
3D People Tracking Demo Software Implementation Guide – Rev 2.3

1

3D People Tracking Demo Software
Implementation Guide

Rev 2.3

June 2022

Texas Instruments, Incorporated

12500 TI Boulevard

Dallas, Texas 75243 USA

3D People Tracking Demo Software Implementation Guide – Rev 2.3

2

Version History

Date Comment

February, 2021 Rev1.0:
– Initial version.

March, 2022 Rev2.0:
– The implementation aspects of the fine motion mode are presented.
– The BPM-MIMO demodulation scheme is briefly discussed.

May, 2022 Rev2.1
– Updated Output format information

August, 2022 Rev 2.2
– Added Target Height Packet

– Updated TLV formats

– Added Height Estimation Algorithm Description

June 2023 Rev 2.3
– Changed documentation from “People Counting” to “People Tracking”

to more accurately reflect the capabilities of the example.

3D People Tracking Demo Software Implementation Guide – Rev 2.3

3

Table of Contents
1 Purpose and Scope .. 7

2 High-Level Demo Setup ... 7

3 Signal processing chain ... 7

4 3D People Counting Implementation using SDK Components ... 10

4.1 3D People Counting Application level .. 10

4.2 mmWave Lib .. 11

4.3 mmWave Link .. 11

4.4 Data-Path Manager (DPM) .. 11

4.5 Data processing chain (DPC) .. 12

4.5.1 DPC running on MSS.. 12

4.5.2 DPC running on DSS .. 13

4.6 Data processing unit (DPU) .. 15

4.6.1 Range Processing DPU ... 15

4.6.2 Radar Processing DPU ... 17

4.6.3 Tracker DPU ... 17

4.7 System execution flow ... 18

4.7.1 Execution flow - Initialization .. 18

4.7.2 Execution flow – Configuration ... 18

4.7.3 Execution flow - Per Frame ... 20

4.7.4 Execution Flow - Sensor Stop and Restart .. 23

4.8 Task Model ... 23

4.8.1 DSS Initialization Task .. 24

4.8.2 DSS DPM Task .. 24

4.8.3 MSS Initialization Task ... 24

4.8.4 MSS DPM Task ... 24

4.8.5 mmWave Control Task .. 24

4.8.6 Tracker Task .. 24

4.8.7 UART Task .. 25

4.8.8 CLI Task .. 25

4.8.9 Timing Diagram ... 25

5 Radar Processing DPU – Details .. 25

3D People Tracking Demo Software Implementation Guide – Rev 2.3

4

5.1 DPU_radarProcess_init() .. 25

5.2 DPU_radarProcess_process()... 27

6 Detection Layer Signal Processing Modules ... 28

6.1 2D Capon Beamforming module.. 28

6.1.1 RADARDEMO_aoaEst2DCaponBF_create() ... 29

6.1.2 RADARDEMO_aoaEst2DCaponBF_run() ... 39

6.1.3 RADARDEMO_aoaEst2DCaponBF_static_run() ... 47

6.2 CFAR detection module ... 49

6.2.1 RADARDEMO_detectionCFAR_create() .. 50

6.2.2 RADARDEMO_detectionCFAR_run() ... 50

7 Application Layer Features ... 53

7.1 Target Height Estimation ... 53

7.2 Differences between Wall-Mount and Overhead-Mount Configurations 53

8 Memory usage .. 53

8.1 Memory Allocation .. 55

8.1.1 OSAL memory management functions ... 55

8.1.2 Allocating Memory for Radar Cube Matrix ... 55

8.2 DSS Memory usage .. 56

8.3 DSS Memory Heap Allocation .. 60

8.4 MSS Memory Usage ... 62

9 Benchmarks ... 62

9.1 Benchmarks – (Wall-mount) .. 62

9.1.1 Dynamic scene only ... 63

9.1.2 Dynamic and static scene .. 63

9.2 Benchmarks – (Ceil-mount) ... 64

9.2.1 Dynamic scene only: .. 64

9.2.2 Dynamic and static scene .. 64

9.2.3 Profiling Procedure –DSP, tracker and UART transfer time .. 65

9.2.4 Profiling Procedure – three signal processing steps on DSP ... 66

10 UART and Output to the Host .. 67

1.1 Output TLV Description .. 67

1.1.1 Frame Header Structure .. 67

3D People Tracking Demo Software Implementation Guide – Rev 2.3

5

1.1.2 TLV structure ... 68

1.1.3 Point Cloud TLV ... 68

1.1.4 Target List TLV ... 68

1.1.5 Target Index TLV .. 69

1.1.6 Target Height TLV .. 69

3D People Tracking Demo Software Implementation Guide – Rev 2.3

6

References:

1. MMWAVE SDK User Guide, Product Release 3.5.x.x, https://www.ti.com/tool/MMWAVE-SDK

2. Aravindh Krishnamoorthy, Deepak Menon, “Matrix Inversion Using Cholesky Decomposition”,

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6710599.

3. Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory, Harry L.

Van Trees, 2002 John Wiley & Sons, Inc

4. Detection Layer Parameter Tuning Guide for the 3D People Counting Demo, Texas Instruments.

5. Sandeep Rao, “MIMO radar,” Texas Instruments, Application Report, SWRA554A, July 2018.

https://www.ti.com/tool/MMWAVE-SDK
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6710599

3D People Tracking Demo Software Implementation Guide – Rev 2.3

7

1 Purpose and Scope

The purpose of this document is to provide detailed description of 3D People Counting demo

implementation using mmWave SDK software development components. The document provides

description of system execution flow, memory usage, task organization and execution and benchmark

results. The document also provides the implementation details of the low-level signal processing chain.

2 High-Level Demo Setup

The 3D People Counting demo is implemented on IWR6843. It consists of two major subsystems Detection

Layer and Tracker Layer. The detection layer is implemented on a Hardware Accelerator (HWA) driven by

R4F, and DSP (C674x). The tracker layer is implemented on R4F. The detection layer produces a point cloud

with each point containing spherical coordinates, radial velocity, and signal to noise ratio (SNR). The

tracker layer finds and tracks clusters in the point cloud. The point cloud and the tracking data are sent

out via UART port to the GUI running on the Host PC.

The 3D People Counting demo setup is shown in Figure 1.

Figure 1 – 3D People Counting demo setup

Sensor EVM board is connected to PC via USB. PC GUI reads the configuration file and sends configuration

commands to radar via UART port 1. After the initialization sequence the radar starts sending detection

data to PC GUI via UART port 2. Optionally point cloud and tracking data is saved to log files.

3 Signal processing chain

The implementation of the 3D People Counting demo on the IWR6843 consists of a low-level signal chain

running on the C674x DSP, and the tracking module running on R4F processor.

The demo does two basic functions:

1 Low level signal processing: use the radar data to produce a point cloud with each point containing

spherical coordinates, radial velocity, and SNR

2 Group tracking: finds and tracks clusters in the point cloud.

PC
GUI

IWR6843
EVM

Detection Layer
+

Tracking Layer

Tx antennas

Rx antennas

UART
port 1

UART
port 2

Configuration
File

Cloud point
Log files

Cloud point
Log files

Point Cloud
Log files

3D People Tracking Demo Software Implementation Guide – Rev 2.3

8

There are two separate signal processing chains for the 3D people tracking demo, one optimized for wall-

mount, shown in Figure 2, and the other for ceil-mount applications, shown in Figure 3. For the wall

mount application, the IWR6843 ISK/ODS/AOP EVM boards are used, and for the ceil-mount, the IWR6843

ODS/AOP EVM board is used. The processing chain is selected through the configuration. Also, the build

images for these two applications differ since the code and data placement is optimized for each

application. In this document the detection algorithm for the wall-mount processing chain is called

method 1 and for the ceil-mount method 2.

The low-level signal processing includes:

- Range processing

• For each antenna, 1D windowing, and 1D FFT,

- Static clutter removal,

- Capon Beamforming (BF):

• Covariance matrix generation, angle spectrum generation:

• Range-azimuth heatmap (method 1)

• Range-azimuth-elevation heatmap, coarse azimuth/elevation estimation (method 2),

- CFAR detection algorithm:

• Two-pass, CFAR detection: first pass CFAR-CASO in the range domain, confirmed by

second pass CFAR-CASO in the angle domain, to find detection points,

- Elevation Estimation (method 1)

• Capon BF algorithm is applied again for each point detected in Range-Azimuth heatmap

• 1-D Elevation heatmap is calculated for the elevation estimation,

- Fine Azimuth/Elevation Estimation (method 2)

• 2D zoom-in is performed for the detected azimuth-elevation bin for fine angle estimation,

- Radial Velocity Estimation:

• For each detected [range, azimuth] pair from the detection module, Doppler is estimated

by filtering the range bin using Capon beam-weights, followed by a maximum peak search

in the FFT of the filtered range bin.

Group tracking processing:

- Operates on point cloud,

- Searches for clusters in Cartesian and Doppler Space,

- Predicts movement of clusters to maintain a track of unique objects such as people.

3D People Tracking Demo Software Implementation Guide – Rev 2.3

9

Figure 2 - The signal processing chain of the 3D wall-mount demo.

Figure 3 - The signal processing chain of the 3D ceil-mount demo.

Radar
Front end

ADC

ADC Buf
(Ping)

ADC Buf
(Pong)

EDMA

HWA M1
(Ping)

HWA M2
(Pong)

HWA M3
(Ping)

HWA M4
(Pong)

EDMA
Trans

Range Proc
on HWA
(1D FFT)

Radar
Cube in

L3

Tracker

UART

2D
Range-

Azimuth
Heatmap,

L3

Detection
(2-pass
CFAR)

Detection
output, L2

Inverse Covariance
Estimation (12x12),

 Capon Spectral
Estimation

(Clutter Removal,
Inverse Covariance
Estimation (8x8),
Capon Spectral

Estimation

1D Peak
Search

Beamforming,
Doppler

FFT

Point
Cloud

DMA

Tracker
Output
(Ping)

Tracker
Output
(Pong)

Detection
Output

DSP

R4F

DMA

1
D

 E
le

va
ti

o
n

H

ea
tm

ap
, L

3

Dynamic Scene
2D Capon BF

for all range bins
(Processing Step 1)

Dynamic Scene 2D Capon BF
per detected point
(Processing Step 2)

Detection
Output, L2

Range,
Azimuth,
Elevation,

BF Filter (12x1)

Handle
Results

Detection Output:
Range, Azimuth,

Elevation, Velocity,
SNR

To Host

Range-
Antenna

Bartlett
Beamforming

Spectral
Estimation

(12x12)

Detection
(1-pass
CFAR)

3D Range-
Azimuth-
Elevation
Heatmap

Detection
output, L2

Azimuth
Elevation

Interpolation

Static Scene
3D Bartlett BF for all

range bins
(Processing Step 1)

Static Scene
2D Capon BF

(Processing Step 2)

Radar
Front end

ADC

ADC Buf
(Ping)

ADC Buf
(Pong)

EDMA

HWA M1
(Ping)

HWA M2
(Pong)

HWA M3
(Ping)

HWA M4
(Pong)

EDMA
Trans

Range Proc
on HWA
(1D FFT)

Radar
Cube in

L3

3D
Range-

Azimuth-
Elevation
Heatmap,

L3

Detection
(2-pass
CFAR)

Detection
output, L2

Zoomed-In
2D Capon
Spectral

Estimation

(Clutter Removal,
Inverse Covariance
Estimation (12x12),

Capon Spectral
Estimation)

2D Peak
Expansion

Beamforming,
Doppler

FFT

DSP

R4F

1
D

 E
le

va
ti

o
n

H

ea
tm

ap
, L

3

Dynamic Scene
2D Capon BF

(Processing Step 1)

Dynamic Scene 2D Capon BF
(Processing Step 2)

Detection
Output, L2

Range,
Azimuth,
Elevation,

BF Filter (12x1)

Range-
Antenna

Bartlett
Beamforming

(12x12)

Detection
(1-pass
CFAR)

3D Range-
Azimuth-
Elevation
Heatmap

Detection
output, L2

Azimuth
Elevation

Interpolation

Static Scene
3D Bartlett BF

(Processing Step 1)

Static Scene
2D Capon BF

(Processing Step 2)

Tracker

UART

Point
Cloud

DMA

Tracker
Output

(Ping)
Tracker
Output
(Pong)

Detection
Output DMA

Handle
Results

Detection Output:
Range, Azimuth,

Elevation, Velocity,
SNR

To Host

3D People Tracking Demo Software Implementation Guide – Rev 2.3

10

4 3D People Counting Implementation using SDK Components

The 3D People Counting demo is implemented using mmWave SDK components and other custom

components developed following the SDK architecture. The SDK provides a basic structure for developing

radar processing software. This structure includes mmWaveAPI, a Data-Path Manager (DPM) which

handles execution of the Signal Processing – Data Path Chain (DPC). The DPC is made of Data Path Units

(DPUs). For detailed explanation of these components see [1].

The 3D People Counting demo partition between R4F (MSS) and DSP (DSS) is shown in Figure 4. The

components in green are executed on MSS while components in pink are executed on DSS. The demo

application is split between MSS and DSS.

Figure 4 – 3D People Counting Demo implementation using mmWave SDK components

4.1 3D People Counting Application level

At the top level the demo application is split between MSS and DSS. The application layers on both

domains DSS and MSS call the DPM APIs through which they control the configuration and execution of

DPCs. The application layer on MSS also controls the radar front end, and communicates with the Host.

MSS Demo App Level
(mss_main.c)

DSS Demo App Level
(dss_main.c)

DPM DPM

Range HWA
DPU

(rangeprochwa.c)

Low Level Processing
Chain DPU

(radarProcess.c)

mmWave Lib

mmWave Link

Tracker
DPU

(trackerproc_3d.c)

3D People Counting Demo Application Level

DPC
(objdetrangehwa.c)

DPC
(objectdetection.c)

mmWave Front End

Host PC

Configuration
Point Cloud &
Tracking Info

CFAR
DOA 2D
CaponBF

3D People Tracking Demo Software Implementation Guide – Rev 2.3

11

4.2 mmWave Lib

The mmWave Lib module is a higher layer control running on top of mmWaveLink and LLD API (drivers

API). It provides simpler and fewer set of APIs for application to control the radar front end. In the demo

the mmWave module runs only on R4F (MSS), in “Isolation” execution mode, and it is configured in “Full”

configuration mode. The “Full” configuration mode implements the basic chirp/frame sequence of the

radar front end.

4.3 mmWave Link

The mmWaveLink is a control layer and primarily implements the protocol that is used to communicate

between the Radar Subsystem (RADARSS) and the controlling entity which can be either MSS and/or DSS.

It provides a suite of low-level APIs that the application (or the software layer on top of it) can call to

enable/configure/control the RADARSS. In 3D People Counting demo the mmWave Link layer is only

accessed by mmWave Lib layer running on MSS.

4.4 Data-Path Manager (DPM)

DPM is the foundation layer that enables the "scalability" aspect of the architecture. It encapsulates the

overall software execution on a core. This layer absorbs all the messaging complexities (cross core and

intra core) and provides standard APIs for integration at the application level and also for integrating any

"data processing chain". In 3D People Counting demo DPM runs in “Distributed domain” configuration

mode, where the data path control is on MSS, while data path execution is split between MSS/HWA and

DSS. The DPM APIs exposed to application layer and DPC are shown in Table 1.

Function name Description

DPM_execute The function executes the DPM Module. This involves the following:

a) Handling of the reception of the IPC Messages exchanged between the
DPM Peers.

b) Execution & processing of the input data which has either been
injected or received via the chirp available.

DPM_ioctl The function is used to configure the processing chain.

DPM_start The function is used to start the processing chain.

DPM_sendResult The function is used to send the processing chain results to the remote DPM
entities. The flag "isAckNeeded" can be set and this would cause the DPM
framework to send to a report once the peer domain has been notified about
the result availability. This can be used to ensure that the result buffer is not
being reused.

DPM_relayResult The function is used to relay the partial processing chain results from one
domain to another. It does not require an acknowledgment back for the
relayed results.

DPM_stop The function is used to stop the processing chain.

3D People Tracking Demo Software Implementation Guide – Rev 2.3

12

DPM_notifyExecute The function notifies the DPM module that the processing chain is ready to be
executed. This function is invoked by the DPC which in turn will allow the DPM
framework to invoke the profile registered execute method.

DPM_synch The function is used to synchronize the execution of the framework between
the DPM domains.

DPM_init The function is used to initialize the data path manager and initialize and load
the processing chain.

