PIE vectors. At the end of the file a structure is used to enable the
PIE.

TMS320F2837xD Microcontroller Workshop - System Design 10 - 17

Lab 10: Programming the Flash

Initializing the Flash Control Registers

The initialization code for the flash control registers cannot execute from the flash memory (since
it is changing the flash configuration!). Therefore, the initialization function for the flash control
registers must be copied from flash (load address) to RAM (run address) at runtime. The
memory copy function memcpy() will again be used to perform the copy. The initialization code
for the flash control registers InitFlash() is located in the Flash.c file.

5. Add (copy) Flash.c to the project from C:\C28x\Labs\Lab10\source.

6. Open and inspect Flash.c. The C compiler CODE_SECTION pragma is used to place
the InitFlash() function into a linkable section named “secureRamFuncs”.

7. The “secureRamFuncs” section will be linked using the user linker command file
Lab 10.cmd. In Lab_10.cmd the “secureRamFuncs” will load to flash (load address)
but will run from RAMLSS5 (run address). Also notice that the linker has been asked to
generate symbols for the load start, load size, and run start addresses.

While not a requirement from a MCU hardware or development tools perspective (since
the C28x MCU has a unified memory architecture), historical convention is to link code to
program memory space and data to data memory space. Therefore, notice that for the
RAMLS5 memory we are linking “secureRamFuncs” to, we are specifiying “PAGE = 0”
(which is program memory).

8. Open and inspect Main_10.c. Notice that the memory copy function memcpy() is being
used to copy the section “secureRamFuncs”, which contains the initialization function for
the flash control registers.

9. Add a line of code in main() to call the InitFlash() function. There are no passed
parameters or return values. You just type

InitFlash();

at the desired spot in main().

Dual Code Security Module and Passwords

The DCSM module provides protection against unwanted copying (i.e. pirating!) of your code
from flash, OTP, LS0-5 RAM blocks, DO-1 RAM blocks, and CLA memory blocks. The DCSM
uses a 128-bit password made up of 4 individual 32-bit words. They are located in the OTP.
During this lab exercise, dummy passwords of OXFFFFFFFF will be used — therefore only dummy
reads of the password locations are needed to unsecure the DCSM. DO NOT PROGRAM ANY
REAL PASSWORDS INTO THE DEVICE. After development, real passwords are typically
placed in the password locations to protect your code. We will not be using real passwords in the
workshop. Again, DO NOT CHANGE THE VALUES FROM OxFFFFFFFF.

Executing from Flash after Reset

The F28379D device contains a ROM bootloader that will transfer code execution to the flash
after reset. When the boot mode selection is set for “Jump to Flash” mode, the bootloader will
branch to the instruction located at address 0x080000 in the flash. An instruction that branches
to the beginning of your program needs to be placed at this address. Note that BEGIN_FLASH
begins at address 0x080000. There are exactly two words available to hold this branch
instruction, and not coincidentally, a long branch instruction “LB” in assembly code occupies
exactly two words. Generally, the branch instruction will branch to the start of the C-environment
initialization routine located in the C-compiler runtime support library. The entry symbol for this
routine is _c_int00. Recall that C code cannot be executed until this setup routine is run.

10-18

TMS320F2837xD Microcontroller Workshop - System Design

Lab 10: Programming the Flash

Therefore, assembly code must be used for the branch. We are using the assembly code file
named CodeStartBranch.asm.

10. Open and inspect CodeStartBranch.asm. This file creates an initialized section
named “codestart” that contains a long branch to the C-environment setup routine. This
section needs to be linked to a block of memory named BEGIN_FLASH.

11. In the earlier lab exercises, the section “codestart” was directed to the memory named
BEGIN_MO. Edit Lab_10.cmd so that the section “codestart” will be directed to
BEGIN_FLASH. Save your work.

On power up the reset vector will be fetched and the ROM bootloader will begin execution. If the
emulator is connected, the device will be in emulation boot mode and will use the EMU_KEY and
EMU_BMODE values in the PIE RAM to determine the boot mode. This mode was utilized in the
previous lab exercises. In this lab exercise, we will be disconnecting the emulator and running in
stand-alone boot mode (but do not disconnect the emulator yet!). The bootloader will read the
OTP_KEY and OTP_BMODE values from their locations in the OTP. The behavior when these
values have not been programmed (i.e., both OxFF) or have been set to invalid values is boot to
flash boot mode.

Initializing the CLA

Previously, the named section “ClalProg” containing the CLA program tasks was linked directly
to the CPU memory block RAMLS4 for both load and run purposes. At runtime, all the code did
was map the RAMLS4 block to the CLA program memory space during CLA initialization. For an
embedded application, the CLA program tasks are linked to load to flash and run from RAM. At
runtime, the CLA program tasks must be copied from flash to RAMLS4. The memory copy
function memcpy() will once again be used to perform the copy. After the copy is performed, the
RAMLS4 block will then be mapped to CLA program memory space as was done in the earlier
lab.

12. In Lab_10.cmd notice that the named section “ClalProg” will now load to flash (load
address) but will run from RAMLS4 (run address). The linker will also be used to
generate symbols for the load start, load size, and run start addresses.

13. Open Cla_10.c and notice that the memory copy function memcpy() is being used to
copy the CLA program code from flash to RAMLS4 using the symbols generated by the
linker. Just after the copy the MemCfgRegs structure is used to configure the RAMLS4
block as CLA program memory space. Close the opened files.

Build — Lab.out

14. Click the “Build” button to generate the Lab.out file to be used with the CCS Flash
Programmer. Check for errors in the Problems window.

Programming the On-Chip Flash Memory

In CCS the on-chip flash programmer is integrated into the debugger. When the program is
loaded CCS will automatically determine which sections reside in flash memory based on the
linker command file. CCS will then program these sections into the on-chip flash memory.
Additionally, in order to effectively debug with CCS, the symbolic debug information (e.g., symbol
and label addresses, source file links, etc.) will automatically load so that CCS knows where
everything is in your code. Clicking the “Debug” button in the CCS Edit perspective will
automatically launch the debugger, connect to the target, and program the flash memory in a
single step.

TMS320F2837xD Microcontroller Workshop - System Design 10- 19

Lab 10: Programming the Flash

15. Program the flash memory by clicking the “Debug” button (green bug). A Launching
Debug Session window will open. Select only CPU1 to load the program on (i.e. uncheck
CPU?2), and then click OK. The CCS Debug perspective view will open and the flash
memory will be programmed. (If needed, when the “Progress Information” box opens
select “Details >>" in order to watch the programming operation and status). After
successfully programming the flash memory the “Progress Information” box will close.
Then the program will load automatically, and you should now be at the start of main().

Running the Code — Using CCS

16. Reset the CPU using the “CPU Reset” button or click:
Run - Reset - CPU Reset

The program counter should now be at address Ox3FF16A in the “Disassembly” window,
which is the start of the bootloader in the Boot ROM. If needed, click on the “View
Disassembly...” button in the window that opens, or click View - Disassembly.

17. Under Scripts on the menu bar click:
EMU Boot Mode Select > EMU_BOOT_FLASH

This has the debugger load values into EMU_KEY and EMU_BMODE so that the
bootloader will jump to "Flash" at address 0x080000.

18. Next click:
Run = Go Main

The code should stop at the beginning of your main()routine. If you got to that point
succesfully, it confirms that the flash has been programmed properly, that the bootloader
is properly configured for jump to flash mode, and that the codestart section has been
linked to the proper address.

19. You can now run the CPU, and you should observe the LED D9 on the LaunchPad
blinking. Try resetting the CPU, select the EMU_BOOT_FLASH boot mode, and then
hitting run (without doing the Go Main procedure). The LED should be blinking again.

20. Halt the CPU.

Terminate Debug Session and Close Project

21. Terminate the active debug session using the Terminate button. This will close the
debugger and return Code Composer Studio to the CCS Edit perspective view.

22. Next, close the project by right-clicking on Lab10 in the Project Explorer window and
select Close Project.

Running the Code — Stand-alone Operation (No Emulator)

Recall that if the device is in stand-alone boot mode, the state of GPIO72 and GPIO84 pins are
used to determine the boot mode. On the LaunchPad switch SW1 controls the boot options for
the F28379D device. Check that switch SW1 positions 1 and 2 are set to the default “1 — on”
position (both switches up). This will configure the device (in stand-alone boot mode) to
GetMode. Since the OTP_KEY has not been programmed, the default GetMode will be boot from
flash. Details of the switch positions can be found in the LaunchPad User’s Guide.

23. Close Code Composer Studio.

10-20

TMS320F2837xD Microcontroller Workshop - System Design

Lab 10: Programming the Flash

24. Disconnect the USB cable from the LaunchPad (i.e. remove power from the LaunchPad).

25. Re-connect the USB cable to the LaunchPad (i.e. power the LaunchPad). The LED
should be blinking, showing that the code is now running from flash memory.

End of Exercise

TMS320F2837xD Microcontroller Workshop - System Design 10-21

Lab 10: Programming the Flash

Lab 12 Reference: Programming the Flash

Flash Memory Section Blocks

origin =
0x080000 BEGIN_FLASH
length = 0x2
page =0
0x080002 FLASH_A
length = 0x001FFE
page =0
0x082000 FLASH_BCDEFGHIJKLMN
length = 0x03E000
page =0
Lab_10.cmd
SECTIONS
{

codestart :> BEGIN_FLASH, PAGE =0

Startup Sequence from Flash Memory

— 0x080000 [I_—_B_ __________ _,—> _C_i nt00 “I’t32800_m|.|ib"

FLASH (256Kw)

G) “user” code sections

main ()
® \ {

0x3F8000 | Boot ROM (32Kw) AN }
\
Boot Code AN
InitBoot AN
\
{SCAN GPIO} N
BROM vector (64w) @ \\\

Ox3FFFCO * reset vector —

RESET * reset vector = Ox3FF16A for CPUL; Ox3FEC52 for CPU2

10 - 22 TMS320F2837xD Microcontroller Workshop - System Design

Dual-Core Inter-Processor Communications

Introduction

This module explains the use and operation of the Inter-Processor Communications (IPC). The
IPC allows communication between the two CPU subsystems (i.e. CPU1 and CPU2).

Module Objectives

Module Objectives

¢ Understand the fundamental
operation of Inter-Processor
Communications (IPC)

¢ Use the IPC to transfer data between
CPU1 and CPU2

TMS320F2837xD Microcontroller Workshop - Dual-Core Inter-Processor Communications 11-1

Inter-Processor Communications

Chapter Topics

Dual-Core Inter-Processor COMMUNICATIONSuuu.iiivieieiii e ee et e e eee e s e e e e seas e s e saan e seeas 11-1
INtEr-ProCesSOr COMMUNICALIONS.ccuuuiiieie e it eeett e e e e e e e et eeesaa e sssaasssesan s sesrasessssnnseseees 11-3
IPC Global Shared RAM and MesSage RAMcoiiiiiiiiiiiiiiieee ettt e e e e e s ssreee e e e e e 11-3
INEEITUPLS AN FIAGS ..oeee e e e e s e e e e e e s e snnbrneeeaeeeeannnes 11-5

| OR D= v R I = 1 1) (] (N 11-7

Lab 11: Inter-Processor COMMUNICALIONS.uu.iiieeeieieeieeeeeie e e eee e e s eaaeeeseb s e s essa e sesaaeereranas 11-9

11-2 TMS320F2837xD Microcontroller Workshop - Dual-Core Inter-Processor Communications

Inter-Processor Communications

Inter-Processor Communications

IPC Features

Allows Communications Between the
Two CPU Subsystems

¢ Message RAMs

¢ IPC flags and interrupts

¢ IPC command registers

¢ Flash pump semaphore

Clock configuration semaphore
¢ Free-running counter

All IPC features are independent of each other

IPC Global Shared RAM and Message RAM
Global Shared RAM

¢ Device contains up to 16 blocks of global shared RAM
¢ Blocks named GSO — GS15

¢ Each block size is 4K words

¢ Each block can configured to be used by CPU1 or CPU2
¢ Selected by MemCfgRegs.GSXMSEL register

¢ Individual memory blocks can be shared between the

CPU and DMA
CPU1 Subsystem CPU2 Subsystem
Ownership
CPU1 CPU1.DMA CPU2 CPU2.DMA
CPU1 Subsystem* R/W/Exe R/W R R
CPU2 Subsystem R R R/W/Exe R/W

Note: register lock protected

* default

TMS320F2837xD Microcontroller Workshop - Dual-Core Inter-Processor Communications 11-3

Inter-Processor Communications

There are up to 16 blocks of shared RAM on F2837xD devices. These shared RAM blocks are
typically used by the application, but can also be used for transferring messages and data.

