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1 Purpose and Scope 

The purpose of this document is to provide detailed description of 3D People Counting demo 

implementation using mmWave SDK software development components. The document provides 

description of system execution flow, memory usage, task organization and execution and benchmark 

results. The document also provides the implementation details of the low-level signal processing chain. 

2 High-Level Demo Setup 

The 3D People Counting demo is implemented on IWR6843. It consists of two major subsystems Detection 

Layer and Tracker Layer. The detection layer is implemented on a Hardware Accelerator (HWA) driven by 

R4F, and DSP (C674x). The tracker layer is implemented on R4F. The detection layer produces a point cloud 

with each point containing spherical coordinates, radial velocity, and signal to noise ratio (SNR). The 

tracker layer finds and tracks clusters in the point cloud. The point cloud and the tracking data are sent 

out via UART port to the GUI running on the Host PC. 

The 3D People Counting demo setup is shown in Figure 1. 

 

Figure 1 – 3D People Counting demo setup 

Sensor EVM board is connected to PC via USB. PC GUI reads the configuration file and sends configuration 

commands to radar via UART port 1. After the initialization sequence the radar starts sending detection 

data to PC GUI via UART port 2. Optionally point cloud and tracking data is saved to log files.  

3 Signal processing chain  

The implementation of the 3D People Counting demo on the IWR6843 consists of a low-level signal chain 

running on the C674x DSP, and the tracking module running on R4F processor. 

The demo does two basic functions: 

1 Low level signal processing: use the radar data to produce a point cloud with each point containing 

spherical coordinates, radial velocity, and SNR 

2 Group tracking: finds and tracks clusters in the point cloud. 
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There are two separate signal processing chains for the 3D people tracking demo, one optimized for wall-

mount, shown in Figure 2, and the other for ceil-mount applications, shown in Figure 3.  For the wall 

mount application, the IWR6843 ISK/ODS/AOP EVM boards are used, and for the ceil-mount, the IWR6843 

ODS/AOP EVM board is used. The processing chain is selected through the configuration. Also, the build 

images for these two applications differ since the code and data placement is optimized for each 

application. In this document the detection algorithm for the wall-mount processing chain is called 

method 1 and for the ceil-mount method 2.  

The low-level signal processing includes: 

- Range processing 

• For each antenna, 1D windowing, and 1D FFT, 

- Static clutter removal, 

- Capon Beamforming (BF):  

• Covariance matrix generation, angle spectrum generation: 

• Range-azimuth heatmap (method 1) 

• Range-azimuth-elevation heatmap, coarse azimuth/elevation estimation (method 2), 

- CFAR detection algorithm: 

• Two-pass, CFAR detection: first pass CFAR-CASO in the range domain, confirmed by 

second pass CFAR-CASO in the angle domain, to find detection points, 

- Elevation Estimation (method 1) 

• Capon BF algorithm is applied again for each point detected in Range-Azimuth heatmap 

• 1-D Elevation heatmap is calculated for the elevation estimation, 

- Fine Azimuth/Elevation Estimation (method 2) 

• 2D zoom-in is performed for the detected azimuth-elevation bin for fine angle estimation, 

- Radial Velocity Estimation: 

• For each detected [range, azimuth] pair from the detection module, Doppler is estimated 

by filtering the range bin using Capon beam-weights, followed by a maximum peak search 

in the FFT of the filtered range bin. 

Group tracking processing: 

- Operates on point cloud, 

- Searches for clusters in Cartesian and Doppler Space, 

- Predicts movement of clusters to maintain a track of unique objects such as people. 
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Figure 2 - The signal processing chain of the 3D wall-mount demo. 

 

 

Figure 3 - The signal processing chain of the 3D ceil-mount demo. 
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4 3D People Counting Implementation using SDK Components 

The 3D People Counting demo is implemented using mmWave SDK components and other custom 

components developed following the SDK architecture. The SDK provides a basic structure for developing 

radar processing software. This structure includes mmWaveAPI, a Data-Path Manager (DPM) which 

handles execution of the Signal Processing – Data Path Chain (DPC). The DPC is made of Data Path Units 

(DPUs). For detailed explanation of these components see [1].  

The 3D People Counting demo partition between R4F (MSS) and DSP (DSS) is shown in Figure 4. The 

components in green are executed on MSS while components in pink are executed on DSS.  The demo 

application is split between MSS and DSS.  

 

 

Figure 4 – 3D People Counting Demo implementation using mmWave SDK components 

4.1 3D People Counting Application level 

At the top level the demo application is split between MSS and DSS. The application layers on both 

domains DSS and MSS call the DPM APIs through which they control the configuration and execution of 

DPCs. The application layer on MSS also controls the radar front end, and communicates with the Host. 
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4.2 mmWave Lib 

The mmWave Lib module is a higher layer control running on top of mmWaveLink and LLD API (drivers 

API). It provides simpler and fewer set of APIs for application to control the radar front end. In the demo 

the mmWave module runs only on R4F (MSS), in “Isolation” execution mode, and it is configured in “Full” 

configuration mode. The “Full” configuration mode implements the basic chirp/frame sequence of the 

radar front end.  

4.3 mmWave Link 

The mmWaveLink is a control layer and primarily implements the protocol that is used to communicate 

between the Radar Subsystem (RADARSS) and the controlling entity which can be either MSS and/or DSS. 

It provides a suite of low-level APIs that the application (or the software layer on top of it) can call to 

enable/configure/control the RADARSS. In 3D People Counting demo the mmWave Link layer is only 

accessed by mmWave Lib layer running on MSS. 

4.4 Data-Path Manager (DPM) 

DPM is the foundation layer that enables the "scalability" aspect of the architecture. It encapsulates the 

overall software execution on a core. This layer absorbs all the messaging complexities (cross core and 

intra core) and provides standard APIs for integration at the application level and also for integrating any 

"data processing chain". In 3D People Counting demo DPM runs in “Distributed domain” configuration 

mode, where the data path control is on MSS, while data path execution is split between MSS/HWA and 

DSS. The DPM APIs exposed to application layer and DPC are shown in Table 1. 

Function name Description 

DPM_execute          The function executes the DPM Module. This involves the following: 

a) Handling of the reception of the IPC Messages exchanged between the 
DPM Peers. 

b) Execution & processing of the input data which has either been 
injected or received via the chirp available. 

