Setup Guide for AWR6843 Child Presence Detection w/Classification

Summary

- The child presence detection sensing demo is designed for the following TI 60GHz mmWave devices
 - AWR6843 : https://www.ti.com/product/AWR6843
 - AWR6843AOP: <u>https://www.ti.com/product/AWR6843AOP</u>

And can be downloaded at: My secure SW link

- In this presentation,
 - We will show how to use the child presence detection sensing demo with sensor in different mounting position and different antenna patterns inside a car/vehicle
 - All the CLI commands listed in this presentation are programmable through configuration file.

Configuration to Support Different Antenna Patterns

Support Different Antenna Pattern

- The CPD w/Classification demo has built in the flexibility to support different antenna patterns. The antenna pattern is input through the following CLI commands
 - antGeometry0
 - antGeometry1
 - antPhaseRot
- Antenna geometry parameters antGeometry0 and antGeometry1 define the virtual antenna's physical location index (0, -1, -2, ...) in the azimuth and elevation domains, respectively.
- The phase rotation parameter antPhaseRot defines the phase rotation introduced in the board design.
 - For example, on AWR6843 ISK board, there is no phase rotation between different antennas; on ODS and AOP board, some antenna patterns are fed from the opposite side as compared to others. Therefore, the phase rotation of 180 degrees (i.e., -1) is needed to apply.
- Next, we will provide examples to show how users can derive this values for different antenna pattern.

AWR6843 AOP

Support AWR6843 AOP Antenna

The Virtual antenna array for AOP is listed blow.

TX1-RX4 TX1-RX2 TX1-RX3 TX1-RX1 TX3-RX4 TX3-RX2 TX2-RX4 TX2-RX2 TX3-RX3 TX3-RX1 TX2-RX3 TX2-RX1

If the TX1, TX2 and TX3 is transmit in order, defined in chirp shown in below

chirpCfg 0 0 0 0 0 0 0 0 1 chirpCfg 1 1 1 0 0 0 0 2 chirpCfg 2 2 1 0 0 0 0 4

The visual antenna index becomes (as shown in figure)

	Azimuth Index					
ex		0	-1	-2	-3	
Ind	0	4	2			
uo	-1	3	1			
vati	-2	12	10	8	6	
Ele	-3	11	9	7	5	

•Then users can obtain the azimuth index and elevation index for antenna index 1 $-12\,$

•This is how you program antGeometry0 and antGeometry1

- antGeometry0 -1 -1 0 0 -3 -3 -2 -2 -1 -1 0 0
- antGeometry1 -1 0 -1 0 -3 -2 -3 -2 -3 -2 -3 -2

•For the phaseRotation, based on the information provided, the phase of RX1/RX3 is 180 phase inversion from RX2/RX4

antPhaseRot -1 1 -1 1 -1 1 -1 1 -1 1 -1 1

5

Support AWR6843 ODS Antenna

The visual antenna array for ODS is listed blow.

TX1-RX1 TX1-RX4 TX2-RX1 TX2-RX4 TX1-RX2 TX1-RX3 TX2-RX2 TX2-RX3 TX3-RX1 TX3-RX4 TX3-RX2 TX3-RX3

If the TX1, TX2 and TX3 is transmit in order, defined in chirp shown in below

chirpCfg 0 0 0 0 0 0 0 0 1 chirpCfg 1 1 1 0 0 0 0 2 chirpCfg 2 2 1 0 0 0 0 4

The visual antenna index becomes

	Azimuth Index					
ех		0	-1	-2	-3	
Ind	0	1	4	5	8	
ion	-1	2	3	6	7	
vati	-2			9	12	
Ele	-3			10	11	

MIMO Virtual Antenna Array

respect to RX1 and RX4. Because of this, a 180° phase inversion needs to be applied in software processing for the corresponding virtual RX channels (highlighted in Red)

•Then users can obtain the azimuth index and elevation index for antenna index 1 - 12

- •This is how you program antGeometry0 and antGeometry1
- antGeometry 0 0 0 -1 -1 -2 -2 -3 -3 -2 -2 -3 -3
- antGeometry 1 0 -1 -1 0 0 -1 -1 0 -2 -3 -3 -2

•For the phaseRotation, based on the information provided, the phase of RX2/RX3 is 180 phase inversion from RX1/RX4

– antPhaseRot 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1

Support AWR6843 ISK Antenna

• The visual antenna array for ISK is listed blow.