Each block can individually be owned by either CPU1 or CPU2.

CPUL1 core ownership:

At reset, CPU1 owns all of the shared RAM blocks. In this configuration CPU1 core can freely
use the memory blocks. CPU1 can read, write or execute from the block and CPU1.DMA can
read or write.

On the CPU2 core, CPU2 and CPU2.DMA can only read from these blocks. Blocks owned by the
CPUL1 core can be used by the CPU1 to send CPU2 messages. This is referred to as “C1toC2".

CPU2 core ownership:

After reset, the CPUL application can assign ownership of blocks to the CPU2 subsystem. In this
configuration, CPU2 core can freely use the blocks. CPU2 can read, write or execute from the
block and the CPU2.DMA can read or write. CPU1 core, however can only read from the block.
Blocks owned by CPU2 core can be used can be used to send messages from the CPU2 to
CPUL. This is referred to as “C2toC1".

IPC Message RAM

¢ Device contains 2 blocks of Message RAM
¢ Each block size is 1K words

¢ Each block is always enabled and the
configuration is fixed

¢ Used to transfer messages or data between
CPU1 and CPU2

CPU1 Subsystem CPU2 Subsystem
CPU1 CPU1.DMA CPU2 CPU2.DMA

Message RAM

CPU1to CPU2 (“C1toC2") | RMW RIW R R

CPU2 to CPUL (“C2toC1") R R R/W R/W

The F2837xD has two dedicated message RAM blocks. Each block is 1K words in length. Unlike
the shared RAM blocks, these blocks provide communication in one direction only and cannot be
reconfigured.

CPUL1 to CPU2 “C1toC2" message RAM:

The first message RAM is the CPU1 to CPU2 or C1toC2. This block can be read or written to by
the CPUL and read by the CPU2. CPU1 can write a message to this block and then the CPU2
can read it.

CPU2 to CPUL1 “C2toC1" message RAM:

The second message RAM is the CPU2 to CPU1 or C2toC1. This block can be read or written to
by CPU2 and read by CPU1. This means CPU2 can write a message to this block and then

11-4

TMS320F2837xD Microcontroller Workshop - Dual-Core Inter-Processor Communications

Inter-Processor Communications

CPUL1 canread it. After the sending CPU writes a message it can inform the receiver CPU that it
is available through an interrupt or flag.

IPC Message Registers

¢ Provides very simple and flexible messaging
¢ Dedicated registers mapped to both CPU'’s

Local Register Local |Remote | Remote Register
Name CPU CPU | Name
IPCSENDCOM R/W R IPCRECVCOM
IPCSENDADDR R/W R IPCRECVADDR
IPCSENDDATA R/W R IPCRECVDATA
IPCREMOTEREPLY R R/W IPCLOCALREPLY

¢ The definition (what the register content
means) is up to the application software

¢ TI's IPC-Lite drivers use the IPC message
registers

Interrupts and Flags

IPC Flags and Interrupts

¢ CPUlto CPU2: 32flags with 4 interrupts (IPC0-3)
¢ CPU2to CPULl: 32flags with 4 interrupts (IPC0-3)

Requesting CPU - Set, Flag and Clear registers
Register

IPCSET Message waiting (send interrupt and/or set flag)
IPCFLG Bit is set by the “SET” register
IPCCLR Clear the flag

Receiving CPU - Status and Acknowledge registers
Register
IPCSTS Status (reflects the FLG bit)
IPCACK Clear STS and FLG

TMS320F2837xD Microcontroller Workshop - Dual-Core Inter-Processor Communications 11-5

Inter-Processor Communications

When the sending CPU wants to inform the receiver that a message is ready, it can make use of
an interrupt or flag. There are identical IPC interrupt and flag resources on both CPU1 core and
CPU2 core.

4 Interrupts:

There are 4 interrupts that CPU1 can send to CPU2 (and vice-versa) through the Peripheral
Interrupt Expansion (PIE) module. Each of the interrupts has a dedicated vector within the PIE,
IPCO - IPC3.

28 Flags:

In addition, there are 28 flags available to each of the CPU cores. These flags can be used for
messages that are not time critical or they can be used to send status back to originating
processor. The flags and interrupts can be used however the application sees fit and are not tied
to particular operation in hardware.

Registers: Set, Flag, Clear, Status and Acknowledge

The registers to control the IPC interrupts and flags are 32-bits:
Bits [3:0] = interrupt & flag
Bits [31:4] = flag only

Messaging with IPC Flags and Interrupts

CPU1 Memory Map IPC Registers CPU1 to CPU2 CPU2 Memory Map
PIE
IPCSET Set e (IPCO-3)
Clear IPC Registers I
IPCCLR T IPCACK

R/W

CPUL H IPCFLG IPCSTS
RIW
IPCSTS IPCFLG H cPU2

IPCACK l IPCCLR
T Clear
PIE IPCSET
(IPC0-3) Q S8

CPU2 to CPU1

11-6

TMS320F2837xD Microcontroller Workshop - Dual-Core Inter-Processor Communications

Inter-Processor Communications

IPC Data Transfer

Basic IPC Data Transfer

¢ Basic option — no software drivers needed
and easy to use!
¢ Use the Message RAMs or global shared RAMs to

transfer data between processors at a known
address

¢ Use the IPC flag registers to tell the other
processor that the data is ready

CPU1 Application CPU2 Application
1: Write a message to .
CltoCs MSG RAM Message 3: sees C1TOC2IPCSTS

_, Dbitis set

CltoC2 MSG RAM

4: read message

2: Write 1 t

o) Lo
C1TOC2IPCSET bit 5: write 1 to

CITOC2IPCACK bit

GSx Shared

| citocaipcrLe

The F2837xD IPC is very easy to use. At the most basic level, the application does not need any
separate software drivers to communicate between processors. It can utilize the message RAM'’s
and shared RAM blocks to pass data between processors at a fixed address known to both
processors. Then the sending processor can use the IPC flag registers merely to flag to the
receiving processor that the data is ready. Once the receiving processor has grabbed the data, it
will then acknowledge the corresponding IPC flag to indicate that it is ready for more messages.

As an example:

1.
2.

First, CPU1 would write a message to the CPU2 in C1toC2 MSG RAM.

Then the CPU1 would write a 1 to the appropriate flag bit in the CI.TOC2IPCSET
register. This sets the CITOC2IPCFLG, which also sets the CITOC2IPCSTS register on
CPU2, letting CPU2 know that a message is available.

Then CPU2 sees that a bit in the CATOC2IPCSTS register is set.

Next CPU2 reads the message from the C1toC2 MSG RAM and then

It writes a 1 to the same bit in the CITOC2IPCACK register to acknowledge that it has
received the message. This subsequently clears the flag bit in CL.TOC2IPCFLG and
C1TOC2IPCSTS.

CPUL1 can then send more messages using that particular flag bit.

TMS320F2837xD Microcontroller Workshop - Dual-Core Inter-Processor Communications 11-7

Inter-Processor Communications

IPC Software Solutions Summary

¢ Basic Option
¢ No software drivers needed
¢ Uses IPC registers only (simple message passing)

¢ IPC-Lite Software API Driver
¢ Uses IPC registers only (no memory used)
¢ Limited to 1 IPC interrupt at atime
¢ Limited to 1 command/message at atime

& CPU1 can use IPC-Lite to communicate with CPU2
boot ROM

¢ Main IPC Software API Driver
¢ Uses circular buffers message RAMs

¢ Can queue up to 4 messages prior to processing
(configurable)

¢ Can use multiple IPC ISRs at a time

¢ Requires additional setup in application code prior
to use

There are three options to use the IPC on the device.

Basic option: A very simple option that does not require any drivers. This option only requires
IPC registers to implement very simple flagging of messages passed between processors.

Driver options: If the application code needs a set of basic IPC driver functions for reading or
writing data, setting/clearing bits, and function calls, then there are 2 IPC software driver solutions
provided by TI.

IPC-Lite:
e Only uses the IPC registers. No additional memory such as message RAM or shared
RAM is needed.
e Onlyone IPC ISR can be used at a time.
e Can only process one message at a time.
e CPUL can use IPC lite to communicate with the CPU2 boot ROM. The CPU2 boot ROM
processes basic IPC read, write, bit manipulation, function call, and branch commands.

Main IPC Software API Driver: (This is a more feature filled IPC solution)

Utilizes circular buffers in C2toC1 and C1toC2 message RAM'’s.

Allows application to queue up to 4 messages prior to processing (configurable).
Allows application to use multiple IPC ISR’s at a time.

Requires additional setup in application code prior to use.

In addition to the above, SYS/BIOS 6 will provide a new transport module to work with the shared
memory and IPC resources on the F2837x.

11-8

TMS320F2837xD Microcontroller Workshop - Dual-Core Inter-Processor Communications

Lab 11: Inter-Processor Communications

Lab 11: Inter-Processor Communications
» Objective

The objective of this lab exercise is to demonstrate and become familiar with the operation of the
IPC module. We will be using the basic IPC features to send data in both directions between
CPU1 and CPU2. A typical dual-core F2837xD application consists of two separate and
completely independent CCS projects. One project is for CPU1, and the other project is for
CPU2. As in the previous lab exercises, PWM2 will be configured to provide a 50 kHz SOC
signal to ADC-A. An End-of-Conversion ISR on CPU1 will read each result and write it into a
data register in the IPC. An IPC interrupt will then be triggered on CPU2 which fetches this data
and stores it in a circular buffer. The same ISR grabs a data point from a sine table and loads it
into a different IPC register for transmission to CPU1. This triggers an interrupt on CPUL1 to fetch
the sine data and write it into DAC-B. The DAC-B output is connected by a jumper wire to the
ADCINAO pin. If the program runs as expected, the sine table and ADC results buffer on CPU2
should contain very similar data.

CPU1 [CPU2
IPCO_ISR I Sine Table
Reads IPCO data and writes into DAC-B ”
DAC-B : o
IPCRECVADDR IPCSENDADDR =
@®— | DACVALS IPCO H
Pin 11 _ - =
. - o
| IPC1 ISR = .‘g
. " 1. Reads IPC1 data Q
{,l.dirr’réper I and stores in circular E
ADCA1_ISR . buffer A ADC Result
Reads ADC result and writes to IPC1 I~ 2. Writes next sine estlis
B data to IPCO
ADC-A I
IPCSENDDATA IPCRECVDATA E
@— | RESULTO IPC1 H
Pin 09 = i
x ! . £
| Toggle GPIO34 LED D9 @ 1 Hz " S
Toggle GPIO31 LED D10 @ 5 Hz E
: I View ADC
I buffer
PWM2 triggers "
ADC-Aat 50 kHz I Code Composer
[Studio

> Procedure

Open the Projects — CPUL & CPU2

1. Two projects named Lab11l cpuOl and Lab1l1l cpu02 have been created for this lab
exercise. Open both projects by clicking on Project - Import CCS Projects. The
“Import CCS Eclipse Projects” window will open then click Browse... next to the “Select
search-directory” box. Navigate to: C:\C28x\Labs\Lab11 and click OK.