DPM_ioctl            The function is used to configure the processing chain. 

DPM_start            The function is used to start the processing chain. 

DPM_sendResult       The function is used to send the processing chain results to the remote DPM 
entities. The flag "isAckNeeded" can be set and this would cause the DPM 
framework to send to a report once the peer domain has been notified about 
the result availability. This can be used to ensure that the result buffer is not 
being reused. 

DPM_relayResult      The function is used to relay the partial processing chain results from one 
domain to another. It does not require an acknowledgment back for the 
relayed results. 

DPM_stop             The function is used to stop the processing chain. 
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DPM_notifyExecute    The function notifies the DPM module that the processing chain is ready to be 
executed. This function is invoked by the DPC which in turn will allow the DPM 
framework to invoke the profile registered execute method.  

DPM_synch            The function is used to synchronize the execution of the framework between 
the DPM domains. 

DPM_init            The function is used to initialize the data path manager and initialize and load 
the processing chain. 

DPM_deinit    The function is used to de-initialize and shutdown the processing chain. 

Table 1 – DPM APIs 

4.5 Data processing chain (DPC) 

DPC is a separate layer within the data-path that encapsulates all the data processing needs of an 

mmWave application and provides a well-defined interface for integration with the application. Internally 

this layer uses the functionality exposed by Data processing units (DPUs) and DPM to realize the data flow 

needed for the data processing chain. As the data path processing in 3D People Counting demo is split 

between MSS and DSS, the DPC layer exists on both DSS and MSS domains.  

4.5.1 DPC running on MSS 

The DPC functions registered and called by DPM running on MSS are shown in Table 2. The functions are 

located in objdetrangehwa.c. 

Function Name Description 

DPC_ObjectDetection_init 

DPC Initialization function. It calls its DPU 
initialization functions DPU_RangeProcHWA_init() 
and DPU_TrackerProc_init(). 

DPC_ObjectDetection_start 

Executed upon sensor start request. It sends 
control message 
DPU_RangeProcHWA_Cmd_triggerProc to the 
Range DPU to configure and enable HWA to be 
ready for chirp events. 

DPC_ObjectDetection_execute 
This function calls data processing chain DPU. It 
only controls DPU_RangeProcHWA_process().  

DPC_ObjectDetection_ioctl 

IO control function used to configure and control 
DPC. The commands are: 

- Frame start, 
- Pre-start common configuration, 
- Pre-start configuration – invokes 

DPC_ObjDetRangeHwa_preStartConfig () 
which further calls 
DPU_RangeProcHWA_config () 
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DPC_ObjectDetection_stop Executed upon sensor stop request 

DPC_ObjectDetection_deinit De-initialization function 

DPC_ObjectDetection_dataInjection 
Invoked on reception of the data injection from 
DPM. 

NULL Chirp Available Function – not used 

DPC_ObjectDetection_frameStart 

This function is invoked upon reception of frame 
start event generated from RF front end. The 
function calls DPM DPM_notifyExecute() API, that 
will cause DPM framework to invoke the 
registered DPC execute method on MSS, 
DPC_ObjectDetection_execute(). 

Table 2 – DPC Functions running on MSS 

4.5.2 DPC running on DSS 

The DPC functions registered and called by DPM running on DSS are shown in Table 3. The source code of 

these functions is located in objectdetection.c. Note that although the functions have the same name as 

those running on MSS they have different contents and are part of two different builds. 

Function Name Description 

DPC_ObjectDetection_init 

DPC Initialization function. It is invoked by the application 
through DPM_init API. (See more details on this function are in 
Section 1). 

DPC_ObjectDetection_start 
Executed upon sensor start request. It only resets the frame 
start event counter. 

DPC_ObjectDetection_execute 

The low-level signal processing chain is executed within this 
function. (See more details on this function are in Section 
4.5.2.2) 

DPC_ObjectDetection_ioctl 

IO control function is used to configure and control DPC. The 
commands are: 

- Frame start, 
- Result exported, 
- Pre-start common configuration, 
- Pre-start configuration – invokes 

DPC_ObjDetDSP_preStartConfig() which further calls 
DPU_radarProcess_init() 

DPC_ObjectDetection_stop Executed upon sensor stop request 

DPC_ObjectDetection_deinit De-initialization function 

DPC_ObjectDetection_dataInjection Invoked on reception of the data injection from DPM. 

NULL Chirp Available Function – not used 
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DPC_ObjectDetection_frameStart 

Executed upon frame start ISR from the RF front-end. It records 
the start time of the frame, and checks if the previous frame is 
completed. 

Table 3 – DPC functions running on DSS 

4.5.2.1 DPC_ObjectDetection_init() 

The function allocates DPC instance from the system heap. It also allocates memory for the detection 

results, the structure DPC_ObjectDetection_ExecuteResult, and for the statistics information, the 

structure DPC_ObjectDetection_Stats. The structure DPC_ObjectDetection_ExecuteResult contains the 

point cloud list sized for maximum 750 points (defined by DOA_OUTPUT_MAXPOINTS in radarProcess.h). 

The DPC instance and it’s main elements are shown in Figure 5. The Radar processing DPU instance 

allocation and initialization is called later, upon receiving the pre-start configuration function from MSS. 

 

Figure 5 – Object Detection DPC instance on DSS and its output interface. 

4.5.2.2 DPC_ObjectDetection_execute() 

The function is executed per frame, after the range processing. The function calls the data processing 

chain DPU DPU_radarProcess_process().  It passes the pointers of the radar cube matrix, and the pointer 
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to the point cloud output list pointCloudOut. After the DPU processing completion, the function updates 

the stats structure and sets the pointers of its output interface, DPM_buffer type pointer, and exits. 

4.6 Data processing unit (DPU) 

The signal processing chain is split into three mmWave DPU components: 

1. Range processing DPU  

2. Low Level Radar Processing DPU 

3. Tracker DPU 

4.6.1 Range Processing DPU 

This processing unit performs 1D FFT processing on the chirp RF data during the active frame time and 

produces the output data in the L3 memory. This DPU is implemented on MSS and HWA. The actual 

processing, 1D windowing and 1D FFT, is performed by HWA, and it is interleaved with the active chirp 

time of the frame. During this time DPU task on MSS is in a pending state, allowing other tasks to run on 

MSS. Figure 11 provides more details on the task timing. The APIs are shown in Table 4. 