DPM_deinit The function is used to de-initialize and shutdown the processing chain.

Table 1 – DPM APIs

4.5 Data processing chain (DPC)

DPC is a separate layer within the data-path that encapsulates all the data processing needs of an

mmWave application and provides a well-defined interface for integration with the application. Internally

this layer uses the functionality exposed by Data processing units (DPUs) and DPM to realize the data flow

needed for the data processing chain. As the data path processing in 3D People Counting demo is split

between MSS and DSS, the DPC layer exists on both DSS and MSS domains.

4.5.1 DPC running on MSS

The DPC functions registered and called by DPM running on MSS are shown in Table 2. The functions are

located in objdetrangehwa.c.

Function Name Description

DPC_ObjectDetection_init

DPC Initialization function. It calls its DPU
initialization functions DPU_RangeProcHWA_init()
and DPU_TrackerProc_init().

DPC_ObjectDetection_start

Executed upon sensor start request. It sends
control message
DPU_RangeProcHWA_Cmd_triggerProc to the
Range DPU to configure and enable HWA to be
ready for chirp events.

DPC_ObjectDetection_execute
This function calls data processing chain DPU. It
only controls DPU_RangeProcHWA_process().

DPC_ObjectDetection_ioctl

IO control function used to configure and control
DPC. The commands are:

- Frame start,
- Pre-start common configuration,
- Pre-start configuration – invokes

DPC_ObjDetRangeHwa_preStartConfig ()
which further calls
DPU_RangeProcHWA_config ()

3D People Tracking Demo Software Implementation Guide – Rev 2.3

13

DPC_ObjectDetection_stop Executed upon sensor stop request

DPC_ObjectDetection_deinit De-initialization function

DPC_ObjectDetection_dataInjection
Invoked on reception of the data injection from
DPM.

NULL Chirp Available Function – not used

DPC_ObjectDetection_frameStart

This function is invoked upon reception of frame
start event generated from RF front end. The
function calls DPM DPM_notifyExecute() API, that
will cause DPM framework to invoke the
registered DPC execute method on MSS,
DPC_ObjectDetection_execute().

Table 2 – DPC Functions running on MSS

4.5.2 DPC running on DSS

The DPC functions registered and called by DPM running on DSS are shown in Table 3. The source code of

these functions is located in objectdetection.c. Note that although the functions have the same name as

those running on MSS they have different contents and are part of two different builds.

Function Name Description

DPC_ObjectDetection_init

DPC Initialization function. It is invoked by the application
through DPM_init API. (See more details on this function are in
Section 1).

DPC_ObjectDetection_start
Executed upon sensor start request. It only resets the frame
start event counter.

DPC_ObjectDetection_execute

The low-level signal processing chain is executed within this
function. (See more details on this function are in Section
4.5.2.2)

DPC_ObjectDetection_ioctl

IO control function is used to configure and control DPC. The
commands are:

- Frame start,
- Result exported,
- Pre-start common configuration,
- Pre-start configuration – invokes

DPC_ObjDetDSP_preStartConfig() which further calls
DPU_radarProcess_init()

DPC_ObjectDetection_stop Executed upon sensor stop request

DPC_ObjectDetection_deinit De-initialization function

DPC_ObjectDetection_dataInjection Invoked on reception of the data injection from DPM.

NULL Chirp Available Function – not used

3D People Tracking Demo Software Implementation Guide – Rev 2.3

14

DPC_ObjectDetection_frameStart

Executed upon frame start ISR from the RF front-end. It records
the start time of the frame, and checks if the previous frame is
completed.

Table 3 – DPC functions running on DSS

4.5.2.1 DPC_ObjectDetection_init()

The function allocates DPC instance from the system heap. It also allocates memory for the detection

results, the structure DPC_ObjectDetection_ExecuteResult, and for the statistics information, the

structure DPC_ObjectDetection_Stats. The structure DPC_ObjectDetection_ExecuteResult contains the

point cloud list sized for maximum 750 points (defined by DOA_OUTPUT_MAXPOINTS in radarProcess.h).

The DPC instance and it’s main elements are shown in Figure 5. The Radar processing DPU instance

allocation and initialization is called later, upon receiving the pre-start configuration function from MSS.

Figure 5 – Object Detection DPC instance on DSS and its output interface.

4.5.2.2 DPC_ObjectDetection_execute()

The function is executed per frame, after the range processing. The function calls the data processing

chain DPU DPU_radarProcess_process(). It passes the pointers of the radar cube matrix, and the pointer

ObjDetObj_t

*executeResult

*stats

...

...

DPC_ObjectDetection_ExecuteResult_t

objOut

 DPC_ObjectDetection_Stats

subFrame[0]

dpuCaponObj

*dataIn
Point cloud
output list

pointCloudOut

radarProcessInstance_t

Radar Processing DPU Instance

Radar Cube in L3

Size[0] = sizeof(DPC_ObjectDetection_ExecuteResult)
Size[1] = sizeof(DPC_ObjectDetection_Stats)

ptrBuffer[0]

DPC Output Interface: (DPM_Buffer ponter)

ptrBuffer[1]

*benchmarkOut

3D People Tracking Demo Software Implementation Guide – Rev 2.3

15

to the point cloud output list pointCloudOut. After the DPU processing completion, the function updates

the stats structure and sets the pointers of its output interface, DPM_buffer type pointer, and exits.

4.6 Data processing unit (DPU)

The signal processing chain is split into three mmWave DPU components:

1. Range processing DPU

2. Low Level Radar Processing DPU

3. Tracker DPU

4.6.1 Range Processing DPU

This processing unit performs 1D FFT processing on the chirp RF data during the active frame time and

produces the output data in the L3 memory. This DPU is implemented on MSS and HWA. The actual

processing, 1D windowing and 1D FFT, is performed by HWA, and it is interleaved with the active chirp

time of the frame. During this time DPU task on MSS is in a pending state, allowing other tasks to run on

MSS. Figure 11 provides more details on the task timing. The APIs are shown in Table 4.

Function Name Description

DPU_RangeProcHWA_init This is DPU initialization function. It allocates memory to store its
internal data object and returns its handle.

DPU_RangeProcHWA_config This is DPU configuration function. It saves buffer pointer and
configurations including system resources and configures HWA
and EDMA for runtime range processing.

DPU_RangeProcHWA_process It executes FFT operation. It is invoked at a frame start time. The
function is pending on a semaphore during the chirping period,
and it exits after the last chirp processing of the frame is
completed.

DPU_RangeProcHWA_control It is DPU control function. The main command performed by this
function is to configure and trigger HWA to be ready for the
incoming chirp sequence.

DPU_RangeProcHWA_deinit It frees the resources used for the DPU.

Table 4 – Range DPU APIs

The range DPU source code is located in rangeprochwa.c.

The major configuration parameters related to ADCBuff driver and Range DPU are shown in Table 5.

Configuration Parameters Setting

HWA Input Mode DPU_RangeProcHWA_InputMode_ISOLATED (ADC samples transferred
from ADC buffer to internal HWA memory using EDMA)

Output Radar Cube format DPIF_RADARCUBE_FORMAT_2, cmplx16ImRe_t,

3D People Tracking Demo Software Implementation Guide – Rev 2.3

16

(X[numRangeBins][numDopplerChirps][numTxPatterns][numRxChan])

Interleave mode Non-interleaved

ADC samples 16-bit ADC samples, Complex, Imaginary in LSB Real in MSB

Table 5 – ADC buffer and RANGE DPU related configuration parameters

The hardware resources related to HWA and EDMA configuration for the range DPU are stored in file

pcount3D_hwres.h. This file is passed as a compiler command line define

--define=APP_RESOURCE_FILE="…\pcount3D_hwres.h"

In the 3D people tracking demo, a processing mode is added to detect and track static people with fine

motions [4]. In this mode, the range processing DPU creates two different radar cubes in the memory and

the same detection layer processing chain is run on both chirp blocks in different time slots. When the

fine-motion mode is enabled, the first radar cube is created using all the available chirps of the current

frame, and the second radar cube is created using the portion of the current frame and previous frames.

Figure 6 – Data transfer execution flow of the fine motion mode.

As depicted in Figure 6, when creating the fine-motion mode radar cube using chirps across multiple

frames, the first K chirps per frame is utilized (instead of any subsampling). Besides, the processing chain

creates the fine-motion mode radar cube the same size as the single-frame block to fit the rest of the

processing chain. Range processing DPU configures a separate EDMA channels to fill the minor radar cube

using the portion of current frame in a circular buffer.

3D People Tracking Demo Software Implementation Guide – Rev 2.3

17

When the fine motion detection mode is enabled, due to the required memory to store the chirp sub-

blocks from the current and previous frames, the user should configure the total number of chirps in a

single frame as half of the original value to keep the total allocated memory the same (see Section 7). In

this scheme, the same processing blocks of the detection layer are then run on two different radar cubes

(from the single or multiple frames) in time-division mode [4].

4.6.2 Radar Processing DPU

The main part of the low-level signal processing chain is implemented in this DPU which runs on DSS. Two

different signal processing chains are implemented for wall mount and ceiling mount and are selected at

a build time. The APIs are shown in Table 6. The DPU source code is located in radarProcess.c.

Function Name Description

DPU_radarProcess_init This is the initialization and the configuration function for the low-level
signal processing chain. It is called upon the pre-start configuration
command coming from MSS. It is called from
DPC_ObjectDetection_ioctl() function within
DPC_ObjDetDSP_preStartConfig() (see Section 5.1 for detailed
information).

DPU_radarProcess_config This function is empty.

DPU_radarProcess_process This is the main body of the low-level radar processing chain. It is called
per frame. Section 5.2 provides detailed information on the algorithm
implementation.

DPU_radarProcess_control This function is empty.

DPU_radarProcess_deinit It releases resources used for the DPU.

Table 6 – Low Level Radar Processing DPU APIs

4.6.3 Tracker DPU

This DPU runs on MSS. It is an unconventional DPU since it is accessed both from DPC and MSS application

layer.

Function Name Description

DPU_TrackerProc_init It allocates memory to store its internal data object.

DPU_TrackerProc_config The function is configuration function.

DPU_TrackerProc_process The function is trackerProc DPU process function.

DPU_TrackerProc_control This function is empty.

DPU_TrackerProc_deinit It frees up the resources allocated during initialization.

Table 7 – Tracker DPU APIs.

3D People Tracking Demo Software Implementation Guide – Rev 2.3

18

4.7 System execution flow

4.7.1 Execution flow - Initialization

The system execution flow at the initialization time is shown in Figure 7. The code images on both DSS

and MSS domains perform various driver initializations, synchronize to each other, create various tasks,

and go to the pending state, waiting for the sequence of CLI commands to start processing.

Figure 7 – System execution flow – Initialization sequence.

4.7.2 Execution flow – Configuration

The system execution flow during the configuration time is shown in Figure 8.

Drivers
Init and Open

Return

CLI_task

Pcount3DDemo_initTask

R4: main

Return

Create

MMWave_sync

MMWave_init(Pcount3DDemo_eventCallbackFxn)

Pcount3DDemo_mmWaveCtrlTask Create

SOC_init

BSS

Init

MSS

DPM_init
(Pcount3DDemo_DPC_ObjectDetection_reportFxn)

m
m

w
av

eL
in

k

DSS

C674: main

Return

Create

SOC_init

Drivers
Init and Open

DPM_init
(Pcount3DDemo_DPC_RadarProc_reportFxn)

DPM_synch

Pcount3DDemo_DPC_RadarProc_dpmTask
(DPM_execute)

DPM_synch

mmwDemo_mssDPMTask
(DPM_execute)

Return

MmwDemo_trackerDPUTask Create

Pcount3DDemo_CLIInit

CLI_open

Copy code from L3 to
L1PSRAM & HSRAM

MmwDemo_uartTxTask Create

Create

Create

D
P

M
 IP

C

Pcount3DDemo_dssInitTask

Wait for CLI commands

3D People Tracking Demo Software Implementation Guide – Rev 2.3

19

Figure 8 – System execution flow – configuration sequence.

After receiving all required CLI commands, followed by “sensorStart” command, the CLI task performs the

configuration sequence. This includes sensor configuration, (MMWave_open, MMWave_config,

ADCbuff_init, ADCbuff_open), parsing of the CLI commands and sending the configuration parameters to

DPCs on both domains MSS and BSS. Note that the pre-start common configuration message is currently

irrelevant since it sends only one common parameter, the number of sub-frames set to one. The

configuration parameters are sent in the pre-start configuration message. The configuration parameters

MmwDemo_trackerConfig

CLI_task

BSS

MMWave_config

MSS

‘Done’printed
on CLI

MMWave_open

Pre-start common config

DPC_ObjectDetection_ioctl
Configure subframe-0 DPU:
 DPC_ObjDetDSP_preStartConfig()
 DPU_radarProcess_init()

Pre-start config

DPM_ioctl

DPM_ioctl

MMWave_startSensor Start

DPC_ObjectDetection_ioctl
Store pre-start common config

DPC_ObjectDetection_start
(blocking)

Pcount3DDemo_dataPathStart

DPM_start

m
m

w
av

eL
in

k

Configure ADCBuf for
Subframe-0

DSS

Pcount3DDemo_DPC_RadarProc_dpmTask
(DPM_execute)

mmwDemo_mssDPMTask
(DPM_execute)

Pre-start common config

Pre-start config

DPC start done

Report DPC_STARTED
Report

DPC_STARTED

Pcount3DDemo_DPC_ObjectDetection_
reportFxn (DPM_Report_DPC_STARTED)

Pre-start common configDPM_ioctl

DPC_ObjectDetection_ioctl
Store pre-start common config

Pre-start config
DPC_ObjectDetection_ioctl
Configure subframe-0 RangeDPU
DPC_ObjDetRangeHwa_preStartConfig

DPM_ioctl

From GUI
script via

UART

Pcount3DDemo_openSensor()

Pcount3DDemo_dataPathOpen()
 MmwDemo_ADCBufOpen()
 ADCBuf_init()
 ADCBuf_open()

Pcount3DDemo_configSensor()

Pcount3DDemo_dataPathConfig()

MmwDemo_RFParser_parseConfig()
 MmwDemo_RFParser_parseCtrlConfig()
 MmwDemo_RFParser_parseADCBufCfg()

Frame event

DPC_ObjectDetection_frameStart
DPM_notifyExecute

Frame event DPC_ObjectDetection_frameStart

...

DPM_ioctl
DPC_ObjectDetection_ioctl
DPU_TrackerProc_config

Pcount3DDemo_startSensor

Pcount3DDemo_CLISensorStart()

Semaphore pend

D
P

M
 IP

C

...

CLI config commands
 ...

CLI sensor start

Semaphore Post

Profile, chirp,
frame

configurations

Calib, channel,
ADCout,

configurations,
RF init

Static Tracker config

3D People Tracking Demo Software Implementation Guide – Rev 2.3

20

are sent using the DPM_ioctl() API which is invoked from Pcount3DDemo_DPM_ioctl_blocking() which is

waiting on a semaphore until the response to the configuration message is reported.

On the MSS side the DPM registered function DPC_ObjectDetection_ioctl() is called. It calls

DPC_ObjDetRangeHwa_preStartConfig() which allocates the radar cube matrix in L3 memory, and further

calls DPC_ObjDetRangeHwa_rangeConfig() , which further calls the Range DPU configuration function

DPU_RangeProcHWA_config().

On the DSS side the DPM registered function DPC_ObjectDetection_ioctl() is called. It calls

DPC_ObjDetDSP_preStartConfig() which further calls the Radar Processing DPU initialization function

DPU_radarProcess_init() .

After the configuration has been confirmed from both domains, the CLI task calls DPM_Start(). This results

in the execution of DPM registered DPC functions DPC_ObjectDetection_start() on both domains. On MSS

domain this function sends the trigger command to the Range DPU resulting in the execution of

rangeProcHWA_TriggerHWA(). This function configures and triggers the HWA accelerator and sets it ready

for chirp processing. On DSS domain the function with the same name only resets the frame start counter.

After the DPM_start () is confirmed (CLI task waiting on the semaphore until the response is received),

the CLI task issues “Sensor start” command to BSS.

4.7.3 Execution flow - Per Frame

The system execution flow during one frame period is shown in Figure 9. At the beginning of the frame

BSS will send frame start event triggering DPM which sends the start event to both DPCs on MSS and DSS.