Both projects will appear in the “Discovered projects” window. Click Select All and click
Finish to import the project. All build options for each project have been configured the
same as the previous lab exercise.

The files used in the CPUL1 project are:

TMS320F2837xD Microcontroller Workshop - Dual-Core Inter-Processor Communications 11-9

Lab 11: Inter-Processor Communications

Adc.c F2837xD_Headers_nonBIOS_cpul.cmd
CodeStartBranch.asm Gpio.c
Dac.c Lab 11 cpul.cmd
Defaultlsr_11 cpul.c Main_11 cpul.c
DelayUs.asm PieCtrl.c
EPwm _11.c PieVect.c
F2837xD_Adc.c SysCtrl.c
F2837xD_GlobalVariableDefs.c Watchdog.-c

The files used in the CPU2 project are:
CodeStartBranch.asm Main_11 cpu2.c
Defaultlsr_11 cpu2.c PieCtrl.c
F2837xD_GlobalVariableDefs.c PieVect.c
F2837xD_Headers_nonBIOS_cpul.cmd SineTable.c
Lab 11 cpu2.cmd Watchdog.c

Inspect the Project — CPUL

2.

Click on the project name Lab11_cpu0O1 in the Project Explorer window to set the project
active. Then click on the plus sign (+) to the left of Lab11 cpu01 to expand the file list.

Open and inspect Main_11 cpul.c. Notice the synchronization handshake code using
IPC17 during initialization:

//--- Wait here until CPUO2 is ready
while (IpcRegs.IPCSTS.bit.IPC17 == 0) ; // Wait for CPUO2 to set IPC17
IpcRegs. IPCACK.bit.IPC17 = 1; // Acknowledge and clear IPC17

CPUL1 will start first and then wait until CPU2 releases it from the while() loop. This only
needs to be done once. In effect, CPU1 is waiting until CPU2 is ready to accept IPC
interrupts, thereby making sure that the CPUs are ready for messaging through the IPC.

Open and inspect Defaultlsr_11 cpul.c. This file contains two interrupt service
routines — one (ADCA1_ISR) at PIE1.1 reads the ADC results which is sent over IPC1 to
CPU2, and the other (IPCO_ISR) at PIE1.13 reads the incoming sine table point for the DAC
which is sent over IPCO from CPU2. Additionally, ADCA1_ISR toggles the LaunchPad LED
D9 at 1 Hz as a visual indication that it is running.

In ADCA1_ISR() the ADC result value being sent to CPU2 is written via the IPCSENDDATA
register. In 1PCO_1SR() the incoming data from CPU2 for the DAC is read via the
IPCRECVADDR register. These registers are part of the IPC module and provide an easy way
to transmit single data words between CPUs without using memory.

Inspect the Project — CPU2

5.

Click on the project name Labl11l cpu0O2 in the Project Explorer window to set the project
active. Then click on the plus sign (+) to the left of Lab11 cpu02 to expand the file list.

Open and inspect Main_11 cpu2.c. Notice the synchronization handshake code used to
release CPU1 from its while() loop:

//--- Let CPUl know that CPU2 is ready
IpcRegs. IPCSET.bit.IPC17 = 1; // Set IPC17 to release CPUl

Open and inspect Defaultlsr_11 cpu2.c. This file contains a single interrupt service
routine — (IPC1_ISR) at PIE1.14 reads the incoming ADC results which is sent over IPC1
from CPU1, and writes the next sine table point for the DAC which is sent over IPCO to
CPU1. Additionally, IPC1_ISR toggles the LaunchPad LED D10 at 5 Hz as a visual
indication that it is running.

11-10

TMS320F2837xD Microcontroller Workshop - Dual-Core Inter-Processor Communications

Lab 11: Inter-Processor Communications

In IPC1_ISR(Q) the incoming ADC result value from CPUL1 is read via the IPCRECVDATA
register, and the sine data to CPUL1 is written via the IPCSENDADDR register. The
IPCSENDDATA and IPCRECVDATA registers are mapped to the same address on each CPU,
as are the IPCSENDADDR and I1PCRECVADDR registers.

Jumper Wire Connection

8. Using a jumper wire, connect the ADCINAO (header J3, pin #30) to DACB (header J7, pin
#70) on the LaunchPad. Refer to the following diagram for the pins that need to be
connected.

=
&%,

™ n =

Build and Load the Project

9. Inthe Project Explorer window click on the Lab11_cpuO1 project to set it active. Then click
the Build button and watch the tools run in the Console window. Check for any errors in the
Problems window. Repeat this step for the Lab11l_cpu02 project.

10. Again, in the Project Explorer window click on the Lab11_cpuO1 project to set it active. Click
on the Debug button (green bug). A Launching Debug Session window will open. Select
only CPUL1 to load the program on (i.e. uncheck CPU?2), and then click OK. The CCS Debug
perspective view should open, then CPU1 will connect to the target and the program will load
automatically.

11. The Debug window reflects the current status of CPU1 and CPU2.

%5 Debug 532 ¥ =8
=% Lab1l_cpul [Code Composer Studio - Device Debugging]
EI uj.-} Texas Instruments ¥DS 100w 2 USE Emulator _0/C28xx_CPU1 (Suspended - SW Breakpoint)
—— main() at Main_11_cpul.c:22 Ox00CCDF

_args_main{) at args_main.c:92 0x00CD37

“= ¢ int00() at boot28.inc: 223 0x00CC44 (the entry point was reached)

----- x@ Texas Instruments XDS100w2 USE Emulator_0/CPU1_CLA1 (Disconnected @ Unknown)
x@ Texas Instruments XD5100v2 USE Emulator_0fC28xx_CPU2 (Disconnected @ Unknown)
----- x@ Texas Instruments XDS100w2 USE Emulator_0/CPUZ_CLA1 (Disconnected : Unknown)

Notice that CPU1 is currently connected and CPU2 is “Disconnected”. This means that CCS
has no control over CPU2 thus far; it is freely running from the view of CCS. Of course CPU2
is under control of CPU1 and since we have not executed an IPC command yet, CPU2 is
stopped by an “Idle” mode instruction in the Boot ROM.

12. Next, we need to connect to and load the program on CPU2. Right-click at the line “Texas
Instruments XDS100v2 USB Emulator_0/C28xx_CPUZ2" and select Connect Target.

13. With the line “Texas Instruments XDS100v2 USB Emulator_0/C28xx_CPU2" still highlighted,
load the program:

TMS320F2837xD Microcontroller Workshop - Dual-Core Inter-Processor Communications 11-11

Lab 11: Inter-Processor Communications

14,

Run > Load - Load Program..

Browse to the file: C:\C28x\Labs\Lab11\cpu02\Debug\Labl1l cpu02.out and select
OK to load the program.

Again, with the line “Texas Instruments XDS100v2 USB Emulator_0/C28xx_CPU1"
highlighted, set the bootloader mode using the menu bar by clicking:

Scripts > EMU Boot Mode Select -> EMU_BOOT_SARAM

Use the same procedure above to set the bootloader mode for CPU2. If the device has been
power cycled between lab exercises, or within this lab exercise, be sure to configure the boot
mode to EMU_BOOT_SARAM using the Scripts menu for both CPU1 and CPU2.

Run the Code

15.

16.

17.

18.

In the Debug window, click on the line “Texas Instruments XDS100v2 USB
Emulator_0/C28xx_CPUL1". Run the code on CPUL1 by clicking the green Resume button. At
this point CPU1 is waiting for CPU2 to be ready.

In the Debug window, click on the line “Texas Instruments XDS100v2 USB
Emulator_0/C28xx_CPUZ2". As before, run the code on CPU2 by clicking the Resume button.
Using the IPC17, CPU2 communicates to CPU1 that it is now ready. On the LaunchPad,
LED D9 connected to CPU1 should be blinking at approximately 1 Hz and LED D10
connected to CPU2 should be blinking at approximately 5 Hz.

In the Debug window select CPU1. Halt the CPU1 code after a few seconds by clicking on
the Suspend button.

Then in the Debug window select CPU2. Halt the CPU2 code by using the same procedure.

View the ADC Results
19. Open and setup a graph to plot a 50-point window of the ADC results buffer.

Click: Tools > Graph > Single Time and set the following values:

Acquisition Buffer Size 50

DSP Data Type 16-bit unsigned integer
Sampling Rate (Hz) 50000

Start Address AdcBuf

Display Data Size 50

Time Display Unit sample

Select OK to save the graph options.

20. If the IPC communications is working, the ADC results buffer on CPU2 should contain the

sine data transmitted from the look-up table. The graph view should look like:

fe Single Time -0 53 BHF S - -8 8 R-|Flb P | 2-8H =0
2000
1000
1]
R —— — — S |
0 +5 +10 +15 +20 +25 +30 +35 +40 +45
sample

11-12

TMS320F2837xD Microcontroller Workshop - Dual-Core Inter-Processor Communications

Lab 11: Inter-Processor Communications

Run the Code - Real-Time Emulation Mode

21.

22.

23.

24,

25.

26.

27.

28.

29.

We will now run the code in real-time emulation mode. Enable the graph window for
continuous refresh. On the graph window toolbar, left-click on “Enable Continuous
Refresh” (the yellow icon with the arrows rotating in a circle over a pause sign). This will
allow the graph to continuously refresh in real-time while the program is running.

In the Debug window highlight the line “Texas Instruments XDS100v2 USB
Emulator_0/C28xx_CPU1". Run the code on CPUL1 in real-time mode by clicking:

Scripts > Realtime Emulation Control - Run_Realtime_with_Reset

Next, in the Debug window highlight the line “Texas Instruments XDS100v2 USB
Emulator_0/C28xx_CPUZ2". Run the code on CPU2 in real-time mode by using the same
procedure above.

The graph should now be updating in real-time.

Carefully remove and replace the jumper wire from the DACB output (header J7, pin #70) to
the ADCINAO input (header J3, pin #30). The ADC results graph should disappear and be
replaced by a flat line when the jumper wire is removed. This shows that the sine data is
being transmitted over IPCO to CPU1, and (after being sent from DAC to ADC) received from
CPUL1 over IPCL.

Now we will view the IPC registers while the code is running in real-time emulation mode on
CPU1 and CPU2. OpenMain_11 cpul.c (orMain_11 cpu2.c), highlight the “IpcRegs”
structure and right click, then select Add Watch Expression.. and click OK. Enable the
Expressions window for continuous refresh.

In the Debug window highlight the line “Texas Instruments XDS100v2 USB
Emulator_0/C28xx_CPUL1". Then in the Expressions window open “IpcRegs”, scroll down
and notice the 1PCSENDDATA and I1PCRECVADDR registers is updating, as expected for
CPUL1. Also, notice that IPCSENDADDR and I1PCRECVDATA registers, as well as the graph
(ADC buffer) are not updated on CPU1.

In the Debug window highlight the line “Texas Instruments XDS100v2 USB
Emulator_0/C28xx_CPU2". Then in the Expressions window open “IpcRegs”, scroll down
and notice the 1PCRECVDATA and IPCSENDADDR registers, and the graph is updating, as
expected for CPU2. Likewise, notice that IPCRECVADDR and IPCSENDDATA registers are
not updated on CPU2.

Again, in the Debug window highlight the line “Texas Instruments XDS100v2 USB
Emulator_0/C28xx_CPU1". Fully halt the code on CPU1 in real-time mode by clicking:

Scripts > Realtime Emulation Control -> Full_Halt

Next, fully halt the code on CPU2 in real-time mode by using the same procedure.

Terminate Debug Session and Close Project

30.

31.

Terminate the active debug session using the Terminate button. This will close the
debugger and return Code Composer Studio to the CCS Edit perspective view.

Next, close the Lab11l cpu01 and Lab11_cpu02 projects by right-clicking on each project
in the Project Explorer window and select Close Project.