Function Name Description 

DPU_RangeProcHWA_init This is DPU initialization function. It allocates memory to store its 
internal data object and returns its handle. 

DPU_RangeProcHWA_config This is DPU configuration function. It saves buffer pointer and 
configurations including system resources and configures HWA 
and EDMA for runtime range processing. 

DPU_RangeProcHWA_process It executes FFT operation. It is invoked at a frame start time. The 
function is pending on a semaphore during the chirping period, 
and it exits after the last chirp processing of the frame is 
completed. 

DPU_RangeProcHWA_control It is DPU control function. The main command performed by this 
function is to configure and trigger HWA to be ready for the 
incoming chirp sequence. 

DPU_RangeProcHWA_deinit It frees the resources used for the DPU. 

Table 4 – Range DPU APIs 

The range DPU source code is located in rangeprochwa.c. 

The major configuration parameters related to ADCBuff driver and Range DPU are shown in Table 5. 

Configuration Parameters Setting 

HWA Input Mode DPU_RangeProcHWA_InputMode_ISOLATED (ADC samples transferred 
from ADC buffer to internal HWA memory using EDMA) 

Output Radar Cube format DPIF_RADARCUBE_FORMAT_2, cmplx16ImRe_t, 
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(X[numRangeBins][numDopplerChirps][numTxPatterns][numRxChan]) 

Interleave mode Non-interleaved 

ADC samples  16-bit ADC samples, Complex, Imaginary in LSB Real in MSB 

Table 5 – ADC buffer and RANGE DPU related configuration parameters 

The hardware resources related to HWA and EDMA configuration for the range DPU are stored in file 

pcount3D_hwres.h. This file is passed as a compiler command line define 

--define=APP_RESOURCE_FILE="…\pcount3D_hwres.h" 

In the 3D people tracking demo, a processing mode is added to detect and track static people with fine 

motions [4]. In this mode, the range processing DPU creates two different radar cubes in the memory and 

the same detection layer processing chain is run on both chirp blocks in different time slots. When the 

fine-motion mode is enabled, the first radar cube is created using all the available chirps of the current 

frame, and the second radar cube is created using the portion of the current frame and previous frames. 

 

Figure 6 – Data transfer execution flow of the fine motion mode. 

As depicted in Figure 6, when creating the fine-motion mode radar cube using chirps across multiple 

frames, the first K chirps per frame is utilized (instead of any subsampling). Besides, the processing chain 

creates the fine-motion mode radar cube the same size as the single-frame block to fit the rest of the 

processing chain. Range processing DPU configures a separate EDMA channels to fill the minor radar cube 

using the portion of current frame in a circular buffer. 
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When the fine motion detection mode is enabled, due to the required memory to store the chirp sub-

blocks from the current and previous frames, the user should configure the total number of chirps in a 

single frame as half of the original value to keep the total allocated memory the same (see Section 7). In 

this scheme, the same processing blocks of the detection layer are then run on two different radar cubes 

(from the single or multiple frames) in time-division mode [4]. 

4.6.2 Radar Processing DPU 

The main part of the low-level signal processing chain is implemented in this DPU which runs on DSS. Two 

different signal processing chains are implemented for wall mount and ceiling mount and are selected at 

a build time. The APIs are shown in Table 6. The DPU source code is located in radarProcess.c. 

Function Name Description 

DPU_radarProcess_init This is the initialization and the configuration function for the low-level 
signal processing chain. It is called upon the pre-start configuration 
command coming from MSS. It is called from 
DPC_ObjectDetection_ioctl() function within 
DPC_ObjDetDSP_preStartConfig() (see Section 5.1 for detailed 
information). 

DPU_radarProcess_config This function is empty. 

DPU_radarProcess_process This is the main body of the low-level radar processing chain.  It is called 
per frame. Section 5.2 provides detailed information on the algorithm 
implementation.  

DPU_radarProcess_control This function is empty. 

DPU_radarProcess_deinit It releases resources used for the DPU. 

Table 6 – Low Level Radar Processing DPU APIs 

4.6.3 Tracker DPU 

This DPU runs on MSS. It is an unconventional DPU since it is accessed both from DPC and MSS application 

layer.  

Function Name Description 

DPU_TrackerProc_init It allocates memory to store its internal data object. 

DPU_TrackerProc_config The function is configuration function. 

DPU_TrackerProc_process The function is trackerProc DPU process function. 

DPU_TrackerProc_control This function is empty. 

DPU_TrackerProc_deinit It frees up the resources allocated during initialization. 

Table 7 – Tracker DPU APIs. 
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4.7 System execution flow 

4.7.1 Execution flow - Initialization 

The system execution flow at the initialization time is shown in Figure 7. The code images on both DSS 

and MSS domains perform various driver initializations, synchronize to each other, create various tasks, 

and go to the pending state, waiting for the sequence of CLI commands to start processing. 

 

Figure 7 – System execution flow – Initialization sequence. 
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The system execution flow during the configuration time is shown in Figure 8.  
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Figure 8 – System execution flow – configuration sequence. 
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are sent using the DPM_ioctl() API which is invoked from Pcount3DDemo_DPM_ioctl_blocking() which is 

waiting on a semaphore until the response to the configuration message is reported. 

On the MSS side the DPM registered function DPC_ObjectDetection_ioctl() is called. It calls 

DPC_ObjDetRangeHwa_preStartConfig() which allocates  the radar cube matrix in L3 memory, and further 

calls DPC_ObjDetRangeHwa_rangeConfig() , which further calls the Range DPU configuration function 

DPU_RangeProcHWA_config().  

On the DSS side the DPM registered function DPC_ObjectDetection_ioctl() is called. It calls 

DPC_ObjDetDSP_preStartConfig() which further calls the Radar Processing DPU initialization function  

DPU_radarProcess_init() . 

After the configuration has been confirmed from both domains, the CLI task calls DPM_Start(). This results 

in the execution of DPM registered DPC functions DPC_ObjectDetection_start() on both domains. On MSS 

domain this function sends the trigger command to the Range DPU resulting in the execution of 

rangeProcHWA_TriggerHWA(). This function configures and triggers the HWA accelerator and sets it ready 

for chirp processing. On DSS domain the function with the same name only resets the frame start counter. 