- On the MSS side the DPM registered function DPC_ObjectDetection_frameStart() is called which

calls the DPM_NotifyExecute(), which causes the DPM to invoke the registered execute function

DPC_ObjectDetection_execute(). This function further calls the DPU_RangeProcHWA_process()

in which the DPM task stays pending on a semaphore until the last chirp of the frame has been

processed by the HWA accelerator. At this point DPC_ObjectDetection_execute() calls

DPM_relayResult() with the argument containing the address of the Radar Cube matrix. This

function sends the message to DSS side that the range processing is completed, with the

address and the size of the Radar Cube matrix. This is a non-blocking call, and

DPC_ObjectDetection_execute() further sends the trigger command to the Range DPU resulting

in the execution of rangeProcHWA_TriggerHWA() and setting it ready for the next frame.

- On the DSS side DPM_relayResult message causes DPM to call the registered function

DPC_ObjectDetection_dataInjection() , which calls DPM_notifyExecute(), causing the execution

of DPC_ObjectDetection_execute(), which in turn calls DPU_radarProcess_process() that runs

the low level signal processing chain.

Once the low level signal processing chain is completed the DSS DPM Task sends the processing results,

(point cloud list, and statistics information) to the MSS side by calling DPM_sendResult(). The function is

3D People Tracking Demo Software Implementation Guide – Rev 2.3

21

called with the flag isAckNeeded set indicating that an acknowledgment is needed after the results have

been passed to the MSS side.

Just after the results have been sent, all shared data with R4F in L3 have to be written-back and cache

prepared for the next frame for new radar cube data from HWA. The whole cache is written back and

invalidated by calling cache_wbInvAllL2Wait().

On the MSS side the DPM report function Pcount3DDemo_DPC_ObjectDetection_reportFxn() is called

with report type DPM_Report_NOTIFY_DPC_RESULT , which calls the function

Pcount3DDemo_handleObjectDetResult(). This function performs the following:

- Translates the received addresses of the point cloud data and the statistics information,

- Compresses and copies point cloud data to the R4F local memory, to

gMmwMssMCB.pointCloudToUart,

- Copies point cloud data to the group tracker input, to gMmwMssMCB.pointCloudFromDSP,

- Sends the notification to DSS that all the data are local now and the shared memory is released

to DSS,

- Posts the group tracker semaphore to start processing,

- Posts the UART Task semaphore to start exporting data to the Host.

On DSS side the DPC marks the end of frame.

The UART task, as a higher priority task than the tracker task, initiates data transfer to the Host via UART

using UART_write() blocking API. The transfer includes the point cloud list of the current frame and the

tracker data of the previous frame from its output ping/pong buffer. The task waits on the semaphore

until the DMA transfer is completed, letting the tracker task to process the current frame data. At the end

of the UART data transfer the transfer time is recorded for the next frame.

3D People Tracking Demo Software Implementation Guide – Rev 2.3

22

Figure 9 – System execution flow during one frame period.

Frame event

DPC_ObjectDetection_dataInjection
DPM_notifyExecute

DPC_ObjectDetection_execute

DPU_radarProcess_process

Frame event

DPC_ObjectDetection_frameStart

DPM_ioctl (Execute result exported)

DPC_ObjectDetection_ioctl
Mark end of frame processing

DPM_sendResult

Execute result exported

DPC_ObjectDetection_frameStart
DPM_notifyExecute

Frame event

DPC_ObjectDetection_execute

DPU_RangeProcHWA_process

DPC_ObjectDetection_frameStart

DPC_ObjectDetection_frameStart
DPM_notifyExecute

Frame event

BSS MSS
m

m
w

av
eL

in
k

DSS

Pcount3DDemo_DPC_RadarProc_dpmTask
(DPM_execute)

mmwDemo_mssDPMTask
(DPM_execute)

MmwDemo_trackerDPUTask CLI_task

cache_wbInvAllL2Wait()

Semaphore Post to Tracker Task

MmwDemo_uartTxTask

Semaphore Post to UART Task
Start DMA data
transmission to

UART

DPU_TrackerProc_pro
cess

Transmission
Done

UART
DMA

...

...

Cfg&Enable HWA for next frame

D
P

M
 IP

C

DPM_relayResult DPM_relayResult

NOTIFY_DPC_RESULT

Execute result exported

Pcount3DDemo_DPC_ObjectDetection_reportFxn

Pcount3DDemo_handleObjectDetResult

Chirp event
Chirp event

Chirp event

3D People Tracking Demo Software Implementation Guide – Rev 2.3

23

4.7.4 Execution Flow - Sensor Stop and Restart

The execution flow upon receiving a sensor stop CLI command followed by sensor restart command is

shown in Figure 10.

Figure 10 – Sensor stop and restart sequence

4.8 Task Model

The 3D People Tracking Demo is implemented using multiple tasks running in the system. Table 8 lists all

the tasks running in the system.

Task Name in the code Priority Domain

DSS Initialization Task Pcount3DDemo_dssInitTask() 1 DSS

DSS DPM Task Pcount3DDemo_DPC_RadarProc_dpmTask() 5 DSS

MSS Initialization Task Pcount3DDemo_initTask() 1 MSS

MMS Demo Task mmwDemo_mssDPMTask() 5 MSS

Sensor Stop MMWave_stop

Post DPM stop semaphore

Pcount3DDemo_eventCallbackFxn

DPM_stop
DPC_ObjectDetection_stop

Pcount3DDemo_DPC_ObjectDetection_
reportFxn

(DPM_Report_DPC_STOPPED)

‘Done’printed
on CLI

‘Done’printe
d on CLI

CLI sensor
start

MMWave_startSensor Start

Frame event

DPC_ObjectDetection_frameStart

DPM_start

DPC_ObjectDetection_start

DPC stop done

Pcount3DDemo_DPC_ObjectDetection_
reportFxn

(DPM_Report_DPC_STOPPED)

Report
DPC_STOPPED

Report DPC_STOPPED

DPC_ObjectDetection_stop

DPC_ObjectDetection_start

DPC_ObjectDetection_frameStart

BSS MSS

m
m

w
av

eL
in

k

DSS

Pcount3DDemo_DPC_RadarProc_dpmTask
(DPM_execute)

mmwDemo_mssDPMTask
(DPM_execute)CLI_task

Pcount3DDemo_mmWaveCtrlTask

CLI command
stop

D
P

M
 IP

C

Sensor
Stop

Completed

3D People Tracking Demo Software Implementation Guide – Rev 2.3

24

RFE Control Task Pcount3DDemo_mmWaveCtrlTask() 6 MSS

Tracker Task MmwDemo_trackerDPUTask() 3 MSS

UART Task MmwDemo_uartTxTask() 4 MSS

CLI Task CLI_task() 2 MSS

Table 8 – Tasks running in the system

4.8.1 DSS Initialization Task

This task is created by main function and is a one-time active task whose main functionality is to initialize

drivers, DPM module, and launch DSS DPM Task which provides an execution context for the DPM/DPC

to run. After the initialization this task becomes terminated.

4.8.2 DSS DPM Task

This task provides the execution context for the DPM/DPC to run on DSS. In the infinite loop It invokes

DPM_execute() API followed by DPM_sendResult() API. The DPM_execute() function executes the DPM

module which involves handling of the reception of the IPC Messages received from its peer running on

MSS, and execution of the data processing chain (DPC). The DPM_sendResult() function sends the

processing chain results to the DPM running on MSS.

4.8.3 MSS Initialization Task

This task is created by main function and is a one-time active task whose main functionality is to initialize

drivers, MMWave module, DPM module, open UART and data path related drivers (ADCBUF), and launch

other tasks running on MSS.

4.8.4 MSS DPM Task

This task provides the execution context for the DPM/DPC to run on MSS. It calls in an endless loop

DPM_execute() API. This executes the DPM module which involves handling of the reception of the IPC

Messages received from its peer running on DSS, and execution of the data processing chain (DPC).

4.8.5 mmWave Control Task

This is mmWave control execution task. It provides execution context for the mmWave control. It calls in

an endless loop the MMWave_execute() API. It should have priority higher than any other task which uses

the mmWave control API.

4.8.6 Tracker Task

This task provides the execution context for the Tracker DPU to run on MSS. This task should have lower

priority than the UART Task.

3D People Tracking Demo Software Implementation Guide – Rev 2.3

25

4.8.7 UART Task

This task controls the transfer of point the cloud data along with the tracker data to the host. Data

transfers are done using UART_write() blocking API that uses DMA for data transfer. During the transfer

the task is in a pending state allowing other tasks such as a Tracker Task to be executed in parallel with

the data transfer to the Host. This task has to be higher priority than the Tracker Task.

4.8.8 CLI Task

The CLI task provides the execution context for the command line interface. The CLI utility library is a part

of mmWave SDK. The library provides a simple CLI console over the specified serial port. It includes simple

command parser. In addition to mmWave control commands, the additional custom commands are

registered for this demo. The related code is located in pcount3D_cli.c.

4.8.9 Timing Diagram

The typical task activity timing diagram during one frame period is illustrated in Figure 11.

Figure 11 – Task activity timing diagram

5 Radar Processing DPU – Details

This section provide more details on the two main APIs: DPU_radarProcess_init() and

DPU_radarProcess_process().

5.1 DPU_radarProcess_init()

This function is called upon pre start configuration command from DPC configuration function

DPC_ObjDetDSP_preStartConfig(). It allocates memory to store its internal data object. Also, it allocates

buffers used the processing chain. It also calls the initialization APIs of CFAR and 2D Capon BF modules

DSS Demo Task

MSS Demo Task

HWA

Detection Layer Signal Processing Chain, Frame (N)

Cfg
HWA

Tracker Task (MSS)

Send out data, UART DMA (MSS)

interFrameExecTimeInUsec

UART Task (MSS)

Frame (N-1)

Send

Sending point cloud (N-1)

Send

Tracker data (N-2)

 Tracking (N-1)

Done

Range FFT

Chirping

Frame Start (N)

Send

Sending point cloud (N)

Tracking (N)

Range FFT

Frame Start (N+1)

uartSendingTimeInUsec

trackingProcessingTimeInUsec

Cfg

HWA

St
ar

t
Tr

ac
k

St
ar

t
U

A
R

T

Fr
am

e
st

ar
t

St
ar

t
Tr

ac
k St

ar
t

U
A

R
T

Fr
am

e
st

ar
t

activeFrameProcTimeInUsec

3D People Tracking Demo Software Implementation Guide – Rev 2.3

26

RADARDEMO_aoaEst2DCaponBF_create() and RADARDEMO_detectionCFAR_create(). Figure 12 shows

its instance structure with links to the main elements.

Figure 12 - Radar Processing DPU Instance

At the end of the initialization, the function prints to the CCS console output window the memory

addresses of the allocated objects, Figure 13. By pasting these addresses (along with the cast text) into

the CCS expression window all the object fields will be easily explored, Figure 14. This may be helpful for

debugging.

radarProcessInstance_t

CFAR Instance
(for dynamic scene)

CFAR Instance
(for static scene)

Heatmap

Averaged antennas across chirps
antenna x range

(for static scene proc)

aoaInstance

dynamicCFARInstance

staticCFARInstance

localHeatmap

benchmarkPtr

tempHeatMapOut

static_information

Angle spectrum of one range bin

Benchmark Info

RADARDEMO_aoaEst2DCaponBF_handle

RADARDEMO_detectionCFAR_handle

RADARDEMO_detectionCFAR_handle

radarProcessBenchmarkObj

...

...

RADARDEMO_aoaEst2D_RAHeatMap_handle

raHeatMap_handle

2D Capon BF Instance Relevant for step 1:

aeEstimation_handle

RADARDEMO_aoaEst2D_aeEst_handle

Relevant for step 2:

...

...

detectionMethod

RADARDEMO_aoaEst2DCaponBF_input

RADARDEMO_aoaEst2DCaponBF_output

aoaInput
aoaOutput

detectionCFARInput

detectionCFAROutput

RADARDEMO_detectionCFAR_input

RADARDEMO_detectionCFAR_output

Input data to Capon BF module

Input data to CFAR detection
module

steeringVecAzim

steeringVecElev
steeringVec

virtAntInd2Proc
steeringVecAzimInit
steeringVecAzimStep
steeringVecElevInit
steeringVecElevStep

elevEst
peakPow

bwFilter

azimEst

dopplerIdx
invRnMatrices

static_information

rangeInd
dopplerInd

snrEst
noise

3D People Tracking Demo Software Implementation Guide – Rev 2.3

27

Figure 13 – CCS logs addresses of dynamically allocated radar DPU objects

Figure 14 – Example: Capon beam forming object in CCS expression window

5.2 DPU_radarProcess_process()

This function is called per frame and all the detection layer processing on DSS is executed within this

function call. The high-level processing flow diagram is shown in Figure 15. The processing consists of two

parts, the dynamic scene processing and if enabled, the static scene processing. It executed per frame.

The input is the radar cube matrix, and the output is a single list of detected points. The function call two

signal processing modules 2D Capon beamforming module (blocks in green) and CFAR detection module

(blocks in blue).

3D People Tracking Demo Software Implementation Guide – Rev 2.3

28

Figure 15 – DPU_radarProcess_process() - flow diagram

6 Detection Layer Signal Processing Modules

The low-level signal processing on DSS is implemented using two signal processing modules: 2D Capon

Beamforming module, and CFAR detection module.

6.1 2D Capon Beamforming module

DPU_radarProcess_process()

RADARDEMO_aoaEst2DCaponBF_run()

RADARDEMO_detectionCFAR_run()

RADARDEMO_aoaEst2DCaponBF_run()

All Range Bins processed?

Configure 2DCaponBF, First Step

All detected points processed?

Configure 2DCaponBF, Second Step

Add point to point clout output

RADARDEMO_aoaEst2DCaponBF_static_run()

RADARDEMO_detectionCFAR_run()

All Range Bins processed?

Configure 2DCaponBF, First Step

Configure 2DCaponBF, Second Step

Add point to point clout output

RADARDEMO_aoaEst2DCaponBF_static_run()

All detected points processed?

End

Static scene processing

No

No

No

No

Yes

All angle points processed? All angle points processed?
No No

Copy angle spectrum to heatmap
copyTranspose()

Copy angle spectrum to heatmap
copyTranspose()

3D People Tracking Demo Software Implementation Guide – Rev 2.3

29

In the processing chain this module is executed before the CFAR detection, (processing step 1), and also

after the CFAR detection, (processing step 2). Before detection, it generates 2D or 3D heatmap used for

the point cloud detection and estimation. After detection it completes the angle estimation and estimates

the velocity of detected points. It is used in both signal processing chains, wall-mount and ceil-mount.

The APIs are

- RADARDEMO_aoaEst2DCaponBF_create()

- RADARDEMO_aoaEst2DCaponBF_delete()

- RADARDEMO_aoaEst2DCaponBF_run()

- RADARDEMO_aoaEst2DCaponBF_static_run()

6.1.1 RADARDEMO_aoaEst2DCaponBF_create()

This function initializes and configures the module. It allocates memory for its internal object and data. It

calculates pre-calculates steering vectors.

6.1.1.1 Steering vector design

In the 3D people tracking demo, the Capon beamforming algorithm, a.k.a. the minimum variance

distortionless response (MVDR) spectral estimator, is used for high-resolution angle of arrival estimation

step. In this algorithm, the beamforming weights steered to any azimuth () and elevation (𝜃) angle for

an 𝑁-element array with element spatial locations 𝐩𝒏 = [𝑝𝑥𝑛
 𝑝𝑦𝑛

 𝑝𝑧𝑛
]

𝑻
, 𝑛 = 1,2, . . . , 𝑁 are defined as

 𝒂(, 𝜃) = [𝑒𝑗𝑘𝐚,𝜃
𝑇 𝐩1 , 𝑒𝑗𝑘𝐚,𝜃

𝑇 𝐩2 , … , 𝑒𝑗𝑘𝐚,𝜃
𝑇 𝐩𝑁], (1)

where 𝑘 = 2𝜋 𝜆⁄ is the wavenumber at wavelength 𝜆, and 𝐚,𝜃
𝑇 is the unit vector pointing in the assumed

direction of field propagation, which can be expressed as (refer to the book in [3] for details)

𝐚,𝜃 = [

cos (𝜃)sin ()
cos (𝜃)cos ()

sin (𝜃)
].

(2)

Figure 16 illustrates the system geometry of a single reflection point n. The azimuth () is defined as the

angle from the y-axis to the orthogonal projection of the position vector onto the xy-plane. The angle is

positive, going from the y-axis toward the x-axis. The elevation (𝜃) is defined as the angle from the

projection onto the xy-plane to the vector. The angle is positive, going from the xy-plane to the z-axis.