TMS320F2837xD Microcontroller Workshop - Dual-Core Inter-Processor Communications 11 -13

Lab 11: Inter-Processor Communications

End of Exercise

11-14 TMS320F2837xD Microcontroller Workshop - Dual-Core Inter-Processor Communications

Communications

Introduction

The TMS320C28x contains features that allow several methods of communication and data
exchange between the C28x and other devices. Many of the most commonly used
communications techniques are presented in this module.

The intent of this module is not to give exhaustive design details of the communication
peripherals, but rather to provide an overview of the features and capabilities. Once these
features and capabilities are understood, additional information can be obtained from various
resources such as documentation, as needed. This module will cover the basic operation of the
communication peripherals, as well as some basic terms and how they work.

Module Objectives

Module Objectives

¢ Serial Peripheral Interface (SPI)
¢ Serial Communication Interface (SCI)

¢ Multichannel Buffered Serial Port (McBSP)
¢ Inter-Integrated Circuit (12C)

¢ Universal Serial Bus (USB)

¢ Controller Area Network (CAN)

Note: Up to 3 SPI modules, 4 SCI modules, 2 McBSP modules, 2 12C modules,
1 USB module, and 2 CAN modules are available on the F28x7x devices

The F2837xD dual-core MCU includes numerous communications peripherals that extend the
connectivity of the device. There are up to three Serial Peripheral Interface (SPI) modules, four
Serial Communication Interface (SCI) modules, two Multi-channel Buffered Serial Port (McBSP)
modules, two Inter-Integrated Circuit (I2C) modules, two Controller Area Network (CAN) modules,
one Universal Serial Bus (USB) module, and one Universal Parallel Port (uPP) module. These
peripherals can be assigned to either the CPU1 subsystem or the CPU2 subsystem, except for
the USB and uPP which is dedicated to only the CPU1 subsystem.

TMS320F2837xD Microcontroller Workshop - Communications 12-1

Communications Techniques

Chapter Topics

COMMUNICALTONS ...ttt e et e e e e e e bttt et e e e e e s e abbbe e e e e e e e e aanbabeeeeaaeeeannbnneeas 12-1
CommUuNICAtIONS TECHNIQUESciiii ittt e e e e e e e e e e e e e e aanes 12-3
Serial Peripheral INterface (SPI) ... 12-4

T o ST 01 2=Vt 12-7
Serial Communications INtErface (SCI).....u i 12-8
Multiprocessor Wake-Up MOAESuuiiiieeiiiiiiiiieee e ettt ee e e e e st r e e e e e s snnaneeeee e e e e nnnes 12-10
SCl SUMMIATY <. 12-12
Multichannel Buffered Serial Port (MCBSP)uuuiiiiiiiiiiiieiee e 12-13
Definition: Bit, Word, and FIrame............cooiiiiiiiiiiiiiaee et reeee e e 12-14
MUIti-Channel SEIECHIONuiiiiiiiie e e e e e e e e aees 12-15
MCBSP SUMIM@IY ...ttt ettt st ts ettt st s st s st s s st s st s st s st s e bssssnsnsnnnnnnns 12-15
Inter-Integrated CirCUIt (I2C)oiiuiiieieee e s e e e s s et e e e e e e s e annnreaeeeaees 12-16
12C Operating Modes and Data FOrMatSccuvvviiireeiiiiiiiieeree et ee e sreree e e e e 12-17
[2C SUMIMAIY .etititieieteeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeseessseessss e se e sesess e s snsesesesesesesnsnsnensnnnsnnnnnnns 12-18
Universal Serial BUS (USB)coioi ittt ettt e e e et e e e e e e e nneeeeas 12-19
USB COMMUNICALIONeeiiiiiiiiee ittt ettt sttt e e st e e st e e s enbbe e e s anbbeeesannes 12-20
01U T=T =V o] o PSR TPPRP 12-20
F28X USB HAIOWAIEeiiiiiiiiie ittt sttt ettt st e e st e e s b e e s e 12-21
USB CONtrOlEr SUMIMAIYeeiiiiiiiiiiiiieeee ettt a e ettt e e e e e e sasbabe e e e e e e s e snnbereeeaeeeaaannes 12-21
Controller Area NEetWOIrK (CAN) ...oiie e it iiieiee e e e s e et e e e e e e s s e e e e e s e srbn e e e e e e e s ssnnreneeeeeessennnes 12-22
CAN BUS @N NOAEciiiiiiiiiiiiiie ettt e e e e e e st e e e e e e e e e abbbeeeaaae s 12-23
PrinCIiples Of OPEratioNcoii et e e e e e e e e anes 12-24
Message Format and BIOCK DIiagram..........cooouuuiiiiiiiiiiiiiiiee et 12-25
(@7 AN U1 0] = 1 Y/ PPRPS 12-26

12-2

TMS320F2837xD Microcontroller Workshop - Communications

Communications Techniques

Communications Techniques

Several methods of implementing a TMS320C28x communications system are possible. The
method selected for a particular design should reflect the method that meets the required data
rate at the lowest cost. Various categories of interface are available and are summarized in the
learning objective slide. Each will be described in this module.

Synchronous vs. Asynchronous

¢ Synchronous ¢ Asynchronous
¢ Short distances (on-board) ¢ longer distances
¢ High data rate ¢ Lower data rate (= 1/8 of SPI)
¢ Explicit clock ¢ Implied clock (clk/data mixed)
¢ Economical with reasonable
performance
C28x C28x
Port«—> U2 Port —
Destination
PCB PCB

Serial ports provide a simple, hardware-efficient means of high-level communication between
devices. Like the GPIO pins, they may be used in stand-alone or multiprocessing systems.

In a multiprocessing system, they are an excellent choice when both devices have an available
serial port and the data rate requirement is relatively low. Serial interface is even more desirable
when the devices are physically distant from each other because the inherently low number of
wires provides a simpler interconnection.

Serial ports require separate lines to implement, and they do not interfere in any way with the
data and address lines of the processor. The only overhead they require is to read/write new
words from/to the ports as each word is received/transmitted. This process can be performed as
a short interrupt service routine under hardware control, requiring only a few cycles to maintain.

The C28x family of devices have both synchronous and asynchronous serial ports. Detailed
features and operation will be described next.

TMS320F2837xD Microcontroller Workshop - Communications 12 -3

Serial Peripheral Interface (SPI)

Serial Peripheral Interface (SPI)

The SPI is a high-speed synchronous serial port that shifts a programmable length serial bit
stream into and out of the device at a programmable bit-transfer rate. It is typically used for
communications between processors and external peripherals, and it has a 16-level deep receive
and transmit FIFO for reducing servicing overhead. During data transfers, one SPI device must
be configured as the transfer MASTER, and all other devices configured as SLAVES. The
master drives the transfer clock signal for all SLAVES on the bus. SPI communications can be
implemented in any of three different modes:

o MASTER sends data, SLAVES send dummy data
e MASTER sends data, one SLAVE sends data
o MASTER sends dummy data, one SLAVE sends data

In its simplest form, the SPI can be thought of as a programmable shift register. Data is shifted in
and out of the SPI through the SPIDAT register. Data to be transmitted is written directly to the
SPIDAT register, and received data is latched into the SPIBUF register for reading by the CPU.
This allows for double-buffered receive operation, in that the CPU need not read the current
received data from SPIBUF before a new receive operation can be started. However, the CPU
must read SPIBUF before the new operation is complete of a receiver overrun error will occur. In
addition, double-buffered transmit is not supported: the current transmission must be complete
before the next data character is written to SPIDAT or the current transmission will be corrupted.

The Master can initiate a data transfer at any time because it controls the SPICLK signal. The
software, however, determines how the Master detects when the Slave is ready to broadcast.

SPI Data Flow

¢ Simultaneous transmits and receive
¢ SPI Master provides the clock signal

SPI Device #1 - Master SPI Device #2 - Slave
shift shift
| SPI Shift Register | | SPI Shift Register |
clock

12-4

TMS320F2837xD Microcontroller Workshop - Communications

Serial Peripheral Interface (SPI)

SPI Block Diagram

C28x - SPI Master Mode Shown

SPISIMO

RX FIFO_0

RX FIFO_3
SPIRXBUF.15-0

- MB 1 SPIDAT.A5:0 fe—— SPISOMI

T

SPITXBUF.15-0
TX FIFO_0
TX FIFO_3
baud clock clock
LSPCLK s polarity phase SPICLK

SPI Transmit / Receive Sequence
Slave writes data to be sent to its shift register (SPIDAT)
Master writes data to be sent to its shift register (SPIDAT or SPITXBUF)

Completing Step 2 automatically starts SPICLK signal of the Master

A W b

MSB of the Master’s shift register (SPIDAT) is shifted out, and LSB of the Slave’s shift
register (SPIDAT) is loaded

Step 4 is repeated until specified number of bits are transmitted
SPIDAT register is copied to SPIRXBUF register
SPI INT Flag bit is setto 1

An interrupt is asserted if SPI INT ENA bit is setto 1

© © N o v

If data is in SPITXBUF (either Slave or Master), it is loaded into SPIDAT and transmission
starts again as soon as the Master's SPIDAT is loaded

TMS320F2837xD Microcontroller Workshop - Communications 12-5

Serial Peripheral Interface (SPI)

Since data is shifted out of the SPIDAT register MSB first, transmission characters of less than 16
bits must be left-justified by the CPU software prior to be written to SPIDAT.

Received data is shifted into SPIDAT from the left, MSB first. However, the entire sixteen bits of
SPIDAT is copied into SPIBUF after the character transmission is complete such that received
characters of less than 16 bits will be right-justified in SPIBUF. The non-utilized higher
significance bits must be masked-off by the CPU software when it interprets the character. For
example, a 9 bit character transmission would require masking-off the 7 MSB's.

SPI| Data Character Justification

¢ Programmable data
length of 1 to 16 bits SPIDAT - Processor #1

¢ Transmitted data of less 11001001 XXXXXXXX
than 16 bits must be left

justified
@ MSB transmitted first
¢ Received data of less

than 16 bits are right
justified

SPIDAT - Processor #2

XXXXXXXX11001001

¢ User software must
mask-off unused MSB’s

12-6 TMS320F2837xD Microcontroller Workshop - Communications

Serial Peripheral Interface (SPI)

SPI Summary

SPI Summary

¢ Synchronous serial communications
¢ Two wire transmit or receive (half duplex)
¢ Three wire transmit and receive (full duplex)

¢ Software configurable as master or slave
¢ C28x provides clock signal in master mode

¢ Data length programmable from 1-16 bits
¢ 125 different programmable baud rates

TMS320F2837xD Microcontroller Workshop - Communications 12-7

Serial Communications Interface (SCI)

Serial Communications Interface (SCI)

The SCIl is a two-wire asynchronous serial port (also known as a UART) that supports
communications between the processor and other asynchronous peripherals that use the
standard non-return-to-zero (NRZ) format. A receiver and transmitter 16-level deep FIFO is used
to reduce servicing overhead. The SCI transmit and receive registers are both double-buffered to
prevent data collisions and allow for efficient CPU usage. In addition, the C28x SCl is a full
duplex interface which provides for simultaneous data transmit and receive. Parity checking and

data formatting is also designed to be done by the port hardware, further reducing software
overhead.