After the DPM_start () is confirmed (CLI task waiting on the semaphore until the response is received), 

the CLI task issues “Sensor start” command to BSS.   

4.7.3 Execution flow - Per Frame 

The system execution flow during one frame period is shown in Figure 9. At the beginning of the frame 

BSS will send frame start event triggering DPM which sends the start event to both DPCs on MSS and DSS.  

- On the MSS side the DPM registered function DPC_ObjectDetection_frameStart() is called which 

calls the DPM_NotifyExecute(), which causes the DPM to invoke the registered execute function 

DPC_ObjectDetection_execute(). This function further calls the DPU_RangeProcHWA_process() 

in which the DPM task stays pending on a semaphore until the last chirp of the frame has been 

processed by the HWA accelerator. At this point DPC_ObjectDetection_execute() calls 

DPM_relayResult() with the argument containing the address of the Radar Cube matrix. This 

function sends the message to DSS side that the range processing is completed, with the 

address and the size of the Radar Cube matrix. This is a non-blocking call, and 

DPC_ObjectDetection_execute() further sends the trigger command to the Range DPU resulting 

in the execution of rangeProcHWA_TriggerHWA() and setting it ready for the next frame. 

- On the DSS side DPM_relayResult message causes DPM to call the registered function 

DPC_ObjectDetection_dataInjection() , which calls DPM_notifyExecute(), causing the execution 

of DPC_ObjectDetection_execute(), which in turn calls DPU_radarProcess_process() that runs 

the low level signal processing chain.  

Once the low level signal processing chain is completed the DSS DPM Task sends the processing results, 

(point cloud list, and statistics information) to the MSS side by calling DPM_sendResult(). The function is 
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called with the flag isAckNeeded set indicating that an acknowledgment is needed after the results have 

been passed to the MSS side.  

Just after the results have been sent, all shared data with R4F in L3 have to be written-back and cache 

prepared for the next frame for new radar cube data from HWA. The whole cache is written back and 

invalidated by calling cache_wbInvAllL2Wait(). 

On the MSS side the DPM report function Pcount3DDemo_DPC_ObjectDetection_reportFxn() is called 

with report type DPM_Report_NOTIFY_DPC_RESULT , which calls the function 

Pcount3DDemo_handleObjectDetResult(). This function performs the following: 

- Translates the received addresses of the point cloud data and the statistics information, 

- Compresses and copies point cloud data to the R4F local memory, to 

gMmwMssMCB.pointCloudToUart,   

- Copies point cloud data to the group tracker input, to gMmwMssMCB.pointCloudFromDSP, 

- Sends the notification to DSS that all the data are local now and the shared memory is released 

to DSS, 

- Posts the group tracker semaphore to start processing, 

- Posts the UART Task semaphore to start exporting data to the Host. 

On DSS side the DPC marks the end of frame. 

The UART task, as a higher priority task than the tracker task, initiates data transfer to the Host via UART 

using UART_write() blocking API. The transfer includes the point cloud list of the current frame and the 

tracker data of the previous frame from its output ping/pong buffer. The task waits on the semaphore 

until the DMA transfer is completed, letting the tracker task to process the current frame data. At the end 

of the UART data transfer the transfer time is recorded for the next frame.  
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Figure 9 – System execution flow during one frame period. 

 

 

Frame event

DPC_ObjectDetection_dataInjection
DPM_notifyExecute

DPC_ObjectDetection_execute

DPU_radarProcess_process

Frame event

DPC_ObjectDetection_frameStart

DPM_ioctl (Execute result exported)

DPC_ObjectDetection_ioctl
Mark end of frame processing

DPM_sendResult

Execute result exported

DPC_ObjectDetection_frameStart
DPM_notifyExecute

Frame event

DPC_ObjectDetection_execute

DPU_RangeProcHWA_process

DPC_ObjectDetection_frameStart

DPC_ObjectDetection_frameStart
DPM_notifyExecute

Frame event

BSS MSS
m

m
w

av
eL

in
k

DSS

Pcount3DDemo_DPC_RadarProc_dpmTask
(DPM_execute)

mmwDemo_mssDPMTask
(DPM_execute)

MmwDemo_trackerDPUTask CLI_task

cache_wbInvAllL2Wait()

Semaphore Post to Tracker Task

MmwDemo_uartTxTask

Semaphore Post to UART Task
Start DMA data 
transmission to 

UART

DPU_TrackerProc_pro
cess

Transmission 
Done

UART
DMA

... ... ......

... ... ...... ...

Cfg&Enable HWA for next frame

D
P

M
 IP

C

DPM_relayResult DPM_relayResult

NOTIFY_DPC_RESULT

Execute result exported

Pcount3DDemo_DPC_ObjectDetection_reportFxn

Pcount3DDemo_handleObjectDetResult

Chirp event
Chirp event

Chirp event



3D People Tracking Demo Software Implementation Guide – Rev 2.3 

23 
 

4.7.4 Execution Flow - Sensor Stop and Restart 

The execution flow upon receiving a sensor stop CLI command followed by sensor restart command is 

shown in Figure 10. 

 

Figure 10 – Sensor stop and restart sequence 
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RFE Control Task Pcount3DDemo_mmWaveCtrlTask() 6 MSS 

Tracker Task MmwDemo_trackerDPUTask() 3 MSS 

UART Task MmwDemo_uartTxTask() 4 MSS 

CLI Task CLI_task() 2 MSS 

Table 8 – Tasks running in the system 

4.8.1 DSS Initialization Task 

This task is created by main function and is a one-time active task whose main functionality is to initialize 

drivers, DPM module, and launch DSS DPM Task which provides an execution context for the DPM/DPC 

to run. After the initialization this task becomes terminated.  

4.8.2 DSS DPM Task 

This task provides the execution context for the DPM/DPC to run on DSS. In the infinite loop It invokes 

DPM_execute() API followed by DPM_sendResult() API. The DPM_execute() function executes the DPM 

module which involves handling of the reception of the IPC Messages received from its peer running on 

MSS, and execution of the data processing chain (DPC).  The DPM_sendResult() function sends the 

processing chain results to the DPM running on MSS. 

4.8.3 MSS Initialization Task 

This task is created by main function and is a one-time active task whose main functionality is to initialize 

drivers, MMWave module, DPM module, open UART and data path related drivers (ADCBUF), and launch 

other tasks running on MSS. 