3D People Tracking Demo Software Implementation Guide – Rev 2.3

30

Figure 16 - The system geometry of the point cloud in the 3D coordinate system.

The numbering of the physical transmit and receive antennas is shown in Figure 17.

RX1

RX2 RX3

RX4 TX1 TX2

TX3

Figure 17 – Physical antenna ordering for ISK EVM (left) and ODS EVM (right)

The virtual antenna coordinates and the order of antennas in Radar Cube memory generated by the Range

DPU are shown in Figure 18. Numbers in the circles represent the antenna order. Note that this order

holds if the transmit antenna order in the MIMO scheme matches their physical order. On the ODS EVM

the Rx antennas Rx1 and, Rx4 are fed from the opposite side compared to Rx2 and Rx3, therefore the

phase rotation of 180 degrees has to be applied either to Rx1 and Rx4 or to Rx2 and Rx3.

3D People Tracking Demo Software Implementation Guide – Rev 2.3

31

Figure 18 – Virtual antenna m and n coordinates and the order in Radar Cube matrix for ISK
(left) and ODS (right).

As illustrated in Figure 18, both EVMs have 2D planar arrays with uniformly spaced antenna elements in

xz-domain (according to the reference coordinate system in Figure 16). For these EVMs, the virtual

antenna element locations in the y-domain is zero and the inter-element spacing of the antennas in the

xz-plane is 𝜆 2⁄ . Therefore, the element position vectors in (1) can be defined as

 𝐩𝒏 = (𝜆 2⁄)[𝑥𝑛 0 𝑧𝑛]𝑻, 𝑥𝑛 = 0,1, … (𝑁𝑥 − 1) 𝑎𝑛𝑑 𝑦𝑛 = 0,1, … (𝑁𝑧 − 1) (3)

where 𝑁𝑥 and 𝑁𝑧 are the number of virtual receive antenna elements in the x and z direction, respectively.

If we define direction cosines 𝜈 (nu) and 𝜇 (mu) with respect to x and z axes using (2) as

 𝜈 = cos (𝜃)sin ()

𝜇 = sin(𝜃)
, (4)

and take (2),(3), and (4) into (1), the steering vector can be written in the nu-mu domain as

 𝒂(𝜈, 𝜇) = [1, 𝑒𝑗𝜋𝜈 , 𝑒𝑗𝜋2𝜈 , 𝑒𝑗𝜋𝜇 , 𝑒𝑗𝜋2𝜇 , … , 𝑒𝑗𝜋(𝑁𝑥−1)𝑣𝑒𝑗𝜋(𝑁𝑧−1)𝜇]. (5)

Therefore, the steering vector in (1) can be calculated in any (𝜈, 𝜇) direction and for any antenna element

𝑛 as the multiplication of the corresponding elements in the following 1D steering vectors in 𝜈 and 𝜇

domain

 𝒂(𝜈) = [1, 𝑒𝑗𝜋𝜈 , 𝑒𝑗𝜋2𝑣, … , 𝑒𝑗𝜋(𝑁𝑥−1)𝑣]

𝒂(𝜇) = [1, 𝑒𝑗𝜋𝜇 , 𝑒𝑗𝜋2𝜇 , … , 𝑒𝑗𝜋(𝑁𝑧−1)𝜇]
.

(6)

The antenna coordinates m_ind (azimuth dimension) and n_ind (elevation dimension), and the phase

rotation are

For ISK EVM:

m_ind = [0 -1 -2 -3 -2 -3 -4 -5 -4 -5 -6 -7]

m_ind

n_ind

0 1 2 3 8 9 10 11

4 5 6 7

0 -1 -2 -3 -4 -5 -6 -7

-1

0

m_ind 0

1 2

3

8

9 10

11

4

5 6

7

0 -1 -2 -3

n_ind

-1

0

-3

-2

l/2

l/2

l/2

l/2

3D People Tracking Demo Software Implementation Guide – Rev 2.3

32

n_ind = [0 -1 -1 0 0 -1 -1 0 -2 -3 -3 -2]

Phase rotation = [1 1 1 1 1 1 1 1 1 1 1 1]

For ODS EVM:

m_ind = [0 0 -1 -1 -2 -2 -3 -3 -2 -2 -3 -3]

n_ind = [0 -1 -1 0 0 -1 -1 0 -2 -3 -3 -2]

Phase rotation = [-1 1 1 -1 -1 1 1 -1 -1 1 1 -1]

The indices m_ind and n_ind are specified by CLI configuration commands antGeometry0 and

antGeometry1 respectively. The phase rotation is specified by CLI command antPhaseRot.

For the first processing step, for range-angle heatmap generation, a full set of steering vectors is

generated including all virtual antennas to save cycles. In the second processing step, after the CFAR

detection, the steering vectors are generated on the fly. To be able to generate them on-the fly, the

steering vectors are handled in mu-nu domain, instead of angle domain (theta-phi domain). After the

completion of the angle estimation, the asin() and acos() functions (from 674x MATHLIB library) are called

to convert to the final spherical point cloud format. The antenna geometry, antenna phase rotation, and

board related phase bias are all taken care of in the steering vector generation. No run-time calculation is

involved.

6.1.1.1.1 Steering vectors calculation for wall-mount scenario

For wall-mount scenario two sets of steering vectors are pre-calculated and stored at the initialization

time: azimuth steering vectors, and elevation steering vectors. The steering vectors are calculated for full

set of virtual antennas, (12 antennas).

Figure 19 and Figure 20 illustrate the steering vector grid in mu-nu domain and theta-phi domain

respectively. The pre-calculated azimuth steering vectors are shown as blue dots and the pre-calculated

elevation steering vectors are shown as red dots. The other dots, shown in gray, are generated on the fly

in the second processing step for the elevation estimation. The vectors are evenly spaces in the mu-nu

domain, while in theta-phi domain the step size is not constant and increases towards the edges of FOV.

The number of steering vectors depends on the configuration parameters: the field of view and the angle

step size. These parameters are specified in the CLI configuration file for both azimuth and elevation. For

example, as shown in Figure 19 and Figure 20, for the following input parameters: azimuth FOV = +/- 70o,

azimuth step size = 0.75o, elevation FOV = +/- 20o, and elevation step size = 0.75o, the number of steering

vectors in azimuth direction is 187, and the number in elevation direction is 54.

3D People Tracking Demo Software Implementation Guide – Rev 2.3

33

Figure 19 – Steering vector grid in mu-nu domain (wall-mount scenario)

Figure 20 – Steering vector grid in theta-phi domain (wall-mount scenario)

In the first processing step, range-angle heatmap generation, only azimuth-antennas, 8 antennas of the

pre-calculated azimuth steering vectors are used. In the second processing step all 12 antennas are used.

The elevation steering vectors are calculated by multiplying pre-calculated elevation steering vectors with

the azimuth steering vector corresponding to the detected point.

Pre-calculated steering vectors are stored in raHeatMap_handle->steeringVecAzim and

raHeatMap_handle->steeringVecElev, allocated in L2 memory heap.

3D People Tracking Demo Software Implementation Guide – Rev 2.3

34

6.1.1.1.1.1 Azimuth steering vectors calculation

Base on the configuration parameters azimuth angle FOV 𝜑𝐹𝑂𝑉 and angle step size 𝜑𝑆𝑡𝑒𝑝, the azimuth

steering vectors are calculated as

Number of azimuth steering vectors

𝑁𝐴 =
2𝜑𝐹𝑂𝑉

𝜑𝑆𝑡𝑒𝑝

Initial value of nu and nu step

𝜐𝑖𝑛𝑖𝑡 = − sin 𝜑𝐹𝑂𝑉, 𝜐𝑠𝑡𝑒𝑝 =
−2𝜐𝑖𝑛𝑖𝑡

𝑁𝐴

nu grid

 𝜐𝑖 = 𝜐𝑖𝑛𝑖𝑡 + 𝑖 ∙ 𝜐𝑠𝑡𝑒𝑝 , 𝑖 = 0, … , 𝑁𝐴 − 1

Azimuth steering vectors

𝐚(𝜐𝑖) = [𝑝0𝑒𝑗𝜋𝑚0𝜐𝑖 , … , 𝑝𝑁𝑟−1𝑒𝑗𝜋𝑚𝑁𝑟−1𝜐𝑖 ,]
𝑇

 , 𝑖 = 0, … , 𝑁𝐴 − 1

were

𝑁𝑟 is number of virtual antennas (𝑁𝑟 = 12),

𝑚𝑘 , 𝑘 = 0, … , 𝑁𝑟 − 1 are antenna geometry indices, m_ind.

𝑝𝑘 , 𝑘 = 0, … , 𝑁𝑟 − 1 are 180o phase rotation coefficients.

Note that azimuth steering vectors include phase rotation coefficients.

6.1.1.1.1.2 Elevation steering vectors calculation

Based on the configuration parameters, the elevation angle FOV 𝜃𝐹𝑂𝑉 and the angle step size 𝜃𝑆𝑡𝑒𝑝 , the

elevation steering vectors are calculated as

The number of elevation steering vectors

𝑁𝐸 =
2𝜃𝐹𝑂𝑉

𝜃𝑆𝑡𝑒𝑝

Initial value of mu and mu step

μ𝑖𝑛𝑖𝑡 = − sin 𝜃𝐹𝑂𝑉, μ𝑠𝑡𝑒𝑝 =
−2μ𝑖𝑛𝑖𝑡

𝑁𝐸

nu grid:

 μ𝑖 = μ𝑖𝑛𝑖𝑡 + 𝑖 ∙ μ𝑠𝑡𝑒𝑝 , 𝑖 = 0, … , 𝑁𝐸 − 1

3D People Tracking Demo Software Implementation Guide – Rev 2.3

35

Elevation steering vectors:

𝐚(μ𝑖) = [𝑒𝑗𝜋𝑛0μ𝑖 , … , 𝑒𝑗𝜋𝑛𝑁𝑟−1μ𝑖 ,]
𝑇

 , 𝑖 = 0, … , 𝑁𝐸 − 1

were

𝑁𝑟 is number of virtual antennas (𝑁𝑟 = 12)

𝑛𝑘 , 𝑘 = 0, … , 𝑁𝑟 − 1 are antenna geometry indices n_ind.

Note that in the code the values μ𝑖𝑛𝑖𝑡, μ𝑠𝑡𝑒𝑝, υ𝑖𝑛𝑖𝑡, υ𝑠𝑡𝑒𝑝, are saved normalized to 𝜋.

6.1.1.1.2 Steering vectors calculation for ceil-mount scenario

For ceil-mount scenario the 3D range-azimuth-elevation heatmap is generated using 2D coarse azimuth-

elevation grid of steering vectors which are pre-calculated and stored at the initialization time. The

steering vectors are generated for full set of virtual antennas, (𝑁𝑟 = 12). After the CFAR detection, a finer

heatmap is generated around detected points on a denser grid of steering vectors. These steering vectors

are calculated on the fly based on the four pre-calculated steering vectors and the coarse steering vector

corresponding to a detected point. Figure 21 and Figure 22 illustrate the steering vector grid in mu-nu

domain and theta-phi domain respectively. The pre-calculated steering vectors of the coarse grid are

shown as blue dots. The four steering vectors used for zoom-in heatmap generation are shown as red

dots. The dots in gray are the example of on the fly generated zoomed-in steering vectors for a detected

point at (nu, mu) = (0.5, 0.4). The configuration parameters in this example are: azimuth FOV = +/- 69o,

azimuth step size = 7o, elevation FOV = +/- 62o, and elevation step size = 7o, zoom-in factor = 5.

3D People Tracking Demo Software Implementation Guide – Rev 2.3

36

Figure 21 – Steering vector grid in mu-nu domain (ceil-mount scenario), pre-calculated
steering vectors for coarse heatmap (blue dots), pre-calculated steering vectors for zoomed-

in heatmap (red dots).

Figure 22 – Steering vector grid in theta-phi domain (ceil-mount scenario)

3D People Tracking Demo Software Implementation Guide – Rev 2.3

37

6.1.1.1.2.1 Coarse azimuth-elevation steering vector calculation

Base on the configuration parameters azimuth angle FOV 𝜑𝐹𝑂𝑉 , 𝜃𝐹𝑂𝑉, step size 𝜑𝑆𝑡𝑒𝑝 (equal in both

directions) the steering vectors are calculated as

Number of steering vectors in azimuth direction

𝑁𝐴 =
2𝜑𝐹𝑂𝑉

𝜑𝑆𝑡𝑒𝑝

Initial value of nu and nu step

𝜐𝑖𝑛𝑖𝑡 = − sin 𝜑𝐹𝑂𝑉, 𝜐𝑠𝑡𝑒𝑝 =
−2𝜐𝑖𝑛𝑖𝑡

𝑁𝐴

nu grid

 𝜐𝑖 = 𝜐𝑖𝑛𝑖𝑡 + 𝑖 ∙ 𝜐𝑠𝑡𝑒𝑝 , 𝑖 = 0, … , 𝑁𝐴 − 1

The number of steering vectors in elevation direction

𝑁𝐸 =
2𝜃𝐹𝑂𝑉

𝜃𝑆𝑡𝑒𝑝

Initial value of mu and mu step

μ𝑖𝑛𝑖𝑡 = − sin 𝜃𝐹𝑂𝑉, μ𝑠𝑡𝑒𝑝 =
−2μ𝑖𝑛𝑖𝑡

𝑁𝐸

mu grid:

 μ𝑖 = μ𝑖𝑛𝑖𝑡 + 𝑖 ∙ μ𝑠𝑡𝑒𝑝 , 𝑖 = 0, … , 𝑁𝐸 − 1

Coarse azimuth-elevation steering vectors

𝐚(μ𝑖2, 𝜐𝑖1) = [𝑝0𝑒𝑗𝜋(𝑚0𝜐𝑖1+𝑛0μ𝑖2) , … , 𝑝𝑁𝑟−1𝑒𝑗𝜋(𝑚𝑁𝑟−1𝜐𝑖1+𝑛𝑁𝑟−1μ𝑖2),]
𝑇

 ,𝑖2 = 0, … , 𝑁𝐸 − 1, 𝑖1 =

0, … , 𝑁𝐴 − 1

were

𝑁𝑟 is number of virtual antennas (=12),

𝑚𝑘 , 𝑘 = 0, … , 𝑁𝑟 − 1 are antenna geometry indices, m_ind.

𝑛𝑘 , 𝑘 = 0, … , 𝑁𝑟 − 1 are antenna geometry indices n_ind.

𝑝𝑘 , 𝑘 = 0, … , 𝑁𝑟 − 1 are 180o phase rotation coefficients.

3D People Tracking Demo Software Implementation Guide – Rev 2.3

38

The coarse steering vectors are stored in raHeatMap_handle->steeringVec allocated in L2 memory heap.

The steering vectors are stored in order [elevation index][azimuth index][antenna index].

6.1.1.1.2.2 Zoom-in steering vectors

Zoom in steering vector grid size is 𝑁𝑧𝑜𝑜𝑚_𝑖𝑛 × 𝑁𝑧𝑜𝑜𝑚_𝑖𝑛 where 𝑁𝑧𝑜𝑜𝑚_𝑖𝑛 = 2𝑀𝑧𝑜𝑜𝑚_𝑖𝑛 + 1 and 𝑀𝑧𝑜𝑜𝑚_𝑖𝑛

is zoom-in factor specified in CLI configuration. As mentioned before only four steering vectors are pre-

calculated, the initial value, and the step, for each direction.