TX2-RX1 TX2-RX2 TX2-RX3 TX2-RX4

TX1-RX1 TX1-RX2 TX1-RX3 TX1-RX4 TX3-RX1 TX3-RX2 TX3-RX3 RX3-RX4

• If the TX1, TX2 and TX3 is transmitted in order, then the visual antenna index becomes

• Define the index for azimuth and elevation direction:

Then you can program antGeometry0 and antGeometry1

- For the phaseRotation, based on the information provided, there is no phase jump between different antennas.
 - antPhaseRot11111111111111

Configuration to Support different Sensor Mounting

Car Frame of Reference and Point Cloud Transformation

- The detected point cloud is all relative to the sensor.
 - The sensor position can change, but the seating zone for a car is fixed given a car.
 - For simplicity, in the visualizer, we define the seating zone based on the car coordinates, and transform the point cloud from sensor coordinates to the car coordinates.
- To support different position and different mounting angle, "sensorPosition" CLI command is used
 - Indicates the mounting offset in (x, y, z) and mounting rotation angle in y-z plane, x-y plane and x-z plane

CLI command	Parameters (in command order)
sensorPosition	offset in x direction, in meter
	offset in y direction, in meter
	offset in z direction, in meter
	Clockwise rotation angle in y-z plane, in degree
	Clockwise rotation angle in x-y plane, in degree
	Clockwise rotation angle in x-z plane, in degree

q

Mounting example 1: Front mounting

• When the sensor is mounted on the back of the rear mirror and facing straight forward, the sensor position should be programmed as

sensorPosition 0 0.1 0.8 5 0 0

CC

se

• This indicates the sensor is side mounted at (x=0, y= 0.1, z = 0.8m) and facing forward with slightly tilting down angle of 5 degree, i.e., 5 degree clockwise rotation in y-z plane.

_I omma I	Parameters (in command order)	Example Values for Front mounting
nsorP ition	offset in x direction, in meter	0
	offset in y direction, in meter	0.1
	offset in z direction, in meter	0.8
	Clockwise rotation angle in y-z plane, in degree	5
	Clockwise rotation angle in x-y plane, in degree	0
	Clockwise rotation angle in x-z plane, in degree	0

Х

Note: All the pictures are taking from the second row looking towards the first row.

Mounting example 2: Overhead Mounting

- when the sensor is mounted around the center of the roof facing downward, the sensor position should be programmed as
- sensorPosition 0 1.2 1.25 90 0 0
- This indicates the sensor is mounted at (x = 0, y = 1.2m, z = 1.25m) and rotated 90 degree to face the floor, i.e., 90 degree clockwise rotation in y-z domain.

	CLI comma nd	Parameters (in command order)	Example Values for Front mounting	
	sensorP osition	offset in x direction, in meter	0	Х
		offset in y direction, in meter	1.2	
		offset in z direction, in meter	1.25	
		Clockwise rotation angle in y-z plane, in degree	90	
		Clockwise rotation angle in x-y plane, in degree	0	
		Clockwise rotation angle in x-z plane, in degree	0	
Note: All the pictures are taking from the se The USB cable is on the passenger side	cond row	looking towards the first row.		

_∨ ₩

11

Mounting example 3: Overhead Mounting with x-y rotation

• Sensor mounted at the center of the roof facing downward, but rotated 90 degree in x-y domain,

sensorPosition 0 1.05 1.25 90 -90 0

• This indicates the sensor is mounted at (x = 0, y = 1.05m, z = 1.1m) and rotated 90 degree in yz domain to face the floor, then rotated 90 degree counter-clockwise in x-y domain

3	CLI comma nd	Parameters (in command order)	Example Values for Front mounting
	sensorP osition	offset in x direction, in meter	0
00000		offset in y direction, in meter	1.05
		offset in z direction, in meter	1.25
(0.0.0		Clockwise rotation angle in y-z plane, in degree	90
		Clockwise rotation angle in x-y plane, in degree	-90
		Clockwise rotation angle in x-z plane, in degree	0

Note: All the pictures are taking from the second row looking towards the first row

Mounting example 4: Overhead side mounting

- Sensor mounted at the passenger side of the roof, and tilting towards the driver side,
- sensorPosition -0.4 1.2 1.25 90 0 -25
- This indicates the sensor is mounted at (x = -0.4m, y = 1.2m, z = 1.25m) and rotated 90 degree in y-z domain to face the floor, then rotated 25 degree counter-clockwise in x-z plane towards the driver side

 CLI comma nd	Parameters (in command order)	Example Values for Front mounting	, ←		(0,0)
sensorP osition	offset in x direction, in meter	-0.4			
	offset in y direction, in meter	1.2		driver	
	offset in z direction, in meter	1.25			
	Clockwise rotation angle in y-z plane, in degree	90			
	Clockwise rotation angle in x-y plane, in degree	0			
	Clockwise rotation angle in x-z plane, in degree	-25			
				v	\mathbf{k}

Note: All the pictures are taking from the second row looking towards the first row.