4.8.4 MSS DPM Task 

This task provides the execution context for the DPM/DPC to run on MSS. It calls in an endless loop 

DPM_execute() API. This executes the DPM module which involves handling of the reception of the IPC 

Messages received from its peer running on DSS, and execution of the data processing chain (DPC).  

4.8.5 mmWave Control Task 

This is mmWave control execution task. It provides execution context for the mmWave control. It calls in 

an endless loop the MMWave_execute() API. It should have priority higher than any other task which uses 

the mmWave control API. 

4.8.6 Tracker Task 

This task provides the execution context for the Tracker DPU to run on MSS. This task should have lower 

priority than the UART Task. 
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4.8.7 UART Task 

This task controls the transfer of point the cloud data along with the tracker data to the host. Data 

transfers are done using UART_write() blocking API that uses DMA for data transfer. During the transfer 

the task is in a pending state allowing other tasks such as a Tracker Task to be executed in parallel with 

the data transfer to the Host. This task has to be higher priority than the Tracker Task. 

4.8.8 CLI Task 

The CLI task provides the execution context for the command line interface. The CLI utility library is a part 

of mmWave SDK. The library provides a simple CLI console over the specified serial port. It includes simple 

command parser. In addition to mmWave control commands, the additional custom commands are 

registered for this demo. The related code is located in pcount3D_cli.c. 

4.8.9 Timing Diagram 

The typical task activity timing diagram during one frame period is illustrated in Figure 11. 

 

Figure 11 – Task activity timing diagram 
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RADARDEMO_aoaEst2DCaponBF_create() and RADARDEMO_detectionCFAR_create().  Figure 12 shows 

its instance structure with links to the main elements. 

 

 

Figure 12 - Radar Processing DPU Instance 
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Figure 13 – CCS logs addresses of dynamically allocated radar DPU objects 

 

Figure 14 – Example: Capon beam forming object in CCS expression window 

5.2 DPU_radarProcess_process() 

This function is called per frame and all the detection layer processing on DSS is executed within this 

function call. The high-level processing flow diagram is shown in Figure 15. The processing consists of two 

parts, the dynamic scene processing and if enabled, the static scene processing. It executed per frame. 

The input is the radar cube matrix, and the output is a single list of detected points. The function call two 

signal processing modules 2D Capon beamforming module (blocks in green) and CFAR detection module 

(blocks in blue). 
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Figure 15 – DPU_radarProcess_process() - flow diagram 
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In the processing chain this module is executed before the CFAR detection, (processing step 1), and also 

after the CFAR detection, (processing step 2). Before detection, it generates 2D or 3D heatmap used for 

the point cloud detection and estimation. After detection it completes the angle estimation and estimates 

the velocity of detected points. It is used in both signal processing chains, wall-mount and ceil-mount.  

The APIs are  

- RADARDEMO_aoaEst2DCaponBF_create() 

- RADARDEMO_aoaEst2DCaponBF_delete() 

- RADARDEMO_aoaEst2DCaponBF_run() 

- RADARDEMO_aoaEst2DCaponBF_static_run() 

6.1.1 RADARDEMO_aoaEst2DCaponBF_create() 

This function initializes and configures the module. It allocates memory for its internal object and data. It 

calculates pre-calculates steering vectors.  

6.1.1.1 Steering vector design 

In the 3D people tracking demo, the Capon beamforming algorithm, a.k.a. the minimum variance 

distortionless response (MVDR) spectral estimator, is used for high-resolution angle of arrival estimation 

step. In this algorithm, the beamforming weights steered to any azimuth () and elevation (𝜃) angle for 

an 𝑁-element array with element spatial locations 𝐩𝒏 = [𝑝𝑥𝑛
 𝑝𝑦𝑛

 𝑝𝑧𝑛
]

𝑻
, 𝑛 = 1,2, . . . , 𝑁  are defined as 

 𝒂(, 𝜃) = [𝑒𝑗𝑘𝐚,𝜃
𝑇 𝐩1 , 𝑒𝑗𝑘𝐚,𝜃

𝑇 𝐩2 , … , 𝑒𝑗𝑘𝐚,𝜃
𝑇 𝐩𝑁], (1) 

where 𝑘 = 2𝜋 𝜆⁄  is the wavenumber at wavelength 𝜆, and 𝐚,𝜃
𝑇  is the unit vector pointing in the assumed 

direction of field propagation, which can be expressed as (refer to the book in [3] for details) 

 

𝐚,𝜃 = [

cos (𝜃)sin ()
cos (𝜃)cos ()

sin (𝜃)
]. 

(2) 

Figure 16 illustrates the system geometry of a single reflection point n. The azimuth () is defined as the 

angle from the y-axis to the orthogonal projection of the position vector onto the xy-plane. The angle is 

positive, going from the y-axis toward the x-axis. The elevation (𝜃) is defined as the angle from the 

projection onto the xy-plane to the vector. The angle is positive, going from the xy-plane to the z-axis. 
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Figure 16 - The system geometry of the point cloud in the 3D coordinate system. 

The numbering of the physical transmit and receive antennas is shown in Figure 17.  

RX1

RX2 RX3

RX4 TX1 TX2

TX3

 

Figure 17 – Physical antenna ordering for ISK EVM (left) and ODS EVM (right) 

The virtual antenna coordinates and the order of antennas in Radar Cube memory generated by the Range 

DPU are shown in Figure 18. Numbers in the circles represent the antenna order. Note that this order 

holds if the transmit antenna order in the MIMO scheme matches their physical order. On the ODS EVM 

the Rx antennas Rx1 and, Rx4 are fed from the opposite side compared to Rx2 and Rx3, therefore the 

phase rotation of 180 degrees has to be applied either to Rx1 and Rx4 or to Rx2 and Rx3. 
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Figure 18 – Virtual antenna m and n coordinates and the order in Radar Cube matrix for ISK 
(left) and ODS (right). 