𝜐𝑖𝑛𝑖𝑡
′ = −𝜐𝑠𝑡𝑒𝑝, 𝜐𝑠𝑡𝑒𝑝

′ =
𝜐𝑠𝑡𝑒𝑝

𝑀𝑧𝑜𝑜𝑚_𝑖𝑛

𝐛𝒂𝒛𝒊𝒎_𝒊𝒏𝒊𝒕(𝜐𝑖𝑛𝑖𝑡
′) = [𝑒𝑗𝜋𝑚0𝜐𝑖𝑛𝑖𝑡

′
, … , 𝑒𝑗𝜋𝑚𝑁𝑟−1𝜐𝑖𝑛𝑖𝑡

′
,]

𝑇

𝐛𝒂𝒛𝒊𝒎_𝒔𝒕𝒆𝒑(𝜐𝑠𝑡𝑒𝑝
′) = [𝑒𝑗𝜋𝑚0𝜐𝑠𝑡𝑒𝑝

′
, … , 𝑒𝑗𝜋𝑚𝑁𝑟−1𝜐𝑠𝑡𝑒𝑝

′
,]

𝑇

𝜇𝑖𝑛𝑖𝑡
′ = −𝜇𝑠𝑡𝑒𝑝, 𝜇𝑠𝑡𝑒𝑝

′ =
𝜇𝑠𝑡𝑒𝑝

𝑀𝑧𝑜𝑜𝑚

𝐛𝒆𝒍𝒆𝒗_𝒊𝒏𝒊𝒕(𝜇𝑖𝑛𝑖𝑡
′) = [𝑒𝑗𝜋𝑛0𝜇𝑖𝑛𝑖𝑡

′
, … , 𝑒𝑗𝜋𝑛𝑁𝑟−1𝜇𝑖𝑛𝑖𝑡

′
,]

𝑇

𝐛𝒆𝒍𝒆𝒗_𝒔𝒕𝒆𝒑(𝜇𝑠𝑡𝑒𝑝
′) = [𝑒𝑗𝜋𝑛0𝜇𝑠𝑡𝑒𝑝

′
, … , 𝑒𝑗𝜋𝑛𝑁𝑟−1𝜇𝑠𝑡𝑒𝑝

′
,]

𝑇

These four zoom-in steering vectors are stored in the following arrays:

aeEstimation_handle->steeringVecAzimInit, aeEstimation_handle->steeringVecAzimStep,

aeEstimation_handle->steeringVecElevInit, aeEstimation_handle->steeringVecElevStep, all allocated in

L1 memory heap.

The steering vectors on the zoomed-in grid are generate on the fly iteratively as

𝐯(0) = 𝐚𝑐𝑜𝑎𝑟𝑠𝑒_𝑒𝑠𝑡 ∘ 𝐛𝑎𝑧𝑖𝑚_𝑖𝑛𝑖𝑡 ∘ 𝐛𝑒𝑙𝑒𝑣_𝑖𝑛𝑖𝑡

𝐯(𝑖) = 𝐯(𝑖 − 1) ∘ 𝐛𝑎𝑧𝑖𝑚_𝑠𝑡𝑒𝑝, 𝑖 = 1, … , 𝑁𝐸𝑧𝑜𝑜𝑚_𝑖𝑛 − 1

𝐮(𝑖, 0) = 𝐯(𝑖)

𝐮(𝑖, 𝑗) = 𝐮(𝑖, 𝑗 − 1) ∘ 𝐛𝑒𝑙𝑒𝑣_𝑠𝑡𝑒𝑝 , 𝑗 = 1, … , 𝑁𝐸𝑧𝑜𝑜𝑚_𝑖𝑛 − 1

The symbol ∘ denotes element-wise vector product. This is illustrated in Figure 23. Blue circles represent

coarse grid, while grey dots represent zoomed-in grid around detected point at 𝐚𝑐𝑜𝑎𝑟𝑠𝑒_𝑒𝑠𝑡.

3D People Tracking Demo Software Implementation Guide – Rev 2.3

39

Figure 23 – Zoomed-in grid steering vector generation

6.1.2 RADARDEMO_aoaEst2DCaponBF_run()

This function generates detection heat map using 2D Capon beam forming approach. It is called per range

bin. It is called in both signal processing chains, wall-mount and ceil-mount. In the processing chain it is

called at two places, referred in a code as processing step 1 and processing step 2. The first processing

step is before CFAR detection and the second step is called after the CFAR detection.

In step 1 it calculates per range bin

- 1D azimuth spectrum and stores it in a 2D range-azimuth heatmap (wall-mount),

- 2D azimuth-elevation spectrum and stores it in a 3D range-azimuth-elevation (ceil-mount).

In step 2 it calculates per detected point

- elevation spectrum and estimates the elevation angle (method 1),

- finer azimuth-elevation spectrum and estimates both angles (method 2),

Azimuth (nu domain)

El
ev

at
io

n
 (

m
u

 d
o

m
ai

n
)

j

i

vjv0

acoarse_est

uj,i

jcoarseMax

i c
o

a
rs

eM
a

x

3D People Tracking Demo Software Implementation Guide – Rev 2.3

40

- peak expansion (method 2),

- radial velocity of the detected points.

The function flow diagram is shown in Figure 24.

Figure 24 – 2D Capon BF run API flow diagram

6.1.2.1 Processing step 1

6.1.2.1.1 Static Clutter Removal

The static clutter removal is performed by function RADARDEMO_aoaEst2DCaponBF_clutterRemoval(). It

is called within RADARDEMO_aoaEst2DCaponBF_run() in the first processing step. It is called per range

bin. The static clutter removal is performed on the Radar Cube matrix located in L3. The function computes

the mean values of antenna symbols across the chirps per antenna. Then it subtracts the mean values

from the symbols and outputs them to the L1 scratch memory for further processing in the chain. Note

that the output data are stored in the floating-point format and from this point on, all the further

processing is done in the floating point. It also outputs the mean values for the static scene processing.

RADARDEMO_aoaEst2DCaponBF_run()

processingStepSelector

RADARDEMO_aoaEst2DCaponBF_clutterRemoval()

RADARDEMO_aoaEst2DCaponBF_covInv()
RADARDEMO_aoaEst2DCaponBF_raHeatmap()

Zoom in

Rn-1 calculated?
RADARDEMO_aoaEst2DCaponBF_covInv()

No

RADARDEMO_aoaEst2DCaponBF_aeEstElevOnly()
(output one estimate)

No (wall-mount) Yes (ceil-mount)

Step 2Step 1

RADARDEMO_aoaEst2DCaponBF_dopperEstInput

All angle estimates processed

No

End

Magnitude square, find max and update Doppler

DSPF_sp_fftSPxSP()

No
Local Max?

Compare to elevation
neighbors on

azim-elev heatmap

RADARDEMO_aoaEst2DCaponBF_aeEstZoomin
(one or more estimates)

Yes

localMaxCheck > 0

Yes

localMaxCheck?

 = 1 = 2

Compare to elevation
and azimuth neighbors

on coarse heatmap

3D People Tracking Demo Software Implementation Guide – Rev 2.3

41

The function writes back the updated symbols to the Radar Cube matrix in a transposed form as illustrated

in Figure 25.

Figure 25 – Clutter removal function

In the 3D people tracking demo, the orthogonality between the transmit antennas is achieved by

employing both the time-division multiplexing (TDM) and binary phase modulation (BPM) techniques

[4][5]. It is important to note that the 3D people tracking demo supports the BPM-MIMO scheme with

only two TX antennas. In this mode, two TX antennas should transmit simultaneously in BPM mode, and

the third TX antenna should be in TDM mode. Unlike in TDM-MIMO, where only one TX antenna is active

per chirp interval, two transmit antennas are active in each chirp interval.

For the BPM-MIMO mode, in the even time slots (0, 2, ...), both transmit antennas should be configured

to transmit with positive phase, i.e. (TX1,TX2) = (+,+). In the odd time slots (1, 3, ...), the transmit antennas

should be configured to transmit with phase (TX1,TX2) = (+,-). Hence, if the BPM mode is enabled, the

signal processing chain needs to decode the received chirp pairs to separate the transmission from each

TX antenna. RADARDEMO_aoaEst2DCaponBF_bpmDecoding() function is then called before the static

clutter removal step to decode this modulation scheme. In this function, the MIMO demodulation block

reads the data for a range gate and performs the MIMO demodulation, as summarized below. Output is

the per range gate MIMO demodulated signal for all virtual RX channels.

BPM-MIMO demodulation scheme: Let TX1 and TX2 represent chirp signals from two TX antennas. In time

slot zero, a combined signal Sa= TX1+TX2 is transmitted. Similarly, in time slot one, a combined signal Sb=

TX1-TX2 is transmitted. Using the corresponding received signals (Sa and Sb), at a specific received RX

antenna, the components from the individual transmitters are separated out using

▪ TX'1=(Sa+Sb)/2, and
▪ TX'2=(Sa-Sb)/2.

Static Clutter
Removal

Radar Cube in L3, Complex16
Before clutter removal:
[range][chirp][antenna]
After clutter removal:
[range][antenna][chirp]

Output without Clutter
In L1 scratch, Complex16
[antenna][chirp]

[chirp][antenna]

[antenna][chirp]

Static Information in L2, Complexf
[range][antenna]

Clutter removed

Range bin n

Range bin n

aoaEstBFInst->tempInputWOstatic

estOutput->static_information

3D People Tracking Demo Software Implementation Guide – Rev 2.3

42

6.1.2.1.2 Spatial Covariance Matrix Estimation and Inversion

The spatial covariance matrix estimation and inversion is implemented by function

RADARDEMO_aoaEst2DCaponBF_covInv(). The function first calculates the covariance matrix and then

depending on the input flag it computes the inverse matrix. The output matrix is stored as the upper

triangular matrix, row by row in memory. This function is used in both processing steps. The covariance

matrix is computed as

R𝑦𝑦 =
1

𝑁𝑐
∑ 𝐘𝑐

𝑁𝑐−1
𝑐=0 𝐘𝑐

𝐻, 𝐘𝑐 = [𝑦𝑐,0, … , 𝑦𝑐,𝑁𝑟−1]
𝑇

Where

𝑁𝑐 - is number of chirps,

𝐘𝑐 – is array of selected antenna symbols of chirp 𝑐 that are used in Capon beamforming spectrum

estimation,

𝑁𝑟 - is number of used selected antennas.

A diagonal loading is applied to the R matrix to ensure stability

R𝑦𝑦 = R𝑦𝑦 + 𝛾
𝑡𝑟(R𝑦𝑦)

𝑁𝑎
𝐈𝑵𝒓

The covariance matrix inversion is implemented using Cholesky decomposition. The method is proposed

in [2]. Figure 26 illustrates the function input and output buffers.

Figure 26 – Covariance matrix estimation and inverse

The full floating-point implementation for matrix inversion takes 5k cycles for 8x8, or 12k cycles for 12x12.

6.1.2.1.3 Range-angle heatmap generation

This is done by function RADARDEMO_aoaEst2DCaponBF_raHeatmap(). It is called per range bin. It

calculates MVDR angle spectrum according to following equations:

Output without Clutter
In L1 scratch, Complex16
[antenna][chirp]

Covariance
Matrix &
Inverse

aoaEstBFInst->tempInputWOstatic
estOutput->invRnMatrices
Rxx

-1 in L2 (wall-mount), in L3 (ceil-mount)
Complexf [range][Rxx size]
Rxx size : upper triangular size

Rxx
-1 of range bin n

raHeatMap_handle->scratchPad, in L2 (processsing step 1)
aeEstimation_handle->scratchPad, in L1 (processing step 2)
Size: Two full Rxx matrices

3D People Tracking Demo Software Implementation Guide – Rev 2.3

43

- for wall-mount using azimuth steering vectors, including only azimuth antennas, Nr=8

𝑃𝑏(𝜐𝑖) =
1

𝐚𝐻(𝜐𝑖)𝑹𝒀𝒀
−𝟏𝐚(𝜐𝑖)

, 𝑖 = 0, … , 𝑁𝐴 − 1

- for ceil-mount using coarse azimuth-elevation steering vectors, including all antennas, Nr=12

𝑃𝑏(μ𝑖2, 𝜐𝑖1) =
1

𝐚𝐻(μ𝑖2,𝜐𝑖1)𝑹𝒀𝒀
−𝟏𝐚(μ𝑖2,𝜐𝑖1)

, 𝑖2 = 0, … , 𝑁𝐸 − 1, 𝑖1 = 0, … , 𝑁𝐴 − 1

The calculation of one spectral point involves the calculation of vector by matrix by vector multiplication

of the form 𝐯𝑯𝐀𝐯, where 𝐯 is an Nx1 vector, 𝐀 is an NxN positive semidefinite Hermitian matrix, and then

taking the inverse of the product. This is the most cycle cost kernel in the implementation, because it is

per range bin per angle bin, and the size of the matrix is large. It can be written into the following form:

∑ 𝑑𝑖𝑎𝑔(𝐀) + ∑ ∑ 2 ∗ 𝑅𝑒(𝑎𝑖,𝑗

𝑁−1

𝑗=𝑖+1

𝑁−2

𝑖=0

𝑁−1

𝑖=0

∗ 𝑣𝑖 ∗ 𝑐𝑜𝑛𝑗(𝑣𝑗))

The formula above is fully unrolled to scheduled loops to get better cycle performance at the cost of code

memory usage. Currently only 4/8/12 antennas are supported fully unrolled. If there is a need to do other

number of antennas, e.g., 6 or 10 antennas, additional code will need to be written in the similar fashion

to get similar cycle profile at the cost of increased code memory. The final spectral point is obtained by

taking the inverse of the result. The function outputs the angle spectrum to a temporary buffer that holds

data only of the current range bin, as shown in Figure 27. From the temporary buffer the function

copyTranspose() copies and transposes the result into the final range-angle heatmap to be processed by

CFAR. It also outputs the maximum value and stores in the array of peak values per range bin, which is

used later by CFAR for side-lobe threshold calculation. The final data arrangement in the heatmap, after

all the range bins have been processed, is:

- For wall-mount: [azimuth index] [range index],

- For ceil-mount: [elevation index][azimuth index][range index].

Figure 27 – Range-Angle heatmap generation

Range-Angle
Heatmap Gen -
Capon (MVDR)

estOutput->invRnMatrices
Rxx

-1 in L2 (wall-mount), in L3 (ceil-mount)
Complexf [range][Rxx size]
Rxx size : upper triangular size

Method 1: raHeatMap_handle->steeringVecAzim
Method 2: raHeatMap_handle->steeringVec

inst->localHeatmap
Format: [angle][range]
In L3 (wall-mount), in L2 (ceil-mount)

tempHeatMapOut
Heatmap one range bin in L2

range

Copy
Transpose

Angle

A
n

gle

R
an

ge b
in

 n

Rxx
-1 of range bin n

perRangeBinMax

3D People Tracking Demo Software Implementation Guide – Rev 2.3

44

6.1.2.2 Processing step 2

The function is called after CFAR detection and it is called per detected point. It estimates the elevation

(wall-mount) or refines the azimuth/elevation estimation (ceil-mount) and then it estimates radial velocity

of the detected point based on a Doppler FFT.

6.1.2.2.1 Wall-mount – Elevation Estimation

In processing step 2 the inverse covariance matrix is recalculated including all virtual antennas, Nr=12,

since in the first processing step Nr=8 antennas are used. In order to avoid repeated calculation, it sets the

bit corresponding to the range index in the bitmask array, aeEstimation_handle->procRngBinMask, to

indicate that the inverse covariance is calculated in case the following detected points have the same

range index. The elevation spectrum is calculated by RADARDEMO_aoaEst2DCaponBF_aeEstElevOnly().

The relevant input/output information is shown in Figure 28.