13

Zone Design Example

Occupancy Display

- Some limitations in the visualizer
 - totNumRows: support 2 or 3 rows
- The limitation for the car occupancy display (as shown on the top right side)
 - First row supports two seats
 - Second row supports three seats
 - Third row supports three seats
 - Users can use zone definition to disable some of these seats
- No limitation on the point cloud display (as shown on the bottom right), users can define any other area, like footwell, intruder area and etc. These area will not display on the car occupancy display, but will show in the point cloud display.

Point Cloud Display

15

Zone Definition

- The zone is defined with a number of cuboids, which are simply rectangular volumes, having depth (y direction), width (x direction), and height (z direction). These cuboids will approximate the space where want occupants may be located.
- In this demo, 1, 2 or 3 (up to 3) cuboids per zone are defined.
 - A detected point in the point cloud residing any of these cuboids will be included in the calculations for determining occupancy.
 - If your zone is a cargo area, it may be needed to define only one cuboid to approximate the space.
 - For normal vehicle seats, foot well areas are included to check for children and pets. Hence three cuboids are defined
 - · Cuboid 1: Head and chest area
 - · Cuboid 2: Lap area
 - Cuboid 3: Foot well
- · Following slides show how to define zone areas

Zone area definition - X direction – measure a1~ a5

17

Y Direction – Measure b1~ b4

- First row
 - cuboid-1 can be set to (40cm, b2)
 - cuboid-2 set to (20, b2-20cm);
 - cuboid-3 set to (0, b1);
- Second row
 - cuboid-1 can be set to between (b2 + 40cm, b4)
 - cuboid-2 set to between (b2+20cm, b4)
 - cuboid-3 set to between (b1+40, b3).
- In Y direction, we can keep the same setting for all the seats in the same row.
- The adjustment 20cm, 40cm is to leave enough margin between the first row and second row and the same time, trying to cover enough foot-well area in case baby needs to be detected for foot-well. Customer can adjust these value as needed

Z direction – measure c1~ c2

- C1 = max (C11, C12)
- First row
 - cuboid-1 can be set to (c1+40cm, c2+20cm)
 - cuboid-2 set to (c1, c1+40cm)
 - cuboid-3 set to (-10cm, c1)
- Second row
 - cuboid-1 can be set to between (c1 + 30cm, c2+20cm)
 - cuboid-2 set to between (c1-10, c1+30)
 - cuboid-3 set to between (-10cm, c1-10).
- In Z direction, we can keep the same setting for all the seats in the same row.
- 10cm, 20cm, 30cm, 40cm above are just some rough adjustments. It was used to leave enough margin between the first row and second row and the same time, trying to cover enough foot-well area in case baby needs to be detected for foot-well.
- Customer can adjust these value as needed.

Example Zone Definition and Sensor Orientation Commands

3	% Sensor position
	% <voffects <voff<="" th=""></voffects>

% <xOffset> <yOffset> <zOffset> <yzTilt>,<xyTilt>,<xzTilt> sensorPosition 0 1.2 1.25 90 0 0

% Origin = -X to psngr, +X to driver, yStart, yEnd (0 = brake panel), zStart, zEnd (z: 0 start of the floor)

in cm
30
125
160
40
130
70
110
160
210
40
90
0
120
126

Measurement

% zone 1 (drive	er) cuboids		
cuboidDef 1 1	0.2 0.70	0.4 1.1 ().8 1.1
cuboidDef 1 2	0.2 0.70	0.2 0.9	0.4 0.8
cuboidDef 1 3	0.2 0.70	0 0.7 -0	.1 0.4
% zone 2 (front	t passenge	r) cuboids	
cuboidDef 2 1	-0.70 -0.2	0.4 1.1 (0.8 1.1
cuboidDef 2 2	-0.70 -0.2	0.2 0.9	0.4 0.8
cuboidDef 2 3	-0.70 -0.2	0 0.7 -0).1 0.4
% zone 3 (2nd	row driver	side) cubc	oids
cuboidDef 3 1	0.30 0.70	1.5 2.1	0.7 1.1
cuboidDef 3 2	0.30 0.70	1.3 2.1	0.3 0.7
cuboidDef 3 3	0.30 0.70	0.8 1.6	-0.1 0.3
% zone 4 (2nd	row middle) cuboids	
cuboidDef 4 1	-0.10 0.10	1.5 2.1	0.7 1.1
cuboidDef 4 2	-0.10 0.10	1.3 2.1	0.3 0.7
cuboidDef 4 3	-0.10 0.10	1.1 1.6	-0.1 0.3
% zone 5 (2nd	row passer	nger side)	cuboids
cuboidDef 5 1	-0.70 -0.30	1.5 2.1	0.7 1.1
cuboidDef 5 2	-0.70 -0.30	1.3 2.1	0.3 0.7
cuboidDef 5.3	-0 70 -0 30	1116	-0103