SCI Pin Connections

(Full Duplex Shown)

TX FIFO_O TX FIFO_O
TX FIFO_16 TX FIFO_16
Transmitter-data Transmitter-data
buffer register buffer register
Transmitter SCITXD SCITXD Transmitter
shift register shift register
Receiver SCIRXD SCIRXD Receiver
shift register shift register
Receiver-data Receiver-data
buffer register buffer register
RX FIFO_0 RX FIFO_0
RX FIFO_16 RX FIFO_16
SCI Device #1 SCI Device #2

12 -8

TMS320F2837xD Microcontroller Workshop - Communications

Serial Communications Interface (SCI)

SCI Data Format

NRZ (non-return to zero) format

Addr/| I I
Start | LSB | 2 3 4 5 6 7 | MSB | o' |Parity [Stop 1 Stop 2

This bit present only in Address-bit mode A

Communications Control Register (ScixRegs.SCICCR)

7 6 5 4 3 2 1 0
Stop |Even/Odd| Parity |Loopback|Addr/idle SCI SCI SCI
Bits Parity Enable Enable Mode Char2 Charl Char0
| | ~
0 =1 Stop bit 0 = Disabled 0 = Idle-line mode # of data bits = (binary + 1)
1 =2 Stop bits 1=Enabled 1 = Addr-bit mode e.g. 110b gives 7 data bits
0=0dd 0 = Disabled
1=Even 1 =Enabled

The basic unit of data is called a character and is 1 to 8 bits in length. Each character of data is
formatted with a start bit, 1 or 2 stop bits, an optional parity bit, and an optional address/data bit.
A character of data along with its formatting bits is called a frame. Frames are organized into
groups called blocks. If more than two serial ports exist on the SCI bus, a block of data will
usually begin with an address frame which specifies the destination port of the data as
determined by the user’s protocol.

The start bit is a low bit at the beginning of each frame which marks the beginning of a frame.
The SCI uses a NRZ (Non-Return-to-Zero) format which means that in an inactive state the
SCIRX and SCITX lines will be held high. Peripherals are expected to pull the SCIRX and SCITX
lines to a high level when they are not receiving or transmitting on their respective lines.

When configuring the SCICCR, the SCI port should first be held in an inactive state. This is
done using the SW RESET bit of the SCI Control Register 1 (SCICTL1.5). Writing a O to this bit
initializes and holds the SCI state machines and operating flags at their reset condition. The
SCICCR can then be configured. Afterwards, re-enable the SCI port by writing a 1 to the SW
RESET bit. At system reset, the SW RESET bit equals 0.

TMS320F2837xD Microcontroller Workshop - Communications 12-9

Serial Communications Interface (SCI)

SCI Data Timing

< Start bit valid if 4 consecutive SCICLK periods of
zero bits after falling edge

¢ Majority vote taken on 4%, 5 and 6" SCICLK cycles

Majority

\ Vote /
SCICLK

Internal
() 1 2 345 67 8 12 3 45 6 78 1 2

somo || g 4 § 4 T

Start Bit LSB of Data

" Falling Edge Detected

Note: 8 SCICLK periods per data bit

Multiprocessor Wake-Up Modes

Multiprocessor Wake-Up Modes

¢ Allows numerous processors to be hooked
up to the bus, but transmission occurs
between only two of them

¢ Idle-line or Address-bit modes

¢ Sequence of Operation

1. Potential receivers set SLEEP = 1, which disables RXINT except
when an address frame is received

2. All transmissions begin with an address frame
3. Incoming address frame temporarily wakes up all SCls on bus
4. CPUs compare incoming SCI address to their SCI address

5. Process following data frames only if address matches

12-10 TMS320F2837xD Microcontroller Workshop - Communications

Serial Communications Interface (SCI)

Idle-Line Wake-Up Mode

¢ Idle time separates blocks of frames

¢ Receiver wakes up when SCIRXD high for 10 or
more bit periods

¢ Two transmit address methods
¢ Deliberate software delay of 10 or more bits

¢ Set TXWAKE bit to automatically leave exactly 11 idle bits

Idle periods

of less than Block of Frames
10 bits N

SCIRXD/ """\ osiData: s |ST| Addr JsP|sT[_Daa |sp|sT[Lastbata]| sp iSTi Addr ISP
sCiTxo vttt o T . TTitmTmmTees '
\// V. _v_/
Pldl'ed Address frame 1st data frame Pldl'ed
erio follows 10 bit €rio
10 bits or r\tlavater idlle 10 bits
or greater °'9 or greater

Address-Bit Wake-Up Mode

¢ All frames contain an extra address bit
¢ Receiver wakes up when address bit detected

¢ Automatic setting of Addr/Data bit in frame by setting
TXWAKE = 1 prior to writing address to SCITXBUF

Block of Frames

e B []
gg:_'?;((g/ iLastDatai0: P |sT| Addr | 1]sP|sT[Data |0]SP|ST|LastDatd 0]SPLST! Addr i1 1SPi

>/_/ First frame within 1st data frame

Idle Period block is Address. id?:ﬁfsd}fg’&?éd
length of no ADDR/DATA beyond stop bits
significance bit set to 1

The SCI interrupt logic generates interrupt flags when it receives or transmits a complete
character as determined by the SCI character length. This provides a convenient and efficient
way of timing and controlling the operation of the SCI transmitter and receiver. The interrupt flag
for the transmitter is TXRDY (SCICTL2.7), and for the receiver RXRDY (SCIRXST.6). TXRDY is

TMS320F2837xD Microcontroller Workshop - Communications 12-11

Serial Communications Interface (SCI)

set when a character is transferred to TXSHF and SCITXBUF is ready to receive the next
character. In addition, when both the SCIBUF and TXSHF registers are empty, the TX EMPTY
flag (SCICTL2.6) is set. When a new character has been received and shifted into SCIRXBUF,
the RXRDY flag is set. In addition, the BRKDT flag is set if a break condition occurs. A break
condition is where the SCIRXD line remains continuously low for at least ten bits, beginning after
a missing stop bit. Each of the above flags can be polled by the CPU to control SCI operations,
or interrupts associated with the flags can be enabled by setting the RX/BK INT ENA
(SCICTL2.1) and/or the TX INT ENA (SCICTL2.0) bits active high.

Additional flag and interrupt capability exists for other receiver errors. The RX ERROR flag is the
logical OR of the break detect (BRKDT), framing error (FE), receiver overrun (OE), and parity
error (PE) bits. RX ERROR high indicates that at least one of these four errors has occurred
during transmission. This will also send an interrupt request to the CPU if the RX ERR INT ENA
(SCICTL1.6) bit is set.

SCI Summary

SCI Summary

¢ Asynchronous communications format
¢ 65,000+ different programmable baud rates

¢ Two wake-up multiprocessor modes
¢ Idle-line wake-up & Address-bit wake-up

¢ Programmable data word format
¢ 1to 8 bit data word length
¢ 1 or 2 stop bits
¢ even/odd/no parity

¢ Error Detection Flags
¢ Parity error; Framing error; Overrun error; Break detection

¢ Transmit FIFO and receive FIFO
¢ Individual interrupts for transmit and receive

12 -12

TMS320F2837xD Microcontroller Workshop - Communications

Multichannel Buffered Serial Port (McBSP)

Multichannel Buffered Serial Port (McBSP)
McBSP Block Diagram

Peripheral / DMA Bus > — MFSXx
b b e MCLKx

| DXR2 TX Buffer | | DXR1 TX Buffer |
| XSR2 —> XSR1 ——» MDXx
| RSR2 l— RSR1 l— MDRx
16 16
| RBR2 Register | | RBR1 Register |
| DRR2RxBuffer | | DRR1RXBuffer | MCLKRx

5]

1 16
: l «— MFSRx
< Peripheral / DMA Bus |

The McBSP provides a high-speed direct interface to codecs, analog interface chips (AICs), and
other serially connected A/D and D/A devices. It has double-buffered transmission and triple-
buffered reception for supporting continuous data streams. There are 128 channels for
transmission and reception, and data size selections of 8, 12, 16, 20, 24, and 32 bits, along with
p-law and A-law companding.

TMS320F2837xD Microcontroller Workshop - Communications 12 - 13

Multichannel Buffered Serial Port (McBSP)

Definition: Bit, Word, and Frame

Definition: Bit and Word

cx[JUUUULUUUULUUUL
FS B
D (al(a) | (b7(be)b5(b4b3)b2 b1 b0
> < Word ——»
Bit

¢ “Bit” - one data bit per serial clock period

¢ “Word” or “channel” contains
number of bits (8, 12, 16, 20, 24, 32)

Definition: Word and Frame

FS [|

D (wexw7) (WO XWX wW2XW3XWAXWHEXWEXWT)
g <+—— Frame ———»
Word

¢ “Frame” - contains one or multiple words
¢ Number of words per frame: 1-128

12-14 TMS320F2837xD Microcontroller Workshop - Communications

Multichannel Buffered Serial Port (McBSP)

Multi-Channel Selection

Multi-Channel Selection

Multi-channel cho-0
Frame TDM Bit Stream ulti-channe Cho-1

Cl-o —[chat] - [ch1 [cho |—{ ¥ Tragsm“ —
0 -1 -fom - [T £ | peme > [
¢ P Channels Ch27-0

Ch27-1

¢ Allows multiple channels (words) to be independently selected for transmit
and receive (e.g. only enable ChQ, 5, 27 for receive, then process via CPU)

¢ The McBSP keeps time sync with all channels, but only “listens” or “talks”
if the specific channel is enabled (reduces processing/bus overhead)

¢ Multi-channel mode controlled primarily via two registers:

Multi-channel Control Reg Rec/Xmt Channel Enable Regs
MCR | | RIXCER (AH)
(enables Mc-mode) (enable/disable channels)

¢ Upto 128 channels can be enabled/disabled

McBSP Summary
McBSP Summary

¢ Independent clocking and framing for
transmit and receive

¢ Internal or external clock and frame sync
¢ Data size of 8, 12, 16, 20, 24, or 32 bits

¢ TDM mode - up to 128 channels
¢ Used for T1/E1 interfacing

¢ u-law and A-law companding

¢ SPI mode

¢ Direct Interface to many codecs
¢ Can be serviced by the DMA

TMS320F2837xD Microcontroller Workshop - Communications 12 -15

Inter-Integrated Circuit (12C)

Inter-Integrated Circuit (12C)

Inter-Integrated Circuit (12C)

Philips 12C-bus specification compliant, version 2.1

Data transfer rate from 10 kbps up to 400 kbps

Each device can be considered as a Master or Slave

Master initiates data transfer and generates clock signal

Device addressed by Master is considered a Slave

Multi-Master mode supported

Standard Mode — send exactly n data values (specified in register)

Repeat Mode — keep sending data values (use software to initiate a
stop or new start condition)

L 2R R JEE JER 2R 2R BN 2

VDD

Pull-up 28x 12C
Resistors 12C Controller
Serial Data (SDA) [l
Serial Clock (SCL) I I
12C 28x
EPROM 12C

The 12C provides an interface between devices that are compliant 12C-bus specification version
2.1 and connect using an 12C-bus. External components attached to the 2-wire serial bus can
transmit or receive 1 to 8-bit data to or from the device through the 12C module.

12C Block Diagram

[2CXSR [« I2CDXR
TX FIFO
SDA « >
RX FIFO
» [2CRSR » |2CDRR
SCL < . (IZIoc.k
Circuits

12 -16

TMS320F2837xD Microcontroller Workshop - Communications

Inter-Integrated Circuit (12C)

12C Operating Modes and Data Formats

12C Operating Modes

Operating Mode Description

Slave-receiver mode Module is a slave and receives data from a master
(all slaves begin in this mode)

Slave-transmitter mode Module is a slave and transmits data to a master
(can only be entered from slave-receiver mode)

Master-receiver mode Module is a master and receives data from a slave
(can only be entered from master-transmit mode)

Master-transmitter mode | Module is a master and transmits to a slave
(all masters begin in this mode)

I2C Serial Data Formats

7-Bit Addressing Format
1 7 1 1 n 1 n 1 1

[S] Slaveaddress [RW[ACK] Data [ACK] Data [AcK| P]

10-Bit Addressing Format

1 7 1 1 8 1 n 1 1
[s] 111108A [RIW[ACK] AAAAAAAA [ACK] Data [AcK] P |

Free Data Format

1 n 1 n 1 n 1 1
[s] Data [ACK] Data | ACK] Data [AcK| P |

R/W = 0 — master writes data to addressed slave

R/W = 1 — master reads data from the slave

n =1 to 8 bits

S = Start (high-to-low transition on SDA while SCL is high)
P = Stop (low-to-high transition on SDA while SCL is high)

TMS320F2837xD Microcontroller Workshop - Communications 12 - 17

Inter-Integrated Circuit (12C)

12C Arbitration

¢ Arbitration procedure invoked if two or more master-
transmitters simultaneously start transmission

+ Procedure uses data presented on serial data bus (SDA) by
competing transmitters

+ First master-transmitter which drives SDA high is overruled
by another master-transmitter that drives SDA low

+ Procedure gives priority to the data stream with the lowest
binary value

SCL i
H Device #1 lost arbitration

and switches to slave-

Data from M'—/ receiver mode
device #1 !