Figure 28 – Wall-mount elevation estimation

The function calculates the elevation spectrum at detected azimuth angle 𝜐𝑗𝑀𝑎𝑥 as

𝑃𝑏(μ𝑖, 𝜐𝑗𝑀𝑎𝑥) =
1

𝐚𝐻(μ𝑖,𝜐𝑗𝑀𝑎𝑥)𝑹𝒀𝒀
−𝟏𝐚(μ𝑖,𝜐𝑗𝑀𝑎𝑥)

, 𝑖 = 0, … , 𝑁𝐸 − 1

Where the steering vectors are calculated on the fly as

𝐚(μ𝑖, 𝜐𝑗𝑀𝑎𝑥) = 𝐚(μ𝑖) ∘ 𝐚(𝜐𝑗𝑀𝑎𝑥), 𝑖 = 0, … , 𝑁𝐸 − 1

After finding the maximum in the elevation spectrum, the function calculates the beamforming weights

𝒘 = 𝑹𝒀𝒀
−𝟏𝐚(μ𝑖𝑀𝑎𝑥, 𝜐𝑗𝑀𝑎𝑥)

the coordinates μ𝑖𝑀𝑎𝑥 , 𝜐𝑗𝑀𝑎𝑥

estOutput->invRnMatrices
Rxx

-1 in L2 (Wall-Mount), in L3 (Ceil-Mount)
Complexf [range][Rxx size]
Rxx-1 stored as upper triangular matrix

Rxx
-1 of range bin n

Peak Index in
Azimuth Spectrum

Method 1: raHeatMap_handle->steeringVecAzim
 raHeatMap_handle->steeringVecElev

Capon Spectral
Estimation

tempHeatMapOut in L2
Elevation spectrum

Elevation Angle

Antenna index

estOutput->bwFilter

Azimth, elevation =
spherical(azimInd, MaxElevInd)

3D People Tracking Demo Software Implementation Guide – Rev 2.3

45

μ𝑖𝑀𝑎𝑥 = 𝜇𝑖𝑛𝑖𝑡 + 𝑖𝑀𝑎𝑥 ∙ 𝜇𝑠𝑡𝑒𝑝

𝜐𝑖𝑀𝑎𝑥 = 𝜐𝑖𝑛𝑖𝑡 + 𝑗𝑀𝑎𝑥 ∙ 𝜐𝑠𝑡𝑒𝑝

and the spherical coordinates:

Elevation: 𝜃𝑒𝑠𝑡 = sin−1(𝜇𝑖𝑀𝑎𝑥)

Azimuth: 𝜑𝑒𝑠𝑡 = sin−1(𝜐𝑗𝑀𝑎𝑥/ cos(𝜃𝑒𝑠𝑡))

6.1.2.2.2 Ceil-mount

In the ceil-mount scenario in processing step 2, after the CFAR detection, the refined azimuth elevation

estimation is done by generating the zoomed-in heatmap around the detected point. Initially, as shown

in Figure 24, if the checking for the detected peak being a local maximum on the coarse grid is enabled,

(the filed localMaxCheck > 0 in CLI command dynamic2DAngleCfg), the function will compare the detected

peak to its neighbors, and if it is not a local peak the inclusion of the point will be skipped. Otherwise, a

zoomed-in heatmap using the Capon beamforming approach is generated. This is done by function

RADARDEMO_aoaEst2DCaponBF_aeEstZoomin(). Since the covariance matrix is already calculated in the

first processing step the function calculates the 2D zoomed-in heatmap around detected point. For

detected point at (𝑖𝐶𝑜𝑎𝑟𝑠𝑒𝑀𝑎𝑥 , 𝑗𝐶𝑜𝑎𝑟𝑠𝑒𝑀𝑎𝑥), the 2D spectrum is calculated as

𝑃𝑏(𝐮(𝑖, 𝑗)) =
1

𝐮𝐇(𝑖,𝑗)𝑹𝒀𝒀
−𝟏𝐮(𝑖,𝑗)

, 𝑖, 𝑗 = 0, … , 𝑁𝐸𝑧𝑜𝑜𝑚𝑖𝑛
− 1

using the steering vectors 𝐮(𝑖, 𝑗) calculated on the fly as described in Section 6.1.1.1.2.2. After finding the

peak position in the zoomed-in heatmap, the function calculates the beamforming weights

𝒘 = 𝑹𝒀𝒀
−𝟏𝐮(𝑖𝑀𝑎𝑥, 𝑗𝑀𝑎𝑥)

then the coordinates μ𝑖𝑀𝑎𝑥 , 𝜐𝑗𝑀𝑎𝑥

μ𝑖𝑀𝑎𝑥 = 𝜇𝑖𝑛𝑖𝑡 + 𝜇𝑖𝑛𝑖𝑡
′ + 𝑖𝑀𝑎𝑥 ∙ 𝜇𝑠𝑡𝑒𝑝

′

𝜐𝑖𝑀𝑎𝑥 = 𝜐𝑖𝑛𝑖𝑡 + 𝜐𝑖𝑛𝑖𝑡
′ + 𝑗𝑀𝑎𝑥 ∙ 𝜐𝑠𝑡𝑒𝑝

′

and the spherical coordinates:

Elevation: 𝜃𝑒𝑠𝑡 = sin−1(𝜇𝑖𝑀𝑎𝑥)

Azimuth: 𝜑𝑒𝑠𝑡 = sin−1(𝜐𝑗𝑀𝑎𝑥/ cos(𝜃𝑒𝑠𝑡))

If the peak expansion is enabled, (the CLI command filed <peakExpSamples> > 0), the neighbor points are

included in the list of detected points if the following criteria are satisfied:

- 𝑃𝑚𝑎𝑥/𝑃𝑛𝑜𝑖𝑠𝑒 is greater than SNR threshold, and

- The neighbor point is greater than threshold 𝑇 = 𝑃𝑚𝑎𝑥 ∙ (𝑇𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 − 𝑆ℎ𝑎𝑝𝑛𝑒𝑠𝑠)

Where

3D People Tracking Demo Software Implementation Guide – Rev 2.3

46

SNR threshold – is specified in the CLI command, the field <peakExpSNRThre>,

𝑃𝑛𝑜𝑖𝑠𝑒 – is the noise estimated in the first pass of the CFAR detection,

𝑆ℎ𝑎𝑟𝑝𝑛𝑒𝑠𝑠 =
𝑃𝑚𝑎𝑥−𝑃𝑚𝑖𝑛

𝑃𝑚𝑎𝑥+𝑃𝑚𝑖𝑛
 – is the peak sharpness in the zoomed-in heatmap,

𝑃𝑚𝑎𝑥, 𝑃𝑚𝑖𝑛 – are the maximum and minimum values respectively in the zoomed-in heatmap,

𝑇𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 – is relative threshold specified in the CLI command, the field <peakExpRelThre>.

The above criteria for the peak expansion are heuristic with the intention to provide more points around

the detected peak when the energy of the peak is higher and the detected peak shape is sharper in the

observed zoomed-in area.

Based on the CLI configuration field <peakExpSamples>, the candidate neighboring points for the peak

expansion are shown as red dots in the example in Figure 29 for the peak shown as a blue dot.

Figure 29 – Peak expansion candidates (red dots) in zoomed-in heatmap, for
<peakExpSamples>=1 (left), and for <peakExpSamples>=2 (right).

6.1.2.2.3 Radial Velocity Estimation

The radial velocity estimation is performed on the detected points and neighboring points included

through the peak expansion procedure. Before computing Doppler FFT the Capon beamforming is

applied to all 12 antenna symbols at detected range. This is done by function

RADARDEMO_aoaEst2DCaponBF_dopperEstInput(). The function calculates input to FFT as

𝑦(𝑐) = 𝐰𝐻𝐗𝑐, 𝑐 = 0, … , 𝑁𝑐 − 1

Where 𝑁𝑐 is number of chirps in a frame. The FFT is calculated using DSP library function

DSPF_sp_fftSPxSP(). Note that before FFT calculation the real and imaginary are swapped since the library

FFT function requires complex samples stored in order real first then imaginary, as opposed to the rest of

the chain. The maximum peak is searched applied on the FFT output to find the radial velocity of detected

point. To note that, when the fine motion mode is enabled (see Section 4.6.1 and [4]) and the processing

chain runs on the multiple-frames radar cube, the points generated from dynamic tracks are filtered out

based on a configurable Doppler threshold to improve the tracker's robustness. The processing chain then

3D People Tracking Demo Software Implementation Guide – Rev 2.3

47

tags the extracted low Doppler points from the fine motion mode as fully static (i.e., forces their Doppler

to zero). This approach helps the tracker to classify the extracted points as dynamic and static when

applying a proper logic to dynamic and static tracks.

Figure 30 – Doppler Input estimation and Doppler FFT

6.1.3 RADARDEMO_aoaEst2DCaponBF_static_run()

This function is used for the static scene processing. It calculates 3D range-azimuth-elevation heatmap

using a Bartlett beamforming approach. The 2D azimuth-elevation heatmap is generated at lower or equal

resolution compared to dynamic scene processing. In wall-mount scenario the grid is decimated in both

directions. Figure 31 illustrates decimated grid, for decimation factor equal to 8 in both directions. In ceil-

mount scenario the azimuth-angle steering vector grid is same as in dynamic scene processing. This

function is called per range bin. It is called at two places in the static scene processing chain, before and

after the CFAR detection. It is refereed in the code as processing step 1 and processing step 2.

Figure 31 – Decimated steering vector grid (for method 1) with decimated factor set to 8 in
both dimensions.

Antenna index

Doppler Input
Estimation

Capon
Beamforming

Radar Cube in L3, Complex16
After clutter removal:
[range][antenna][chirp]

X[ant][chirp]Range bin n

estOutput->bwFilter

zeros

Number of chirps
Doppler FFT size

dopplerFFTInput, scratch in L1
Complex float with swapped Re and Im Doppler

FFT

Doppler FFT size

dopplerFFTOutput, scratch in L1
Complex float with swapped Re and Im

3D People Tracking Demo Software Implementation Guide – Rev 2.3

48

The function flow diagram is shown in Figure 32.

RADARDEMO_aoaEst2DCaponBF_static_run()

processingStepSelector
Processing step 2Procesing step 1

RADARDEMO_aoaEstimationBFSinglePeak_static()
Fine azimuth-elevation estimation

(2D center of mass)

End

Figure 32 – Static scene processing flow diagram

6.1.3.1 Processing step 1

 In step 1 the function is called for all range bins to construct the range-azimuth-elevation heatmap. The

angle spectrum is calculated using Bartlett Beamforming approach. The input data are the averaged

antennas across all chirps, per antenna, previously generated during the clutter removal processing:

𝐘𝒓 = [�̅�0, … , �̅�𝑁𝑅−1]
𝑻

 , 𝑟 = 0, … , 𝑁𝑟𝑎𝑛𝑔𝑒_𝑓𝑓𝑡 − 1

The spectrum is calculated as

𝑃𝑟(μ𝑖2, 𝜐𝑖1) = |𝐚𝐻(μ𝑖2, 𝜐𝑖1)𝐘𝒓|2, 𝑟 = 0, … , 𝑁𝑟𝑎𝑛𝑔𝑒_𝑓𝑓𝑡 − 1, 𝑖2 = 0, … , 𝑁𝐸
′ − 1, 𝑖1 = 0, … , 𝑁𝐴

′ − 1

Where

𝑁𝐸
′ = ⌈𝑁𝐸 𝑀𝑒𝑙𝑒𝑣_𝑠𝑡𝑒𝑝_𝑑𝑒𝑐𝑖𝑚_𝑓𝑎𝑐𝑡𝑜𝑟⁄ ⌉, 𝑁𝐴

′ = ⌈𝑁𝐴 𝑀𝑎𝑧𝑖𝑚_𝑠𝑡𝑒𝑝_𝑑𝑒𝑐𝑖𝑚_𝑓𝑎𝑐𝑡𝑜𝑟⁄ ⌉,

and the steering vectors calculated on the fly using pre-calculated azimuth and elevation steering vectors

as

𝐚(μ𝑖2, 𝜐𝑖1) = 𝐚(μ𝑖2) ∘ 𝐚(𝜐𝑖1)

The symbol ∘ denotes element-wise product. The final data arrangement in the heatmap, after all the

range bins have been processed, is [elevation index][azimuth index][range index].

6.1.3.2 Processing step 2

The goal of this step is to increase the accuracy of the detected points in the static scene. Among

numerous ways of doing the interpolation, the approach using a two-dimensional center of mass is

implemented. The function is called per detected point. The function refines the azimuth-elevation

estimation by calculating the center of mass of the detected point and its neighbors on the coarse

heatmap 𝑃(𝑖, 𝑗) as

𝑖𝐶𝑂𝑀 =
∑ ∑ 𝑖 ∙ 𝑃(𝑖, 𝑗)

𝑗+1
𝑗=𝑗−1

𝑖+1
𝑖=𝑖−1

∑ ∑ 𝑃(𝑖, 𝑗)
𝑗+1
𝑗=𝑗−1

𝑖+1
𝑖=𝑖−1

3D People Tracking Demo Software Implementation Guide – Rev 2.3

49

𝑗𝐶𝑂𝑀 =
∑ ∑ 𝑗 ∙ 𝑃(𝑖, 𝑗)

𝑗+1
𝑗=𝑗−1

𝑖+1
𝑖=𝑖−1

∑ ∑ 𝑃(𝑖, 𝑗)
𝑗+1
𝑗=𝑗−1

𝑖+1
𝑖=𝑖−1

Then the coordinates μ𝑖𝑀𝑎𝑥 , 𝜐𝑗𝑀𝑎𝑥 are calculated

μ𝑖𝑀𝑎𝑥 = 𝜇𝑖𝑛𝑖𝑡 + 𝑖𝐶𝑂𝑀 ∙ 𝜇𝑠𝑡𝑒𝑝 ∙ 𝑀𝑒𝑙𝑒𝑣_𝑠𝑡𝑒𝑝_𝑑𝑒𝑐𝑖𝑚_𝑓𝑎𝑐𝑡𝑜𝑟

𝜐𝑖𝑀𝑎𝑥 = 𝜐𝑖𝑛𝑖𝑡 + 𝑗𝐶𝑂𝑀 ∙ 𝜐𝑠𝑡𝑒𝑝 ∙ 𝑀𝑒𝑙𝑒𝑣_𝑠𝑡𝑒𝑝_𝑑𝑒𝑐𝑖𝑚_𝑓𝑎𝑐𝑡𝑜𝑟

and the spherical coordinates

Elevation: 𝜃𝑒𝑠𝑡 = sin−1(𝜇𝑖𝑀𝑎𝑥)

Azimuth: 𝜑𝑒𝑠𝑡 = sin−1(𝜐𝑗𝑀𝑎𝑥/ cos(𝜃𝑒𝑠𝑡))

This is illustrated in Figure 33.

j jCOM

i
iCOM

Azimuth (nu index)

El
ev

at
io

n
 (

m
u

 in
d

ex
)

Coarse estimate

Fine Estimate
(center of mass of 3x3 grid)

Figure 33 – Fine angle estimation as a center of mass on a coarse azimuth-elevation heatmap.

6.2 CFAR detection module

This module performs 2-pass CFAR detection algorithm in similar way in both scenarios wall-mount and

ceil-mount. In wall mount scenario, the detection is applied on the 2D azimuth-range heatmap. In ceil-

mount scenario the 3D elevation-azimuth-range heatmap is treated as a 2D heatmap with azimuth and

elevation dimension reduced to one dimension (angleInd = azimInd + elevInd * azimDim). The CFAR

detection module APIs are

- RADARDEMO_detectionCFAR_create()

- RADARDEMO_detectionCFAR_delete()

- RADARDEMO_detectionCFAR_run()

3D People Tracking Demo Software Implementation Guide – Rev 2.3

50

6.2.1 RADARDEMO_detectionCFAR_create()

This function initializes and configures the module. It allocates memory for its internal object and

scratchpad memory for temporary detection list of the first pass CFAR detection. In the processing chain

two instances are created, one for dynamic and the other for static scene processing. Note that internally

the parameters for the second dimension are named using word Doppler although they are configured

for the angle dimension.

6.2.2 RADARDEMO_detectionCFAR_run()

The run function calls different flavors of CFAR detection algorithms selected by CFAR type input

parameter. In the 3D People tracking demo the configuration parameter cfarType is hardcoded to

RADARDEMO_DETECTIONCFAR_RA_CASOCFAR. In this mode the CFAR function

RADARDEMO_detectionCFAR_raCAAll() is used. Table 9 shows the hardcoded configuration parameters

used in 3D People tracking demo.

Parameter Dynamic scene Static scene

CFAR type CFAR-CASO CFAR-CASO

2-PASS CFAR Enabled Disabled

Neighbor Check Enabled Enabled

Table 9 – CFAR hardcoded configuration parameters

The function flow diagram is shown in Figure 35. For each angle index, the function performs CFAR along

the range bins, (along the rows in the example shown in Figure 34), and stores detections in the temporary

list. Further processing depends on the second pass flag:

Second pass is enabled: for each detected point from the temporary list, the CFAR across angle bins is

applied. If the point is again detected, it is placed in the final list. If not, it checks for two conditions: the

peak is greater than its neighbors in angle direction, and the peak is greater than the sidelobe threshold.

If the conditions are satisfied, the point is added to the final list.

Second pass is disabled: for each detected point from the temporary list, two conditions are checked: the

peak is greater than its neighbors in both directions range and angle, and the peak is greater than the

sidelobe threshold. If the conditions are satisfied, the point is added to the final list.

This processing is repeated for all angle bins.

The angle CFAR is calculating noise in cyclic mode: at the angle edges the noise window wraps around the

angle dimension.

The output list contains the following information per detected point

- range index,

- angle index, (note: in the function referred to as Doppler index) ,

- noise, used in later stage for fine SNR estimation (ceil-mount),

- snr estimate, final estimate placed in the output detection list (wall-mount)

3D People Tracking Demo Software Implementation Guide – Rev 2.3

51

The output list is shared dynamic and static CFAR instances. Currently the size of the list is hardcoded,

(defined by MAX_DYNAMIC_CFAR_PNTS) and set to 150. The list is currently allocated according to

MAX_DYNAMIC_CFAR_PNTS. Note that the maximum number of detected points for static scene

MAX_STATIC_CFAR_PNTS, currently set also to 150, should not be set more than the size of the list.