As illustrated in Figure 18, both EVMs have 2D planar arrays with uniformly spaced antenna elements in 

xz-domain (according to the reference coordinate system in Figure 16). For these EVMs, the virtual 

antenna element locations in the y-domain is zero and the inter-element spacing of the antennas in the 

xz-plane is 𝜆 2⁄ . Therefore, the element position vectors in (1) can be defined as 

 𝐩𝒏 = (𝜆 2⁄ )[𝑥𝑛 0 𝑧𝑛]𝑻,     𝑥𝑛 = 0,1, … (𝑁𝑥 − 1)  𝑎𝑛𝑑 𝑦𝑛 = 0,1, … (𝑁𝑧 − 1) (3) 

where 𝑁𝑥  and 𝑁𝑧 are the number of virtual receive antenna elements in the x and z direction, respectively. 

If we define direction cosines 𝜈 (nu) and 𝜇 (mu) with respect to x and z axes using (2) as 

 𝜈 = cos (𝜃)sin ()

𝜇 = sin(𝜃)               
, (4) 

and take (2),(3), and (4) into (1), the steering vector can be written in the nu-mu domain as 

 𝒂(𝜈, 𝜇) = [1, 𝑒𝑗𝜋𝜈 , 𝑒𝑗𝜋2𝜈 , 𝑒𝑗𝜋𝜇 , 𝑒𝑗𝜋2𝜇 , … , 𝑒𝑗𝜋(𝑁𝑥−1)𝑣𝑒𝑗𝜋(𝑁𝑧−1)𝜇]. (5) 

Therefore, the steering vector in (1) can be calculated in any (𝜈, 𝜇) direction and for any antenna element 

𝑛 as the multiplication of the corresponding elements in the following 1D steering vectors in 𝜈 and 𝜇 

domain 

 𝒂(𝜈) = [1, 𝑒𝑗𝜋𝜈 , 𝑒𝑗𝜋2𝑣, … , 𝑒𝑗𝜋(𝑁𝑥−1)𝑣]

𝒂(𝜇) = [1, 𝑒𝑗𝜋𝜇 , 𝑒𝑗𝜋2𝜇 , … , 𝑒𝑗𝜋(𝑁𝑧−1)𝜇]
. 

(6) 

 

The antenna coordinates m_ind  (azimuth dimension) and n_ind (elevation dimension), and the phase 

rotation are  

For ISK EVM: 

m_ind = [0   -1    -2    -3    -2    -3    -4    -5    -4    -5    -6   -7] 

m_ind

n_ind

0 1 2 3 8 9 10 11

4 5 6 7
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n_ind = [0    -1    -1     0     0    -1    -1     0    -2    -3    -3    -2] 

Phase rotation = [1   1   1   1   1   1   1   1   1   1   1   1] 

For ODS EVM: 

m_ind = [0     0    -1    -1    -2    -2    -3    -3    -2    -2    -3    -3] 

n_ind = [0    -1    -1     0     0    -1    -1     0    -2    -3    -3    -2] 

Phase rotation = [-1   1   1  -1   -1   1   1  -1   -1   1   1  -1] 

The indices m_ind and n_ind are specified by CLI configuration commands antGeometry0 and 

antGeometry1 respectively. The phase rotation is specified by CLI command antPhaseRot.  

For the first processing step, for range-angle heatmap generation, a full set of steering vectors is 

generated including all virtual antennas to save cycles. In the second processing step, after the CFAR 

detection, the steering vectors are generated on the fly. To be able to generate them on-the fly, the 

steering vectors are handled in mu-nu domain, instead of angle domain (theta-phi domain). After the 

completion of the angle estimation, the asin() and acos() functions (from 674x MATHLIB library) are called 

to convert to the final spherical point cloud format. The antenna geometry, antenna phase rotation, and 

board related phase bias are all taken care of in the steering vector generation. No run-time calculation is 

involved. 

6.1.1.1.1 Steering vectors calculation for wall-mount scenario 

For wall-mount scenario two sets of steering vectors are pre-calculated and stored at the initialization 

time: azimuth steering vectors, and elevation steering vectors. The steering vectors are calculated for full 

set of virtual antennas, (12 antennas).  

Figure 19 and Figure 20 illustrate the steering vector grid in mu-nu domain and theta-phi domain 

respectively. The pre-calculated azimuth steering vectors are shown as blue dots and the pre-calculated 

elevation steering vectors are shown as red dots. The other dots, shown in gray, are generated on the fly 

in the second processing step for the elevation estimation. The vectors are evenly spaces in the mu-nu 

domain, while in theta-phi domain the step size is not constant and increases towards the edges of FOV. 

The number of steering vectors depends on the configuration parameters: the field of view and the angle 

step size. These parameters are specified in the CLI configuration file for both azimuth and elevation. For 

example, as shown in Figure 19 and Figure 20, for the following input parameters: azimuth FOV = +/- 70o, 

azimuth step size = 0.75o, elevation FOV = +/- 20o, and elevation step size = 0.75o, the number of steering 

vectors in azimuth direction is 187, and the number in elevation direction is 54. 
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Figure 19 – Steering vector grid in mu-nu domain (wall-mount scenario) 

 

Figure 20 – Steering vector grid in theta-phi domain (wall-mount scenario) 

In the first processing step, range-angle heatmap generation, only azimuth-antennas, 8 antennas of the 

pre-calculated azimuth steering vectors are used. In the second processing step all 12 antennas are used. 

The elevation steering vectors are calculated by multiplying pre-calculated elevation steering vectors with 

the azimuth steering vector corresponding to the detected point. 

Pre-calculated steering vectors are stored in raHeatMap_handle->steeringVecAzim and 

raHeatMap_handle->steeringVecElev, allocated in L2 memory heap. 



3D People Tracking Demo Software Implementation Guide – Rev 2.3 

34 
 

6.1.1.1.1.1 Azimuth steering vectors calculation 

Base on the configuration parameters azimuth angle FOV 𝜑𝐹𝑂𝑉 and angle step size 𝜑𝑆𝑡𝑒𝑝, the azimuth 

steering vectors are calculated as  

Number of azimuth steering vectors 

𝑁𝐴 =
2𝜑𝐹𝑂𝑉

𝜑𝑆𝑡𝑒𝑝
 

Initial value of nu and nu step 

𝜐𝑖𝑛𝑖𝑡 = − sin 𝜑𝐹𝑂𝑉,    𝜐𝑠𝑡𝑒𝑝 =
−2𝜐𝑖𝑛𝑖𝑡

𝑁𝐴
 

nu grid 

 𝜐𝑖 = 𝜐𝑖𝑛𝑖𝑡 + 𝑖 ∙ 𝜐𝑠𝑡𝑒𝑝 ,  𝑖 = 0, … , 𝑁𝐴 − 1 

Azimuth steering vectors 

𝐚(𝜐𝑖) = [𝑝0𝑒𝑗𝜋𝑚0𝜐𝑖 , … , 𝑝𝑁𝑟−1𝑒𝑗𝜋𝑚𝑁𝑟−1𝜐𝑖 , ]
𝑇

 ,  𝑖 = 0, … , 𝑁𝐴 − 1 

were  

𝑁𝑟   is number of virtual antennas (𝑁𝑟 = 12), 

𝑚𝑘 , 𝑘 = 0, … , 𝑁𝑟 − 1  are antenna geometry indices, m_ind. 