Data from i Device #2
device #2 110 Oéo—l/ drives SDA
SDA 110 o0f|1]0]21
1I2C Summary

12C Summary

¢ Compliance with Philips 12C-bus
specification (version 2.1)

¢ 7-bit and 10-bit addressing modes
¢ Configurable 1 to 8 bit data words

¢ Data transfer rate from 10 kbps up to
400 kbps

¢ Transmit FIFO and receive FIFO

12 - 18 TMS320F2837xD Microcontroller Workshop - Communications

Universal Serial Bus (USB)

Universal Serial Bus (USB)

Universal Serial Bus (USB) Controller

¢ Complies with USB 2.0 Implementers Forum certification standards

¢ Full-speed (12 Mbps) operation in Device mode; Full- /low-speed
(12 Mbps / 1.5 Mbps) operation in Host mode

Integrated PHY
¢ Thirty-two endpoints

¢ Onededicated control IN endpoint and one dedicated control OUT
endpoint

¢ Fifteen configurable IN endpoints and fifteen configurable OUT
endpoints

*

Endpaint Contral

EPD-31
Control

CPU Interface

Interrupts
——

Combine
Endpeints

] b

utm Packet FIFD RAM
izati Controller

USB PHY
[_DataSvne] [Facket Encode |
-
| |- [Facket Decode] Tx
Eulf

Us8 FSILS
PHY

CPU Bus

B

[Timers | (SRt Gen'tneor | [yt Control]

USB DataLines
D+ andD-

The USB operates as a full-speed function controller during point-to-point communications with a
USB host. It complies with the USB 2.0 standard, and a dynamically sizeable FIFO supports
gueuing of multiple packets.

USB

¢ Formed by the USB Implementers Forum (USB-IF)
¢ http://www.usb.org

¢ USB-IF has defined standardized interfaces for

common USB application, known as Device Classes

¢ Human Interface Device (HID)

¢ Mass Storage Class (MSC)

¢ Communication Device Class (CDC)

¢ Device Firmware Upgrade (DFU)

¢ Refer to USB-IF Class Specifications for more information

¢ USB is:

¢ Differential

¢ Asynchronous

¢ Serial

¢ NRZI Encoded

¢ Bit Stuffed

¢ USB is a HOST centric bus!

TMS320F2837xD Microcontroller Workshop - Communications 12 -19

Universal Serial Bus (USB)

USB Communication

USB Communication

¢ A component on the bus is either a...
¢ Host (the master)

¢ Device (the slave) — also known as peripheral or
function

¢ Hub (neither master nor slave; allows for expansion)
¢ Communication model is heavily master/slave
¢ As opposed to peer-to-peer/networking (i.e. 1394/Firewire)

¢ Master runs the entire bus

¢ Only the master keeps track of other devices on bus
¢ Only the master can initiate transactions

¢ Slave simply responds to host commands

¢ This makes USB simpler, and cheaper to
implement

Enumeration

Enumeration

¢ USB is universal because of Enumeration
¢ Process in which a Host attempts to identify a Device

¢ If no device attached to a downstream port,
then the port sees Hi-Z

¢ When full-speed device is attached, it pulls up
D+ line

¢ When the Host see a Device, it polls for
descriptor information
¢ Essentially asking, “what are you?”

¢ Descriptors contain information the host can
use to identify a driver

12-20 TMS320F2837xD Microcontroller Workshop - Communications

Universal Serial Bus (USB)

F28x USB Hardware
USB Hardware

¢ The USB controller requires a total of three signals (D+, D-, and
VBuUSs) to operate in device mode and two signals (D+, D-) to operate
in embedded host mode
¢ VBus implemented in software using external interrupt or polling
¢ GPIOs are NOT 5V tolerant

¢ To make them tolerant use 100kQ and internal device ESD diode clamps

+3V3

100 k
GPIOX £2H veus
USB-DPIGPIO43 3§‘2_ D+
USB-DMIGPIO42 = ©-
r GND
GND GND

Note: (1) VBus sensing is only required in self-powered applications

(2) Device pins D+ and D- have special buffers to support the high speed requirements
of USB; therefore their position on the device is not user-selectable

USB Controller Summary

USB Controller Summary
¢ Complies with USB 2.0 specifications
¢ Full-speed (12 Mbps) Device controller

¢ Full- /Low-speed (12 Mbps/1.5 Mbps) Host
controller

¢ The DMA controller may be used to read and
write the USB FIFOs via software triggering

¢ Full software library with application examples
is provided within C2000Ware™

TMS320F2837xD Microcontroller Workshop - Communications 12-21

Controller Area Network (CAN)

Controller Area Network (CAN)
Controller Area Network (CAN)

A Multi-Master Serial Bus System
¢ CAN 2.0B Standard
High speed (up to 1 Mbps)

Add a node without disturbing the bus (humber of nodes not
limited by protocol)

Less wires (lower cost, less maintenance, and more reliable)
Redundant error checking (high reliability)

No node addressing (message identifiers)

Broadcast based signaling

L 2R 4

* 6 o o

The CAN module is a serial communications protocol that efficiently supports distributed real-time
control with a high level of security. It supports bit-rates up to 1 Mbit/s and is compliant with the
CAN 2.0B protocol specification.

CAN does not use physical addresses to address stations. Each message is sent with an
identifier that is recognized by the different nodes. The identifier has two functions — it is used for
message filtering and for message priority. The identifier determines if a transmitted message
will be received by CAN modules and determines the priority of the message when two or more
nodes want to transmit at the same time.

12 - 22 TMS320F2837xD Microcontroller Workshop - Communications

Controller Area Network (CAN)

CAN Bus and Node

CAN Bus

¢ Two wire differential bus (usually twisted pair)

¢ Max. bus length depend on transmission rate
¢ 40 meters @ 1 Mbps

CAN CAN
NODE A NODE B

CAN_H

120Q 120Q

—L

CAN_L

The MCU communicates to the CAN Bus using a transceiver. The CAN bus is a twisted pair wire
and the transmission rate depends on the bus length. If the bus is less than 40 meters the
transmission rate is capable up to 1 Mbit/second.

CAN Node

Wired-AND Bus Connection

CAN_H

1200 [:]

1200
CAN_L

M\

CAN Transceiver
(e.g. TI SN65HVD23x)

TX RX

CAN Controller
(e.g. TMS320F28xxx)

TMS320F2837xD Microcontroller Workshop - Communications 12 - 23

Controller Area Network (CAN)

Principles of Operation

Principles of Operation

¢ Data messages transmitted are identifier based, not
address based

¢ Content of message is labeled by an identifier that is
unique throughout the network

¢ (e.g. rpm, temperature, position, pressure, etc.)

¢ All nodes on network receive the message and each
performs an acceptance test on the identifier

¢ If message is relevant, it is processed (received);
otherwiseitis ignored

¢ Unique identifier also determines the priority of the
message

¢ (lower the numerical value of the identifier, the higher the
priority)
¢ When two or more nodes attempt to transmit at the
same time, a non-destructive arbitration technique
guarantees messages are sent in order of priority
and no messages are lost

Non-Destructive Bitwise Arbitration
¢ Bus arbitration resolved via arbitration with
wired-AND bus connections

¢ Dominate state (logic 0, bus is high)
¢ Recessive state (logic 1, bus is low)

"
Node A ™ P Node A wins

............ L =
Node B |

CANBus |_,_| _l -

Node B loses /‘ \ Node C loses

arbitration

arbitration

12 -24

TMS320F2837xD Microcontroller Workshop - Communications

Controller Area Network (CAN)

Message Format and Block Diagram

CAN Message Format

¢ Data is transmitted and received using Message Frames
¢ 8 byte data payload per message
¢ Standard and Extended identifier formats

¢ Standard Frame: 11-bit Identifier (CAN v2.0A)

Arbitration Control
Field Field Data Field

S| 1bit [R|!
O | |dentifier ; D{ro| pLC | 0...8 Bytes Data |CRC | ACK

mom

¢ Extended Frame: 29-bit Identifier (CAN v2.0B)

Control

Arbitration Field Field Data Field
S . S| . R E
11-bit 18-bit
g Identifier R|D Identifier ;rl 10| DLC | 0...8Bytes Data | CRC |ACK ('3

The MCU CAN module is a full CAN Controller. It contains a message handler for transmission
and reception management, and frame storage. The specification is CAN 2.0B Active — that is,

the module can send and accept standard (11-bit identifier) and extended frames (29-bit
identifier).

CAN Block Diagram

CPU Bus {} (8, 16 or 32-bit)

CAN {}
’ Module Interface ‘
Testﬁ @
Modes
Message Only
RAM Register and Message
Message Object Access (Ifx)
32 <:> RAM
Interface
Message <::> Message Handler |
Objects
‘ CAN Core ‘
CAN_TX CAN_RX
SN65HVD23x

3.3-V CAN Transceiver

l— CAN Bus

TMS320F2837xD Microcontroller Workshop - Communications 12 -25

Controller Area Network (CAN)

The CAN controller module contains 32 mailboxes for objects of 0 to 8-byte data lengths:
e configurable transmit/receive mailboxes

e configurable with standard or extended indentifier

The CAN module mailboxes are divided into several parts:
e MID - contains the identifier of the mailbox

e MCF (Message Control Field) — contains the length of the message (to transmit or
receive) and the RTR bit (Remote Transmission Request — used to send remote
frames)

e MDL and MDH - contains the data
The CAN module contains registers which are divided into five groups:
e Control & Status Registers
e Local Acceptance Masks
e Message Object Time Stamps
e Message Object Timeout

e Mailboxes

CAN Summary

CAN Summary

¢ Fully compliant with CAN standard v2.0B
¢ Supports data rates up to 1 Mbps

¢ Thirty-two message objects
¢ Configurable as receive or transmit
¢ Configurable with standard or extended identifier
¢ Programmable receive mask
¢ Uses 32-bit time stamp on messages
¢ Programmable interrupt scheme (two levels)
¢ Programmable alarm time-out

¢ Programmable wake-up on bus activity
¢ Two interrupt lines
¢ Self-test mode

12 - 26 TMS320F2837xD Microcontroller Workshop - Communications

Support Resources

Introduction

This module contains various references to support the development process.