Figure 34 – Example of CFAR input range-angle heatmap in ceil-mount scenario

A
n

gl
e

In
d

ex
 =

 a
zi

m
In

d
 +

 e
le

vI
n

d
 *

 a
zi

m
D

im

Le
ft

 S
ki

p
 S

iz
e

R
ig

h
t

Sk
ip

 S
iz

e

azMaxPerRangeBin

el
ev

In
d

0
1

2

az
im

In
d

0
1

2
0

1
2

..
.

..
.

..
.

Left Skip Azimuth

Right Skip Azimuth

xRelative sidelobe threshold

el
ev

D
im

 -
1

searchWinSizeAngle
guardSizeAngle
angleThershold

searchWinSizeRange

guardSizeRange

rangeThreshold

Range

Sidelobe Threshold
used in second pass

Elevation-Azimuth-Range Heatmap

Angle CFAR

Range CFAR

3D People Tracking Demo Software Implementation Guide – Rev 2.3

52

Figure 35 – 2Pass CFAR-CASO flow diagram

2-Pass CFAR

RADARDEMO_detectionCFAR_raCAAll()

Range CFAR at angle
index i_2D,

Add detected points
 to temp list

Second Pass
Search?

Angle CFAR

peak > Threshold

Enable neighbor check
&&

Peak is local peak in
angle direction

&&
Peak > SideLobeThr

No

All points
from temp list

done?

Add point (range, i_2D)
to CFAR output list

Yes

Add point from temp list
(range, i_2D) to CFAR

output list

END

i_2D < angleDim-
rightSikpAzimut

Enable neighbor check
&&

Peak is local peak in
angle and range direction

&&
Peak > SideLobeThr

i_2D = Left Skip Azimuth

Yes

i_2D = i_2D + 1

Yes

No

Yes

No

All points
from temp list

done?

YesNo

NoNo

Get point from temp list

Get point from temp list

3D People Tracking Demo Software Implementation Guide – Rev 2.3

53

7 Application Layer Features

7.1 Target Height Estimation

The demo code is able to estimate the height of multiple targets in the scene. If the symbol

HEIGHT_DETECTION_ENABLED is defined (which is done by default in both the

3D_people_count68xx_mss and overhead_3d_people_count_68xx_mss projects), the device will

estimate the height of each detected target though the following algorithm:

For each target (i):

 For the k tallest points associated with that target:

ℎ𝑒𝑖𝑔ℎ𝑡𝑖
̂ = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑘 𝑡𝑎𝑙𝑙𝑒𝑠𝑡 𝑝𝑜𝑖𝑛𝑡𝑠)

ℎ𝑒𝑖𝑔ℎ𝑡𝑖 = 𝛼 × ℎ𝑒𝑖𝑔ℎ𝑡𝑖
̂ + (1 − 𝛼) × ℎ𝑒𝑖𝑔ℎ𝑡𝑖

The values of k and α may be tuned in height_detection.h The implementation of the algorithm is found

in height_detection.c

7.2 Expected Performance - Underestimation

The code provided in the toolbox is expected to serve as a starting point for future development. At its

current state, the algorithm tends to underestimate the height of users for two main reasons: stationary

targets and algorithmic bias. Both are discussed below, as are some potential strategies for mitigation

7.2.1 Stationary Targets

The current height detection algorithm works best when the tracks (people) are moving throughout the

detection region. Determining the height of stationary tracks is challenging because the radar will only

detect moving points. In situations where people are stationary, such as sitting, reading or typing, TI has

found that the person’s head can stay very stationary. In these cases, the detection layer will not always

pick up their head, rather, it will pick up their torso, as breathing causes the chest to expand and

contract. This will cause the algorithm to underestimate the height.

7.2.2 Algorithmic Bias

The current height detection algorithm also suffers from some bias in its design. The radar is consistently

able to detect points from people in its field of view. However, it does not detect every point from every

person in each frame. So, in times when the top of the person’s head is not detected, the algorithm will

underestimate the height. However, there are very rarely times when the radar device will detect

erroneous points above the person’s head, meaning that the probability of overestimating the person’s

height in any given frame is quite small. Because the probability of underestimation is relatively much

higher than the probability of overestimation, the algorithm will tend towards underestimates.

3D People Tracking Demo Software Implementation Guide – Rev 2.3

54

Figure 36 - Radar Height Detection Bias

7.2.3 Mitigation Strategies

TI recommends the following strategies for mitigating error in height estimation depending on the use

case:

7.2.3.1 Bias Correction

In scenarios where people are likely to be very stationary, such as a workplace, the radar device could

correct for its bias with a scaling factor added to every target’s height to account for underestimation.

This would require data collection, and may depend on the movement level of the people in the scene.

7.2.3.2 Increased Memory

Another strategy a radar device could take to improve height detection would be to increase the

memory of the estimate. The current alpha-filter implementation combines all data from previous

frames into a single term, but more complicated models that store maxima over multiple frames have a

higher probability of detecting head movements, increasing the probability of detecting the head along

with the torso.

3D People Tracking Demo Software Implementation Guide – Rev 2.3

55

7.2.3.3 Pose Estimation

In scenarios where people may be sitting or standing, the addition of a pose-estimation model may aid

in height detection. Knowing whether a person is sitting vs standing, or stationary vs moving would help

select how much of a correction factor to apply. This could even become a Machine Learning Model for

combined pose estimation and height detection.

8 Memory usage

8.1 Memory Allocation

In the demo code the memory allocation is achieved in a few ways:

- Using memory allocation from the system heap in both domains, (using osal function

MemoryP_ctrlAlloc()). The heap sizes can be tuned in pcount3D_mss.cfg (112KB or 130KB for ceil-

mount and wall-mount demos, respectively) and pcount3D_dss.cfg (11KB). This form of memory

allocation is mostly used on MSS by the Tracker module.

- Using simple OSAL memory allocation functions on DSS and MSS.

8.1.1 OSAL memory management functions

The OSAL memory management functions on DSS are used to allocate memory from three different

memories L1, L2 and L3. The functions are located in radarOsal_malloc.c The three basic APIs are

radarOsal_memInit(), radarOsal_memAlloc(), and radarOsal_memFree(). The size and the location of the

heaps are defined in dss_main.c. Table 10 shows the heap sizes for three building options. The

initialization is done as part of DSS DPM/DPC initialization.

Heap Wall-mount Ceil-mount

L1 0x2E00 (11.5KB) 0x1600 (5.5KB)

L1 SCRATCH 0x1200 (4.5KB) 0x2A00 (10.5KB)

L2 0x1A000 (104KB) 0x1FF00 (127.75KB)

L2 SCRATCH 0x900 (2.25KB) 0x900 (2.25KB)

L3 0x21000 (132KB) 0x13000 (76KB)

Table 10 – DSP Memory heap and scratch memory

Similar approach for memory allocation is used on MSS with the following APIs

DPC_ObjDetRangeHwa_MemPoolAlloc() and DPC_ObjDetRangeHwa_MemPoolReset().

8.1.2 Allocating Memory for Radar Cube Matrix

Radar Cube Memory is shared between MSS and DSS domains and it is located in L3 memory. The size of

the radar cube memory is determined based on the CLI parameter configuration. On the MSS side, the

Radar Cube memory is allocated in the L3 memory heap in DPC pre-start configuration function using the

OSAL memory allocation function. The address is then passed to DPC on DSS domain. The MSS L3 memory

3D People Tracking Demo Software Implementation Guide – Rev 2.3

56

heap size should match the expected radar cube size since the Radar Cube is the only object allocated in

it. The L3 memory heap size is defined in the c674x_linker.cmd by defining a variable

MMWAVE_MSSUSED_L3RAM_SIZE with the value set based on the build option as shown in Table 11.

 Wall-mount Ceil-mount

MMWAVE_MSSUSED_L3RAM_SIZE
(Radar Cube Size)

576K 672K

Table 11 – Radar Cube size defined by MMWAVE_MSSUSED_L3RAM_SIZE

8.2 DSS Memory usage

The DSS memory usage is summarized in Table 12. Note that the DSS has 32KB L1P memory which is used

as part code RAM and part cache. Similarly, the 32KB DSS L1D memory is used as part data RAM and part

data cache as defined in the table below.

Memory Size Used Left Description

L1P RAM 28K full Fast signal processing code

L1P cache 4K full Program cache

L1D RAM 16K full Memory Heap, scratch

L1D cache 16K full Data cache

L2S RAM 256K 9.4K Code: 102.7K,

Processing chain data: 106.25K

Framework and BIOS buffers and data structure (heap,
stack etc): 37.65K

L3 RAM 768K 719.5K

(wall-
mount)

759.5K

(ceil-
mount)

48.5K

(wall-
mount)

8.5K

(ceil-
mount)

Data:

 708KB: radar cube 576K, L3 Heap 132K (wall-
mount)

 748KB: radar cube 672K, L3 Heap 76K (ceil-mount)

Slow system code: 11.4K

Overlaid code including configuration code, one time
init code (EDMA driver etc), unused algorithm code:
~40K

HS RAM 32K 13.125K Very slow non runtime system code

Table 12 - DSS Memory usage, (wall-mount)

The DSS code is loaded in two memories L2 and L3 RAM as shown in Table 13. The four sections, .fastCode,

.overlaidCode, .hsramCode, and .unUsedCode are loaded in L3 at the location overlapped with L3 data

heap. The code in these sections is either executed or copied to different locations before this memory is

used as a heap. The sections. fastCode and .hsramCode are copied at the init-time (using EDMA) to L1P

3D People Tracking Demo Software Implementation Guide – Rev 2.3

57

and HSRAM respectively since the bootloader can load the code only to L2/L3 memory. The difference in

.text size between wall-mount and ceil-mount is because in the wall mount scenario the function

RADARDEMO_aoaEst2DCaponBF_aeEstElevOnly() is used for Capon based elevation spectral estimation

with fully unrolled loops to get better cycle performance. In the ceil-mount scenario, since this function is

not used it is placed in .unUsedCode section.

The memory maps for wall-mount and ceil-mount scenarios are shown in Figure 37 and Figure 38

respectively.

Section Size
(wall-
mount)

Size
(ceil-
mount)

Loaded to Executed
from

Overlapped section in
Page 1

.text 102.6K 86.5K L2 L2 Part of signal processing
code, framework, bios
and SDK

.fastCode 27.6K 27.6K L3 L1P Intense signal processing
code executed in L1P
RAM. Table 14 shows the
functions placed to this
section.

.overlaidCode 32.8K 30.5K L3 L3 one-time Initialization code,
executed one time

.hsramCode 18.9K 18.9K L3 HSRAM Slow system non-real
time code

.unUsedCode 7.5K 26K L3 Not used Linked but not used in
demo

.slowCode 11.4K 11.4K L3 L3 Non-real time critical
code

Table 13 – DSS code sections in L2 and L3 memory

Function Name Description

RADARDEMO_detectionCFAR_raCAAll() CFAR

RADARDEMO_aoaEst2DCaponBF_raHeatmap() Range-angle heatmap generation

RADARDEMO_aoaEst2DCaponBF_covInv() Per range bin, estimate the covariance matrices
from input 1D FFT results, and calculate the
inverse of these matrices.

MATRIX_cholesky_flp_inv() Calculate the inverse of these matrices.

RADARDEMO_aoaEst2DCaponBF_clutterRemoval() Per range bin, removal static clutter from the input
signal.

copyTranspose() Store angle bins per range to Range-angle
heatmap

Table 14 – Signal processing run-time critical code executed from L1P memory

The placement of the functions into particular code sections other than default .text section is specified

in pcount3D_dss_linker.cmd. The TI linker for both R4F and C674x produce the map files that contain a

3D People Tracking Demo Software Implementation Guide – Rev 2.3

58

module summary of all the object files included in the application. Users can use this as a guide towards

identifying components/source code that could be optimized.

fastCode
27.7K

overlaidCode
32.8K

Page 0 Page 1

Radar
Cube
576K

fastCode
(27.65K)

L1P (32K)

EDMA Copy

slowCode
11.4K

HSM RAM (32k)

hsramCode
18.9K

EDMA Copy

0x00E00000

Cache 4K

16K

Cache 16K

L1D (32K)

0x00F00000

hsramCode
18.9K

DSP Code,
System heap

L2SRAM_UMAP0/1

0x007E0000

L3 RAM (768K)

0x00800000

128K

0x20000000

0x20090000

L3SRAMOVLY:

L3SRAM:

0x21080000

unUsedCode
7.5K

192K

.l3data
132K (76K)

0x51000000
From R4F side

L1 Heap (11.5K)
16K

16K

L3 Heap
132K

L2 Heap (104K)

1
2

8
K

1
2

8
K

.l3data

28K

4K

576K

SCRATCH (4.5K)

SCRATCH (2.25K)

L3 RAM (768K)

3D People Tracking Demo Software Implementation Guide – Rev 2.3

59

Figure 37 – DSS Memory usage – (wall-mount)

Figure 38 – DSS Memory usage – (ceil-mount)

fastCode
27.7K

overlaidCode
30.5K

Page 0 Page 1

Radar
Cube
672K

fastCode
(27.65K)

L1P (32K)

EDMA Copy

slowCode
11.4K

HSM RAM (32k)

hsramCode
18.9K

EDMA Copy

0x00E00000

Cache 4K

16K

Cache 16K

L1D (32K)

0x00F00000

hsramCode
18.9K

DSP Code,
System heap

L2SRAM_UMAP0/1

0x007E0000

L3 RAM (768K)

0x00800000

128K

0x20000000

0x200A8000

L3SRAMOVLY:

L3SRAM:

0x21080000

unUsedCode
26K

96K

0x51000000
From R4F side

L1 Heap (5.5K)
16K

16K

L3 Heap
76K

L2 Heap
(127.75K)

1
2

8
K

1
2

8
K

.l3data

28K

4K

672K

SCRATCH (10.5K)

SCRATCH (2.25K)

L3 RAM (768K)

3D People Tracking Demo Software Implementation Guide – Rev 2.3

60

8.3 DSS Memory Heap Allocation

Table 16, Table 17 and Table 18 illustrate memory heap allocations in L3, L2 and L1 respectively. Only two

memory allocations are done by the object detection DPC running on DSS, (instance named “objDetObj-

>”), and all other allocations by the radar signal processing DPU, (instance named “inst->”) in the tables).

The allocated sizes correspond to the configurations shown in Table 15. Please note the convention for

FOV specification: the left and right numbers are the angle search extents and the middle number is the

angle search step. The names of the module instances and arrays are according to the names in the source

code. The DPU instance structure is shown in Figure 12.

Configuration Parameters Wall-mount Ceil-mount

Range FFT Size 128 64

Number of Chirps per frame 3x96 3x224

Azimuth FOV1 -70o : 0.75o : 70o -69o : 7o : 69o

Elevation FOV -20o : 0.75o : 20o -62o : 7o : 62o

Static scene Azimuth decimation factor 8 1

Static scene Elevation decimation factor 8 1

Ceil-mount zoom-in factor N/A 5

Table 15 – Configuration parameters related to the memory allocation sizes shown in the
following tables.

Wall-Mount
Size

(Bytes) Ceil-Mount
Size

(Bytes)

objDetObj->executeResult 15036 objDetObj->executeResult 15036

objDetObj->stats 52 objDetObj->stats 52

inst->localHeatmap 95744 aoaOutput->static_information 6144

aoaOutput->static_information 12288 aoaOutput->invRnMatrices 39936

inst->benchmarkPtr 12 inst->detectionCFAROutput 36

benchmarkPtr->buffer 640 detectionCFAROutput->rangeInd 300

 detectionCFAROutput->dopplerInd 300

 detectionCFAROutput->snrEst 600

 detectionCFAROutput->noise 600

 inst->benchmarkPtr 12

 benchmarkPtr->buffer 640

Total 123772 Total 63656

Table 16 – L3 Memory Heap Allocations

1 Note the convention for FOV specification: the left and right numbers are the angle search extents and the

middle number is the approximate angle search step.