𝑝𝑘 , 𝑘 = 0, … , 𝑁𝑟 − 1  are 180o phase rotation coefficients. 

Note that azimuth steering vectors include phase rotation coefficients. 

6.1.1.1.1.2 Elevation steering vectors calculation 

Based on the configuration parameters, the elevation angle FOV 𝜃𝐹𝑂𝑉 and the angle step size 𝜃𝑆𝑡𝑒𝑝 , the 

elevation steering vectors are calculated as  

The number of elevation steering vectors 

𝑁𝐸 =
2𝜃𝐹𝑂𝑉

𝜃𝑆𝑡𝑒𝑝
 

Initial value of mu and mu step 

μ𝑖𝑛𝑖𝑡 = − sin 𝜃𝐹𝑂𝑉,    μ𝑠𝑡𝑒𝑝 =
−2μ𝑖𝑛𝑖𝑡

𝑁𝐸
 

nu grid: 

 μ𝑖 = μ𝑖𝑛𝑖𝑡 + 𝑖 ∙ μ𝑠𝑡𝑒𝑝 ,  𝑖 = 0, … , 𝑁𝐸 − 1 
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Elevation steering vectors: 

𝐚(μ𝑖) = [𝑒𝑗𝜋𝑛0μ𝑖 , … , 𝑒𝑗𝜋𝑛𝑁𝑟−1μ𝑖 , ]
𝑇

 ,  𝑖 = 0, … , 𝑁𝐸 − 1 

were  

𝑁𝑟   is number of virtual antennas (𝑁𝑟 = 12) 

𝑛𝑘 , 𝑘 = 0, … , 𝑁𝑟 − 1  are antenna geometry indices n_ind. 

Note that in the code the values μ𝑖𝑛𝑖𝑡, μ𝑠𝑡𝑒𝑝, υ𝑖𝑛𝑖𝑡, υ𝑠𝑡𝑒𝑝, are saved normalized to 𝜋. 

6.1.1.1.2 Steering vectors calculation for ceil-mount scenario 

For ceil-mount scenario the 3D range-azimuth-elevation heatmap is generated using 2D coarse azimuth-

elevation grid of steering vectors which are pre-calculated and stored at the initialization time. The 

steering vectors are generated for full set of virtual antennas, (𝑁𝑟 = 12). After the CFAR detection, a finer 

heatmap is generated around detected points on a denser grid of steering vectors. These steering vectors 

are calculated on the fly based on the four pre-calculated steering vectors and the coarse steering vector 

corresponding to a detected point. Figure 21 and Figure 22 illustrate the steering vector grid in mu-nu 

domain and theta-phi domain respectively. The pre-calculated steering vectors of the coarse grid are 

shown as blue dots. The four steering vectors used for zoom-in heatmap generation are shown as red 

dots. The dots in gray are the example of on the fly generated zoomed-in steering vectors for a detected 

point at (nu, mu) = (0.5, 0.4). The configuration parameters in this example are: azimuth FOV = +/- 69o, 

azimuth step size = 7o, elevation FOV = +/- 62o, and elevation step size = 7o, zoom-in factor = 5. 
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Figure 21 – Steering vector grid in mu-nu domain (ceil-mount scenario), pre-calculated 
steering vectors for coarse heatmap (blue dots), pre-calculated steering vectors for zoomed-

in heatmap (red dots). 

 

 

  

Figure 22 – Steering vector grid in theta-phi domain (ceil-mount scenario) 



3D People Tracking Demo Software Implementation Guide – Rev 2.3 

37 
 

6.1.1.1.2.1 Coarse azimuth-elevation steering vector calculation 

Base on the configuration parameters azimuth angle FOV 𝜑𝐹𝑂𝑉 , 𝜃𝐹𝑂𝑉, step size 𝜑𝑆𝑡𝑒𝑝 (equal in both 

directions) the steering vectors are calculated as  

Number of steering vectors in azimuth direction 

𝑁𝐴 =
2𝜑𝐹𝑂𝑉

𝜑𝑆𝑡𝑒𝑝
 

Initial value of nu and nu step 

𝜐𝑖𝑛𝑖𝑡 = − sin 𝜑𝐹𝑂𝑉,    𝜐𝑠𝑡𝑒𝑝 =
−2𝜐𝑖𝑛𝑖𝑡

𝑁𝐴
 

nu grid 

 𝜐𝑖 = 𝜐𝑖𝑛𝑖𝑡 + 𝑖 ∙ 𝜐𝑠𝑡𝑒𝑝 ,  𝑖 = 0, … , 𝑁𝐴 − 1 

The number of steering vectors in elevation direction 

𝑁𝐸 =
2𝜃𝐹𝑂𝑉

𝜃𝑆𝑡𝑒𝑝
 

Initial value of mu and mu step 

μ𝑖𝑛𝑖𝑡 = − sin 𝜃𝐹𝑂𝑉,    μ𝑠𝑡𝑒𝑝 =
−2μ𝑖𝑛𝑖𝑡

𝑁𝐸
 

mu grid: 

 μ𝑖 = μ𝑖𝑛𝑖𝑡 + 𝑖 ∙ μ𝑠𝑡𝑒𝑝 ,  𝑖 = 0, … , 𝑁𝐸 − 1 

 

Coarse azimuth-elevation steering vectors 

𝐚(μ𝑖2, 𝜐𝑖1) = [𝑝0𝑒𝑗𝜋(𝑚0𝜐𝑖1+𝑛0μ𝑖2) , … , 𝑝𝑁𝑟−1𝑒𝑗𝜋(𝑚𝑁𝑟−1𝜐𝑖1+𝑛𝑁𝑟−1μ𝑖2), ]
𝑇

 ,𝑖2 = 0, … , 𝑁𝐸 − 1,  𝑖1 =

0, … , 𝑁𝐴 − 1 

were  

𝑁𝑟   is number of virtual antennas (=12), 

𝑚𝑘 , 𝑘 = 0, … , 𝑁𝑟 − 1  are antenna geometry indices, m_ind. 