Module Objectives

Module Objectives

¢ Tl Workshops Download Site
¢ Documentation Resources

¢ C2000Ware™

¢ Tl Development Tools

¢ Additional Resources
¢ Product Information Center
¢ On-line support

TMS320F2837xD Microcontroller Workshop - Support Resources 13-1

Tl Support Resources

Chapter Topics

SUPPOIT RESOUICES ...ttt bbbttt et e et s sttt sttt st s s s s s e st s st s e e s s e snnnnen 13-1
T1 SUPPOIT RESOUITES ... s 13-3
C2000 Workshop DowWnIoad WIKIuueeeieeisiciieiee e e e e e e e ran e e e e e e ennes 13-3
DOCUMENLALION RESOUICES......ciiiiiiiieiiiiie ettt ettt sttt e ettt e et e e sab et e e sbbe e e e snbeneeesneeeeas 13-4
C2000WV B ™ Lttt e ettt e e e et e et e e e s e s e e e et e e e s e e R e et et e e e e h e e et e e e e e e a b rrre et eee e e nne 13-4
(92010101 T o 1= 10 0 =T 01 (=T T | SO PRERR 13-5
F28335 Peripheral EXPIOrer Kit........c.uueeiiiiiiiiiiieiee ettt e e e e 13-6
C2000 LaunchPad Evaluation Kitccoiiiiiiiiiiiaee et e e e e 13-7
C2000 controlCARD APPIICAtION KISeiiiiiiiiiiiieiie ettt e e 13-8
XDS100 / XDS200 Class JTAG Debug Probes............ooiiiiiiiiiiiiiiiiieee e 13-9
Product INformation RESOUICESuuiiiiiiiiiiiitiiie ettt e e et e e e e e e aees 13-10

13-2

TMS320F2837xD Microcontroller Workshop - Support Resources

Tl Support Resources

Tl Support Resources
C2000 Workshop Download Wiki

C2000 Workshop Download Wiki

Log in Request account

. Page Discussion Read View source View history Q
‘.!;'Ibms
INSTRUMENTS
Hands-On Training for TI Embedded Processors
Main Page The workshops available here offer hands-on training for Tl embedded processors. You can access
All pages

the workshop materials from this site, organized by specific processor families. Many of these
All categories

Recent changes
Random page
Help Workshop Descriptions and Materials
Print/export C€2000™ 32-bit Real-Time MCU Training
Create a book
Download as PDF
Printable version

warkshops also include recorded anline videos

C2000™ One-Day Workshop - anline videos provided

C2000™ Multi-Day Workshop

F2837xD™ Workshop

C2000™ Archived Workshops (F2407 / F2812 / F2808 / F28335/ F28027 / F28035 / F28069 /
F28M35x)

Toolbox
What links here
Related changes

http://www.ti.com/hands-on-training

At the C2000 Workshop Download Wiki you will find all of the materials for the C2000 One-day
and Multi-day Workshops, as well as the C2000 archived workshops, which include support for

the following device families:

F2407
F2812
F2808
F28335
F28027
F28035
F28069
F28M35x

TMS320F2837xD Microcontroller Workshop - Support Resources

13-3

Tl Support Resources

Documentation Resources

Documentation Resources

¢ Data Sheet
¢ Contains device electrical characteristics and
timing specifications
¢ Key document for hardware engineers
¢ Silicon Errata
¢ Contains deviations from original specifications
¢ Includes silicon revision history
¢ Technical Reference Manual (TRM)

+ Contains architectural descriptions and
register/bit definitions
¢ Key document for firmware engineers

¢ Workshop Materials
¢ Hands-on device training materials

¢ For hardware and software engineers
Documentation resources can be found at
www.ti.com/c2000
C2000Ware™
C2000Ware™
9 workspace_v7 - ©C5 Edit - T1 Resource Explorer - Code Composer Studio e 5 (=1E3]
Flie Edt View Navigate Project Run Sopts Window Hep
e R ovgv 0 LE= RS ik aceess | =t |[E8
- @peie e D+—— Resource Explorer - a
2 Y ® =
& De ; CZ000Ware
¥ oe
it | Directory Structure | ™ =
i —‘ L;l:::ale 1_00_02_00 / 5% -
' %) device_support : :‘ _'
B A : =
lhrares [B
uninstalers - §
77777777777777777 c ;;(;(;h;;m English .
0 -
N -
e
3

C2000Ware for C2000 microcontrollers is a cohesive set of software infrastructure, tools, and
documentation that is designed to minimize system development time. It includes device-specific

13-4

TMS320F2837xD Microcontroller Workshop - Support Resources

Tl Support Resources

drivers and support software, as well as system application examples. C2000Ware provides the
needed resources for development and evaluation. It can be downloaded from the Tl website.

C2000 Experimenter’s Kit
C2000 Experimenter Kit

¢ Experimenter Kits include
¢ controlCARD
¢ USB docking station

¢ C2000 applications software with
example code and full hardware

¢ Part Number: details available in C2000Ware
¢ TMDSDOCK28379D & Code Composer Studio (download)
¢ TMDSDOCK28069 Docki tati feat
+ TMDSDOCK 28035 ¢ DocCKing station reatures
¢ TMDSDOCK?28027 ¢ Access to controlCARD signals
¢ TMDSDOCK?28335 ¢ Breadboard areas
¢ TMDSDOCK2808 & On-board USB JTAG debug probe
¢ TMDSDOCKH52C1

¢ JTAG debug probe not required

JTAG debug probe requiredfor: o Aygjlable through Tl authorized

¢ TMDSDOCK28343 distributors and the Tl store
+ TMDSDOCK?28346-168

The C2000 Experimenter Kits is a tool for device exploration and initial prototyping. These kits
are complete, open source, evaluation and development tools where the user can modify both the
hardware and software to best fit their needs.

The various Experimenter’s Kits shown on this slide include a specific control CARD and Docking
Station. The docking station provides access to all of the controlCARD signals with two
prototyping breadboard areas and header pins, allowing for development of custom solutions.
Most have on-board USB JTAG emulation capabilities and no external debug probe or power
supply is required. However, where noted, the kits based on a DIMM-168 controlCARD include a
5-volt power supply and require an external JTAG debug probe.

TMS320F2837xD Microcontroller Workshop - Support Resources 13-5

Tl Support Resources

F28335 Peripheral Explorer Kit
F28335 Peripheral Explorer Kit

¢ Experimenter Kit includes
¢ F28335 controlCARD
¢ Peripheral Explorer baseboard

¢ C2000 applications software with
example code and full hardware details
available in C2000Ware

¢ Code Composer Studio (download)
¢ Peripheral Explorer features
¢ ADC input variable resistors
¢ GPIO hex encoder & push buttons
¢ eCAP infrared sensor
¢ GPIO LEDs, 12C & CAN connection
¢ Analog I/O (AIC+McBSP)
¢ On-board USB JTAG debug probe
¢ JTAG debug probe not required
¢ Available through Tl authorized
distributors and the Tl store

TMDSPREX28335

The C2000 Peripheral Explorer Kit is a learning tool for new C2000 developers and university
students. The kit includes a peripheral explorer board and a control CARD with the
TMS320F28335 microcontroller. The board includes many hardware-based peripheral
components for interacting with the various peripherals common to C2000 microcontrollers, such
as the ADC, PWMs, eCAP, I12C, CAN, SPI and McBSP. A teaching ROM is provided containing
presentation slides, a learning textbook, and laboratory exercises with solutions.

13-6

TMS320F2837xD Microcontroller Workshop - Support Resources

Tl Support Resources

C2000 LaunchPad Evaluation Kit
C2000 LaunchPad Evaluation Kit

& Low-cost evaluation kit

¢ F28027 and F28379D standard
versions

& F28027F version with InstaSPIN-FOC

¢ F28069M version with InstaSPIN-
MOTION

& Various BoosterPacks available

¢ On-board JTAG debug probe
¢ JTAG debug probe not required

¢ Access to LaunchPad signals
¢ C2000 applications software

¢ Part Number: with example code and full
o LAUNCHXL-F28027 hardware details in available in
o LAUNCHXL-F28027F C2000ware

o LAUNCHXL-F28069M ¢ Code Composer Studio (download)

o LAUNCHXL-F28379D ¢ Available through Tl authorized
distributors and the Tl store

The C2000 LaunchPads are low-cost, powerful evaluation platforms which are used to develop
real-time control systems based on C2000 microcontrollers. Various LaunchPads are available
and developers can find a LaunchPad with the required performance and feature mix for any
application. The C2000 BoosterPacks expand the power of the LaunchPads with application-
specific plug-in boards, allowing developers to design full solutions using a LaunchPad and
BoosterPack combination.

TMS320F2837xD Microcontroller Workshop - Support Resources 13-7

Tl Support Resources

C2000 controlCARD Application Kits
C2000 controlCARD Application Kits

Y ¢ Developer’s Kit for — Motor Control,
Digital Power, etc. applications
¢ Kitsincludes

+ controlCARD and application specific
baseboard

+ Code Composer Studio (download)
¢ Software download includes

+ Complete schematics, BOM, gerber
files, and source code for board and
all software

+ Quickstart demonstration GUI for
quick and easy access to all board
features

+ Fully documented software specific to
each kit and application

¢ See www.ti.com/c2000 for other kits
and more details

¢ Available through Tl authorized
distributors and the Tl store

The C2000 Application Kits demonstrate the full capabilities of the C2000 microcontroller in a
specific application. The kits are complete evaluation and development tools where the user can
modify both the hardware and software to best fit their needs. Each kit uses a device specific
controlCARD and a specific application board. All kits are completely open source with full
documentation and are supplied with complete schematics, bill of materials, board design details,
and software. Visit the Tl website for a complete list of available Application Kits.

13-8

TMS320F2837xD Microcontroller Workshop - Support Resources

Tl Support Resources

XDS100 / XDS200 Class JTAG Debug Probes

Probes

XDS100 / XDS200 Class JTAG Debug

¢ Blackhawk ¢ Spectrum Digital
¢ USB100v2 ¢ XDS100v2

¢ Blackhawk ¢ Spectrum Digital
¢ USB200 ¢ XDS200
www.blackhawk-dsp.com www.spectrumdigital.com

The JTAG debug probes are used during development to program and communicate with the
C20000 microcontroller. While almost all C2000 development tool include emulation capabilities,
after you have developed your own target board an external debug probe will be needed.
Various debug probes are available with different features and at different price points. Shown

here are popular debug probes from two manufacturers.

TMS320F2837xD Microcontroller Workshop - Support Resources

13-9

Tl Support Resources

Product Information Resources

For More Information . ..

¢ USA - Product Information Center (PIC)
Phone: 800-477-8924 or 512-434-1560
¢ E-mail: support@ti.com

¢ Tl E2E Community (videos, forums, blogs)
¢ http://e2e.ti.com

¢ Embedded Processor Wiki
¢ http://processors.wiki.ti.com

¢ Tl Training
¢ http://training.ti.com

¢ Tl store
¢ http://store.ti.com

¢ Tl website

¢ http://www.ti.com

For more information and support, contact the product information center, visit the Tl E2E
community, embedded processor Wiki, Tl training web page, Tl eStore, and the TI website.

13-10 TMS320F2837xD Microcontroller Workshop - Support Resources

Appendix A — F28379D Experimenter Kit

Overview

This appendix provides a quick reference and mapping of the header pins used on the F28379D
LaunchPad and F28379D Experimenter Kit. This allows either development board to be used
with the workshop.

TMS320F2837xD Microcontroller Workshop - Appendix Appendix A A-1

F28379D Experimenter Kit

Chapter Topics

Appendix A — F28379D EXPerimenter Kit ...t e e A-1
F28379D EXPErMENTET Kit.... oottt ettt e e e e et e e e e e e e s nab e eeeaae s A-3
INItIA] HArAWare SEUDcuvieiiiee e e e s s e e s st e e e e e e s s e e e e e e sennnnbe e e e e e e e e snnnenneees A-3
Docking Station and LaunchPad Pin Mapping..........cccoccuriirreeeiiiiiiiieeee e ssssineeeeee e e ssnsneeees A-3
controlCARD and LaunchPad LED Mappingccooicciuiiiieeeeieiiiiieeeee e e sessineeeeee e s sesnnnneneeeee s A-4
Stand-Alone Operation (NO EMUIALOT)uiviieiiiiiiiiiece et e e e srrane e e e e e A-4

TMS320F2837xD Microcontroller Workshop — Appendix A

F28379D Experimenter Kit

F28379D Experimenter Kit

Initial Hardware Setup
e F28379D Experimenter Kit:

Insert the F28379D controlCARD into the Docking Station connector slot. Using the two (2)
supplied USB cables — plug the USB Standard Type A connectors into the computer USB ports
and plug the USB Mini-B connectors as follows:

e A:J1 on the controlCARD (left side) — isolated XDS100v2 JTAG emulation
e J17 on the Docking Station — board power

On the Docking Station move switch S1 to the “USB-ON” position. This will power the Docking
Station and controlCARD using the power supplied by the computer USB port. Additionally, the
other computer USB port will power the on-board isolated JTAG emulator and provide the JTAG
communication link between the device and Code Composer Studio.