3D People Tracking Demo Software Implementation Guide – Rev 2.3

61

Wall-Mount
Size

(Bytes) Ceil-Mount
Size

(Bytes)

raHeatMap_handle->steeringVecAzim 17952 raHeatMap_handle->steeringVec 27648

raHeatMap_handle->steeringVecElev 5184 inst->localHeatmap 73728

aoaOutput->invRnMatrices 79872 inst->dynamicCFARInstance 64

inst->dynamicCFARInstance 64 inst->dynamicHeatmapPtr 1152

inst->dynamicHeatmapPtr 748 inst->tempHeatMapOut 1152

inst->staticCFARInstance 64

inst->tempHeatMapOut 676

Total 104560 Total 103744

Table 17 – L2 Memory Heap Allocation

Wall-Mount
Size

(Bytes) Ceil-Mount
Size

(Bytes)

radarProcessInstance_t (inst) 140 radarProcessInstance_t (inst) 140

inst->perRangeBinMax 516 inst->perRangeBinMax 260

inst->aoaInstance 52 inst->aoaInstance 52

raHeatMap_handle 56 raHeatMap_handle 56

raHeatMap_handle->virtAntInd2Proc 8 raHeatMap_handle->virtAntInd2Proc 12

aeEstimation_handle 88 aeEstimation_handle 88

aeEstimation_handle->virtAntInd2Proc 12 aeEstimation_handle->virtAntInd2Proc 12

aeEstimation_handle->procRngBinMask 16 aeEstimation_handle->steeringVecAzimInit 100

handle->dopTwiddle 1024 aeEstimation_handle->steeringVecAzimStep 96

inst->aoaInput 24 aeEstimation_handle->steeringVecElevInit 96

inst->aoaOutput 44 aeEstimation_handle->steeringVecElevStep 96

aoaOutput->azimEst 4 handle->dopTwiddle 2048

aoaOutput->elevEst 4 inst->aoaInput 24

aoaOutput->peakPow 4 inst->aoaOutput 44

aoaOutput->bwFilter 96 aoaOutput->azimEst 36

aoaOutput->dopplerIdx 2 aoaOutput->elevEst 36

inst->detectionCFAROutput 36 aoaOutput->peakPow 36

detectionCFAROutput->rangeInd 300 aoaOutput->bwFilter 864

detectionCFAROutput->dopplerInd 300 aoaOutput->dopplerIdx 18

detectionCFAROutput->snrEst 600 inst->detectionCFARInput 16

detectionCFAROutput->noise 600

inst->detectionCFARInput 16

inst->staticHeatmapPtr 748

Total 4690 Total 4130

3D People Tracking Demo Software Implementation Guide – Rev 2.3

62

Table 18 – L1 Memory Heap Allocations

8.4 MSS Memory Usage

The MSS memory usage is shown in Table 19.

Memory Size Used Left

L2P 512K 147K 365K

L2D 192K 162K 30K

Table 19 – MSS Memory Usage

9 Benchmarks

The 3D People Tracking Demo measures on the fly the processing time of the detection layer, the tracker

layer, and the data transfer time to the Host. These three measurements are sent per frame, as a part of

the frame header (see Section 1.1 for packet header structure). These three measurements are denoted

in Figure 11 as

- activeFrameProcTimeInUsec - DSP low level signal processing time excluding chirping time,

- trackingProcessingTimeInUsec - Group tracker processing time on R4F, and

- uartSendingTimeInUsec - DMA transfer time to Host via UART.

Also, within the low level signal processing chain, the additional measurements are tracked and kept

internally within the structure radarProcessBenchmarkObj. The measurements include three main signal

processing steps:

1. Capon BF Step 1 - Includes clutter removal, covariance estimation and inverse, and range-angle

heatmap generation,

2. CFAR – 2Pass CFAR detection, and

3. Capon BF Step 2 – Includes, per detected point, elevation estimation (wall-mount)/fine angle

estimation (ceil-mount) and Doppler estimation.

These measurements are collected and presented in the following two sections. The measurement

procedure is explained in section.

9.1 Benchmarks – (Wall-mount)

The measurements results are collected for the following profile configuration, with and without static

scene processing: Frame period = 55 msec, numAzimBins = 187 (-70o : 0.75o : 70o), numElevBins = 54 (-20o

: 0.75o : 20o), Chirping time = 3*96*(30+59.1) usec = 25.7 msec.

3D People Tracking Demo Software Implementation Guide – Rev 2.3

63

9.1.1 Dynamic scene only

9.1.2 Dynamic and static scene

3D People Tracking Demo Software Implementation Guide – Rev 2.3

64

9.2 Benchmarks – (Ceil-mount)

The measurements results are collected for the following profile configuration, with and without static

scene processing: Frame period = 120 msec, numAngleBins = 18*16 = 288 (numAzimbins = 18 (-69o : 7o :

69o), numElevBins = 16 (-62o : 7o : 62o)), Chirping time = 3*224*(60+50) usec = 73.9 msec.

9.2.1 Dynamic scene only:

9.2.2 Dynamic and static scene

3D People Tracking Demo Software Implementation Guide – Rev 2.3

65

9.2.3 Profiling Procedure –DSP, tracker and UART transfer time

The measurements for the DSP and the tracker processing time and the UART transfer time are collected

by running the demo code for several minutes with the random scene with few persons and objects

moving in front of the sensor producing variable number of detected points and targets while recording

the processing time of different components as a function of the number of detected points. The following

code is added in the mss_main.c in the function (UART task) MmwDemo_uartTxTask(), inside the

while(1) block at the very end of it (after the UART frame data transfer has been completed).

void MmwDemo_uartTxTask(UArg arg0, UArg arg1)
{

...

 while(1)
 {

 ...

 if(gMmwMssMCB.numDetectedPoints < (DOA_OUTPUT_MAXPOINTS+1))
 {
 if(gDbgInterFrameTime[gMmwMssMCB.numDetectedPoints] < gMmwMssMCB.frameStatsFromDSP->interFrameExecTimeInUsec)
 gDbgInterFrameTime[gMmwMssMCB.numDetectedPoints] = gMmwMssMCB.frameStatsFromDSP->interFrameExecTimeInUsec;

 if(gDbgTrackerTime[gMmwMssMCB.numDetectedPoints] < gMmwMssMCB.trackerProcessingTimeInUsec)
 gDbgTrackerTime[gMmwMssMCB.numDetectedPoints] = gMmwMssMCB.trackerProcessingTimeInUsec;

 if (gDbgUartTime[gMmwMssMCB.numDetectedPoints] < gMmwMssMCB.uartProcessingTimeInUsec)
 gDbgUartTime[gMmwMssMCB.numDetectedPoints] = gMmwMssMCB.uartProcessingTimeInUsec;
 }
 }
}

The three recording buffers are declared as

volatile uint32_t gDbgInterFrameTime[DOA_OUTPUT_MAXPOINTS+1];
volatile uint32_t gDbgTrackerTime[DOA_OUTPUT_MAXPOINTS+1];
volatile uint32_t gDbgUartTime[DOA_OUTPUT_MAXPOINTS+1];

3D People Tracking Demo Software Implementation Guide – Rev 2.3

66

The demo code is loaded and executed on the target using CCS (target configured in CCS development

mode). The recording buffers were visually observed in CCS using the Graph tool until almost all bins had

been populated. After the code was stopped, the buffers were extracted using the memory save option.

Note that as the tracker task is the lowest priority task on MSS the measured processing time includes any

preemption by higher priority tasks or interrupts. Also, note that the tracker processing time, collected as

a function of detected points and not as function of detected targets, shows mainly that the tracker task

is the least intensive processing task, and that it is not as time critical as the task on DSS running the low-

level signal processing chain.

9.2.4 Profiling Procedure – three signal processing steps on DSP

The profiling procedure for the three main signal processing steps on the DSP, Capon BF Step 1, CFAR, and

Capon BF Step 2, is similar as described in the previous section. The following code has been added inside

the function Pcount3DDemo_handleObjectDetResult() (running in the context of main MSS task) just

before sending the DPM_ioctl() notification to the DSS that the results are handled.

 radarProcessBenchmarkElem *benchmarkOut;
 benchmarkOut = (radarProcessBenchmarkElem *) outputFromDSP->benchmarkOut;
 benchmarkOut = (radarProcessBenchmarkElem *)SOC_translateAddress((uint32_t)benchmarkOut,
 SOC_TranslateAddr_Dir_FROM_OTHER_CPU,
 &retVal);
 if (gDynHeatmpGenCycles[benchmarkOut->dynNumDetPnts] < benchmarkOut->dynHeatmpGenCycles)
 gDynHeatmpGenCycles[benchmarkOut->dynNumDetPnts] = benchmarkOut->dynHeatmpGenCycles;

 if (gDynCfarDetectionCycles[benchmarkOut->dynNumDetPnts] < benchmarkOut->dynCfarDetectionCycles)
 gDynCfarDetectionCycles[benchmarkOut->dynNumDetPnts] = benchmarkOut->dynCfarDetectionCycles;

 if (gDynAngleDopEstCycles[benchmarkOut->dynNumDetPnts] < benchmarkOut->dynAngleDopEstCycles)
 gDynAngleDopEstCycles[benchmarkOut->dynNumDetPnts] = benchmarkOut->dynAngleDopEstCycles;

 if (gStaticHeatmpGenCycles[benchmarkOut->staticNumDetPnts] < benchmarkOut->staticHeatmpGenCycles)
 gStaticHeatmpGenCycles[benchmarkOut->staticNumDetPnts] = benchmarkOut->staticHeatmpGenCycles;

 if (gStaticCfarDetectionCycles[benchmarkOut->staticNumDetPnts] < benchmarkOut->staticCfarDetectionCycles)
 gStaticCfarDetectionCycles[benchmarkOut->staticNumDetPnts] = benchmarkOut->staticCfarDetectionCycles;

 if (gStaticAngleEstCycles[benchmarkOut->staticNumDetPnts] < benchmarkOut->staticAngleEstCycles)
 gStaticAngleEstCycles[benchmarkOut->staticNumDetPnts] = benchmarkOut->staticAngleEstCycles;

The recording buffers are declared as

int gDynHeatmpGenCycles[DOA_OUTPUT_MAXPOINTS + 1];
int gDynCfarDetectionCycles[DOA_OUTPUT_MAXPOINTS + 1];
int gDynAngleDopEstCycles[DOA_OUTPUT_MAXPOINTS + 1];

int gStaticHeatmpGenCycles[DOA_OUTPUT_MAXPOINTS + 1];
int gStaticCfarDetectionCycles[DOA_OUTPUT_MAXPOINTS + 1];
int gStaticAngleEstCycles[DOA_OUTPUT_MAXPOINTS + 1];

3D People Tracking Demo Software Implementation Guide – Rev 2.3

67

10 UART and Output to the Host

The demo outputs one packet of data every frame. The packet contains point cloud data of the current

frame, and the group tracking data of the previous frame.

The system design is to have a maximum of 150 dynamic CFAR detections, and 150 static CFAR detections,

total of 300 points for wall-mount scenario, and total of 750 points for ceil-mount scenario after angle

estimation and Doppler estimation.

Data are sent out to Host via UART in compressed mode. Point cloud data are sent as array of detected

points (8 Bytes per point). The tracker data include the Target list (108-byte per 3D target) and the Target

tag (1-byte per detected point).

The UART is configured at 921600 bps in DMA mode. DMA mode allows other tasks to be executed in

parallel while the data are transmitted to the Host. In the worst case sending maximum number of points

and tracked targets would take: (8*750+108*20+750)*10/(921600) = 96.7ms.

1.1 Output TLV Description
The packet structure consists of fixed sized frame header, followed by variable number of TLVs (see Figure

39). Each TLV has fixed header followed by variable size payload. The Byte order is Little Endian.

Figure 39 – Data packet structure sent to Host

1.1.1 Frame Header Structure

The frame header is of fixed size (40bytes). The structure field definition is shown in MATLAB syntax

below.

frameHeaderStructType = struct(...
 'magicWord', {'uint64', 8}, ... %syncPattern in hex is: '02 01 04 03 06 05 08 07'
 'version', {'uint32', 4}, ... % Software Version
 'totalPacketLen', {'uint32', 4}, ... % In bytes, including header
 'platform', {'uint32', 4}, ... % 0xA6843
 'frameNumber', {'uint32', 4}, ... % Frame Number
 'timeStamp', {'uint32', 4}, ... % Message create time in cycles
 'numDetectedObj', {'uint32', 4}, ... % Number of detected objects in this frame
 'numTLVs' , {'uint32', 4}, ... % Number of TLVs in this frame
 'subFrameNumber', {'uint32', 4}); % Sub-Frame number

The field version is constructed as

Frame

Header
TL V TL V TL V

TLV1 TLV2
TLVn

…

3D People Tracking Demo Software Implementation Guide – Rev 2.3

68

MMWAVE_SDK_VERSION_BUILD | (MMWAVE_SDK_VERSION_BUGFIX << 8) |
(MMWAVE_SDK_VERSION_MINOR << 16) | (MMWAVE_SDK_VERSION_MAJOR << 24)

The syncPattern is constructed as
typecast(uint16([hex2dec('0102'),hex2dec('0304'),hex2dec('0506'),hex2dec('0708')]),'uint64');

1.1.2 TLV structure

The TLV structure consists of

Fixed Header (8bytes) followed by TLV specific payload. The TLV header structure is shown in MATLAB

syntax below.

tlvHeaderStruct = struct(...
 'type', {'uint32', 4}, ... % TLV object Type
 'length', {'uint32', 4}); % TLV object Length, in bytes, including TLV header

1.1.3 Point Cloud TLV

Type = MMWDEMO_OUTPUT_MSG_COMPRESSED_POINTS

Length = sizeof (tlvHeaderStruct) + sizeof (pointCloudUnitStruct) + sizeof (pointStruct) x numberOfPoints

Point cloud unit structure is defined as:

pointCloudUnitStruct = struct(...
 ‘elevationUnit', {'float', 4}, ... % unit resolution of elevation report, in rad
 'azimuthUnit', {'float', 4}, ... % unit resolution of azimuth report, in rad
 'dopplerUnit', {'float', 4}, ... % unit resolution of Doppler report, in m/s
 'rangeUnit', {'float', 4}, ... % unit resolution of Range report, in m
 'snrUnit', {'float', 4}); % unit resolution of SNR report, ratio

Each point (pointStruct) is defined as:

pointStruct = struct(...
 ‘elevation', {'int8', 1}, ... % Elevation report, in number of elevationUnit
 'azimuth', {'int8', 1}, ... % Azimuth report, in number of azimuthUnit
 'doppler', {'int16', 1}, ... % Doppler, in number of dopplerUint
 'range', {‘uint16', 2}, ... % Range, in number of rangeUint
 'snr', {‘uint16', 2}); % SNR, in number of snrUint

1.1.4 Target List TLV

Type = MMWDEMO_OUTPUT_MSG_TRACKERPROC_3D_TARGET_LIST

Length = sizeof (tlvHeaderStruct) + sizeof (targetStruct) x numberOfTargets

Each target is defined as:

targetStruct3D = struct(...
 'tid', {'uint32', 4}, ... % Track ID

3D People Tracking Demo Software Implementation Guide – Rev 2.3

69

 'posX', {'float', 4}, ... % Target position in X dimension, m
 'posY', {'float', 4}, ... % Target position in Y dimension, m
 'posZ', {'float', 4}, ... % Target position in Z dimension, m
 'velX', {'float', 4}, ... % Target velocity in X dimension, m/s
 'velY', {'float', 4}, ... % Target velocity in Y dimension, m/s
 'velZ', {'float', 4}, ... % Target velocity in Z dimension, m/s
 'accX', {'float', 4}, ... % Target acceleration in X dimension, m/s2
 'accY', {'float', 4}, ... % Target acceleration in Y dimension, m/s2
 'accZ', {'float', 4}, ... % Target acceleration in Z dimension, m/s2
 'EC[16]', {'float', 16*4}, ... % Tracking error covariance matrix, [4x4] in
 % range/azimuth/elevation/doppler coordinates
 'G', {'float', 4},... % Gating function gain

 'confidenceLevel' {'float', 4});% Confidence Level

1.1.5 Target Index TLV

Type = MMWDEMO_OUTPUT_MSG_TRACKERPROC_TARGET_INDEX

Length = sizeof (tlvHeaderStruct) + numberOfPoints

Payload is a byte array, where each byte is a Target ID

targetIndex = struct(...
'targetID', {'uint8', 1}); % Track ID

1.1.6 Target Height TLV

Type = MMWDEMO_OUTPUT_MSG_TRACKERPROC_TARGET_HEIGHT

Length = sizeof (tlvHeaderStruct) + sizeof(targetHeight) x numberOfTargets

Each Target Height TLV consists of a single uint8 corresponding to the track number it refers to, then the

maximum Z estimate given as a float and the minimum Z estimate given as a float.

targetHeight = struct(...

'targetID', {'uint8', 1},... % Track ID
'maxZ', {'float', 4},... % Target maxZ estimate
'minZ', {'float', 4}); % Target minZ estimate