Docking Station and LaunchPad Pin Mapping

Function Docking Station LaunchPad
ADCINAO ANA header, Pin # 09 J3-30

GND GND J2-20 (GND)
GPI0O19 Pin # 73 J1-3

GPI1018 Pin# 71 J1-4
DACOUTB ANA header, Pin # 11 J7-70

PWM1A Pin # 49 J4-40

ECAP1 (via Input X-bar) Pin # 75 (GP1024) J4-34 (GP1024)

TMS320F2837xD Microcontroller Workshop — Appendix A A-3

F28379D Experimenter Kit

controlCARD and LaunchPad LED Mapping

Function controlCARD LaunchPad
LED - Power LED LD1 (green) LED D1 (green)
LED - GPIO31 LED LD2 (red) LED D10 (blue)
LED — GPI034 LED LD3 (red) LED D9 (red)

Stand-Alone Operation (No Emulator)

When the device is in stand-alone boot mode, the state of GPIO72 and GPIO84 pins are used to
determine the boot mode. On the control CARD switch SW1 controls the boot options for the
F28379D device. Check that switch SW1 positions 1 and 2 are set to the default “1 — on” position
(both switches up). This will configure the device (in stand-alone boot mode) to GetMode. Since
the OTP_KEY has not been programmed, the default GetMode will be boot from flash. Details of
the switch positions can be found in the controlCARD information guide.

TMS320F2837xD Microcontroller Workshop — Appendix A

	TMS320F2837xD Microcontroller Workshop
	Important Notice
	Revision History

	TMS320F2837xD Microcontroller Workshop
	Workshop Outline
	Required Workshop Materials
	Development Tools
	TMS320F28x7x Device Comparison
	TMS320F28x7x Block Diagrams

	C28xm01.pdf
	Architecture Overview
	Introduction to the TMS320F28x7x
	C28x Internal Bussing

	C28x CPU + FPU + VCU + TMU and CLA
	Special Instructions
	CPU Pipeline
	C28x CPU + FPU + VCU + TMU Pipeline
	Peripheral Write-Read Protection

	Memory
	Memory Map
	Dual Code Security Module (DCSM)
	Peripherals

	Fast Interrupt Response Manager
	Math Accelerators
	Viterbi / Complex Math Unit (VCU-II)
	Trigonometric Math Unit (TMU)

	On-Chip Safety Features
	Summary

	C28xm02.pdf
	Programming Development Environment
	Code Composer Studio
	Software Development and COFF Concepts
	Code Composer Studio
	Edit and Debug Perspective (CCSv7)
	Target Configuration
	CCSv7 Project
	Creating a New CCSv7 Project
	CCSv7 Build Options – Compiler / Linker
	CCS Debug Environment

	Creating a Linker Command File
	Sections
	Program Code (.text)
	Constants (.cinit – initialized data)
	Variables (.ebss – uninitialized data)

	Linker Command Files (.cmd)
	Memory-Map Description
	Section Placement
	Summary: Linker Command File

	Lab File Directory Structure
	Lab 2: Linker Command File
	Start Code Composer Studio and Open a Workspace
	Setup Target Configuration
	Create a New Project
	Project Build Options
	Linker Command File – Lab2.cmd
	Build and Load the Project
	Debug Environment Windows
	Single-stepping the Code
	Terminate Debug Session and Close Project
	End of Exercise

	C28xm03.pdf
	Peripherial Registers Header Files
	Register Programming Model
	Traditional and Structure Approach to C Coding
	Naming Conventions
	F2837xD C-Code Header Files
	Global Variable Definitions File
	Mapping Structures to Memory
	Linker Command File
	Peripheral Specific Routines

	Summary

	C28xm04.pdf
	Reset and Interrupts
	Reset and Boot Process
	Reset - Bootloader
	Emulation Boot Mode
	Stand-Alone Boot Mode
	Reset Code Flow – Summary
	Emulation Boot Mode using Code Composer Studio GEL
	Getting to main()
	Peripheral Software Reset Registers

	Interrupts
	Interrupt Processing
	Interrupt Flag Register (IFR)
	Interrupt Enable Register (IER)
	Interrupt Global Mask Bit (INTM)
	Peripheral Interrupt Expansion (PIE)
	PIE Block Initialization
	Interrupt Signal Flow – Summary
	F2837xD Dual-Core Interrupt Structure
	Interrupt Response and Latency

	C28xm05.pdf
	System Initialization
	Oscillator/PLL Clock Module
	F2837xD Dual-Core System Clock

	Watchdog Timer
	General Purpose Digital I/O
	GPIO Input X-Bar
	GPIO Output X-Bar

	External Interrupts
	Low Power Modes
	Register Protection
	Lab 5: System Initialization
	Create a New Project
	Project Build Options
	Modify Memory Configuration
	Setup System Initialization
	Build and Load
	Run the Code – Watchdog Reset Disabled
	Run the Code – CCS Issued CPU Reset
	Run the Code – Watchdog Reset Enabled (Hardware Reset)
	Setup PIE Vector for Watchdog Interrupt
	Build and Load
	Run the Code – Watchdog Interrupt
	Terminate Debug Session and Close Project
	End of Exercise

	C28xm06.pdf
	Analog Subsystem
	Analog-to-Digital Converter (ADC)
	ADC Block and Functional Diagrams
	ADC Triggering
	ADC Conversion Priority
	Post Processing Block
	ADC Clocking Flow
	ADC Registers
	Signed Input Voltages
	ADC Calibration and Reference

	Comparator Subsystem (CMPSS)
	Comparator Subsystem Block Diagram

	Digital-to-Analog Converter (DAC)
	Buffered DAC Block Diagram

	Sigma Delta Filter Module (SDFM)
	SDFM Block Diagram

	Lab 6: Analog-to-Digital Converter
	Notes
	Open the Project
	Setup ADC Initialization and Enable Core/PIE Interrupts
	Build and Load
	Run the Code
	Using Real-time Emulation
	Setup DAC to Generate a Sine Waveform
	Terminate Debug Session and Close Project
	Optional Exercise
	If you finish early, you might want to experiment with the code by observing the effects of changing the OFFTRIM value. Open a watch window to the AdcaRegs.ADCOFFTRIM register and change the OFFTRIM value. If you did not get 0x0000 in step 11, you c...
	End of Exercise

	C28xm07.pdf
	Control Peripherals
	PWM Review
	ePWM
	ePWM Time-Base Sub-Module
	ePWM Compare Sub-Module
	ePWM Action Qualifier Sub-Module
	Asymmetric and Symmetric Waveform Generation using the ePWM
	PWM Computation Example
	ePWM Dead-Band Sub-Module
	ePWM Chopper Sub-Module
	ePWM Trip-Zone and Digital Compare Sub-Modules
	ePWM Event-Trigger Sub-Module
	High Resolution PWM (HRPWM)

	eCAP
	eQEP
	Lab 7: Control Peripherals
	Open the Project
	Setup Shared I/O and ePWM1
	Build and Load
	Run the Code – PWM Waveform
	Frequency Domain Graphing Feature of Code Composer Studio
	Setup eCAP1 to Measure Width of Pulse
	Build and Load
	Run the Code – Pulse Width Measurement
	Optional Exercise – Modulate the PWM Waveform
	Terminate Debug Session and Close Project
	End of Exercise

	C28xm08.pdf
	Direct Memory Access
	Direct Memory Access (DMA)
	Basic Operation
	DMA Examples
	Channel Priority Modes
	DMA Throughput
	DMA Registers

	Lab 8: Servicing the ADC with DMA
	Open the Project
	Inspect Lab_8.cmd
	Setup DMA Initialization
	Setup PIE Interrupt for DMA
	Build and Load
	Run the Code – Test the DMA Operation
	Terminate Debug Session and Close Project
	End of Exercise

	C28xm09.pdf
	Control Law Accelerator
	Control Law Accelerator (CLA)
	CLA Block Diagram
	CLA Memory and Register Access
	CLA Tasks
	CLA Control and Execution Registers
	CLA Registers
	CLA Initialization
	CLA Task Programming
	CLA C Language Implementation and Restrictions
	CLA Assembly Language Implementation
	CLA Code Debugging

	Lab 9: CLA Floating-Point FIR Filter
	Open the Project
	Enabling CLA Support in CCS
	Inspect Lab_9.cmd
	Setup CLA Initialization
	Setup PIE Interrupt for CLA
	Build and Load
	Run the Code – Test the CLA Operation (Tasks in C)
	Change Task 1 to FIR Filter in Assembly
	Build and Load
	Run the Code – Test the CLA Operation (Tasks in C and ASM)
	Change All Tasks to Assembly
	Build and Load
	Run the Code – Test the CLA Operation (Tasks in ASM)
	Terminate Debug Session and Close Project
	End of Exercise

	Lab 9 Reference: Low-Pass FIR Filter

	C28xm10.pdf
	System Design
	Emulation and Analysis Block
	External Memory Interface (EMIF)
	Flash Configuration and Memory Performance
	Flash Programming
	Dual Code Security Module (DCSM)
	Lab 10: Programming the Flash
	Open the Project
	Link Initialized Sections to Flash
	Copying Interrupt Vectors from Flash to RAM
	Initializing the Flash Control Registers
	Dual Code Security Module and Passwords
	Executing from Flash after Reset
	Initializing the CLA
	Build – Lab.out
	Programming the On-Chip Flash Memory
	Running the Code – Using CCS
	Terminate Debug Session and Close Project
	Running the Code – Stand-alone Operation (No Emulator)
	End of Exercise

	Lab 12 Reference: Programming the Flash

	C28xm11.pdf
	Dual-Core Inter-Processor Communications
	Inter-Processor Communications
	IPC Global Shared RAM and Message RAM
	Interrupts and Flags
	IPC Data Transfer

	Lab 11: Inter-Processor Communications
	Open the Projects – CPU1 & CPU2
	Inspect the Project – CPU1
	Inspect the Project – CPU2
	Jumper Wire Connection
	Build and Load the Project
	Run the Code
	View the ADC Results
	Terminate Debug Session and Close Project
	End of Exercise

	C28xm12.pdf
	Communications
	Communications Techniques
	Serial Peripheral Interface (SPI)
	SPI Transmit / Receive Sequence
	SPI Summary

	Serial Communications Interface (SCI)
	Multiprocessor Wake-Up Modes
	SCI Summary

	Multichannel Buffered Serial Port (McBSP)
	Definition: Bit, Word, and Frame
	Multi-Channel Selection
	McBSP Summary

	Inter-Integrated Circuit (I2C)
	I2C Operating Modes and Data Formats
	I2C Summary

	Universal Serial Bus (USB)
	USB Communication
	Enumeration
	F28x USB Hardware
	USB Controller Summary

	Controller Area Network (CAN)
	CAN Bus and Node
	Principles of Operation
	Message Format and Block Diagram
	CAN Summary

	C28xm13.pdf
	Support Resources
	TI Support Resources
	C2000 Workshop Download Wiki
	Documentation Resources
	C2000Ware™
	C2000 Experimenter’s Kit
	F28335 Peripheral Explorer Kit
	C2000 LaunchPad Evaluation Kit
	C2000 controlCARD Application Kits
	XDS100 / XDS200 Class JTAG Debug Probes
	Product Information Resources

	C28xmA.pdf
	Appendix A – F28379D Experimenter Kit
	F28379D Experimenter Kit
	Initial Hardware Setup
	Docking Station and LaunchPad Pin Mapping
	controlCARD and LaunchPad LED Mapping
	Stand-Alone Operation (No Emulator)