𝑛𝑘 , 𝑘 = 0, … , 𝑁𝑟 − 1  are antenna geometry indices n_ind. 

𝑝𝑘 , 𝑘 = 0, … , 𝑁𝑟 − 1  are 180o phase rotation coefficients. 



3D People Tracking Demo Software Implementation Guide – Rev 2.3 

38 
 

The coarse steering vectors are stored in raHeatMap_handle->steeringVec allocated in L2 memory heap. 

The steering vectors are stored in order [elevation index][azimuth index][antenna index]. 

6.1.1.1.2.2 Zoom-in steering vectors 

Zoom in steering vector grid size is 𝑁𝑧𝑜𝑜𝑚_𝑖𝑛  × 𝑁𝑧𝑜𝑜𝑚_𝑖𝑛 where 𝑁𝑧𝑜𝑜𝑚_𝑖𝑛 = 2𝑀𝑧𝑜𝑜𝑚_𝑖𝑛 + 1 and 𝑀𝑧𝑜𝑜𝑚_𝑖𝑛 

is zoom-in factor specified in CLI configuration. As mentioned before only four steering vectors are pre-

calculated, the initial value, and the step, for each direction. 

𝜐𝑖𝑛𝑖𝑡
′ = −𝜐𝑠𝑡𝑒𝑝,    𝜐𝑠𝑡𝑒𝑝

′ =
𝜐𝑠𝑡𝑒𝑝

𝑀𝑧𝑜𝑜𝑚_𝑖𝑛
 

𝐛𝒂𝒛𝒊𝒎_𝒊𝒏𝒊𝒕(𝜐𝑖𝑛𝑖𝑡
′ ) = [𝑒𝑗𝜋𝑚0𝜐𝑖𝑛𝑖𝑡

′
, … , 𝑒𝑗𝜋𝑚𝑁𝑟−1𝜐𝑖𝑛𝑖𝑡

′
, ]

𝑇
 

𝐛𝒂𝒛𝒊𝒎_𝒔𝒕𝒆𝒑(𝜐𝑠𝑡𝑒𝑝
′ ) = [𝑒𝑗𝜋𝑚0𝜐𝑠𝑡𝑒𝑝

′
, … , 𝑒𝑗𝜋𝑚𝑁𝑟−1𝜐𝑠𝑡𝑒𝑝

′
, ]

𝑇
 

 

𝜇𝑖𝑛𝑖𝑡
′ = −𝜇𝑠𝑡𝑒𝑝,    𝜇𝑠𝑡𝑒𝑝

′ =
𝜇𝑠𝑡𝑒𝑝

𝑀𝑧𝑜𝑜𝑚
 

𝐛𝒆𝒍𝒆𝒗_𝒊𝒏𝒊𝒕(𝜇𝑖𝑛𝑖𝑡
′ ) = [𝑒𝑗𝜋𝑛0𝜇𝑖𝑛𝑖𝑡

′
, … , 𝑒𝑗𝜋𝑛𝑁𝑟−1𝜇𝑖𝑛𝑖𝑡

′
, ]

𝑇
 

𝐛𝒆𝒍𝒆𝒗_𝒔𝒕𝒆𝒑(𝜇𝑠𝑡𝑒𝑝
′ ) = [𝑒𝑗𝜋𝑛0𝜇𝑠𝑡𝑒𝑝

′
, … , 𝑒𝑗𝜋𝑛𝑁𝑟−1𝜇𝑠𝑡𝑒𝑝

′
, ]

𝑇
 

These four zoom-in steering vectors are stored in the following arrays: 

aeEstimation_handle->steeringVecAzimInit, aeEstimation_handle->steeringVecAzimStep,  

aeEstimation_handle->steeringVecElevInit, aeEstimation_handle->steeringVecElevStep, all allocated in 

L1 memory heap. 

The steering vectors on the zoomed-in grid are generate on the fly iteratively as 

𝐯(0) = 𝐚𝑐𝑜𝑎𝑟𝑠𝑒_𝑒𝑠𝑡 ∘ 𝐛𝑎𝑧𝑖𝑚_𝑖𝑛𝑖𝑡 ∘ 𝐛𝑒𝑙𝑒𝑣_𝑖𝑛𝑖𝑡 

𝐯(𝑖) = 𝐯(𝑖 − 1) ∘ 𝐛𝑎𝑧𝑖𝑚_𝑠𝑡𝑒𝑝,   𝑖 = 1, … , 𝑁𝐸𝑧𝑜𝑜𝑚_𝑖𝑛 − 1 

𝐮(𝑖, 0) = 𝐯(𝑖) 

𝐮(𝑖, 𝑗) = 𝐮(𝑖, 𝑗 − 1) ∘ 𝐛𝑒𝑙𝑒𝑣_𝑠𝑡𝑒𝑝 ,   𝑗 = 1, … , 𝑁𝐸𝑧𝑜𝑜𝑚_𝑖𝑛 − 1 

The symbol ∘ denotes element-wise vector product. This is illustrated in Figure 23. Blue circles represent 

coarse grid, while grey dots represent zoomed-in grid around detected point at 𝐚𝑐𝑜𝑎𝑟𝑠𝑒_𝑒𝑠𝑡. 
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Figure 23 – Zoomed-in grid steering vector generation 

6.1.2 RADARDEMO_aoaEst2DCaponBF_run() 

This function generates detection heat map using 2D Capon beam forming approach.  It is called per range 

bin. It is called in both signal processing chains, wall-mount and ceil-mount. In the processing chain it is 

called at two places, referred in a code as processing step 1 and processing step 2.  The first processing 

step is before CFAR detection and the second step is called after the CFAR detection. 

In step 1 it calculates per range bin  

- 1D azimuth spectrum and stores it in a 2D range-azimuth heatmap (wall-mount),  

- 2D azimuth-elevation spectrum and stores it in a 3D range-azimuth-elevation (ceil-mount).  

In step 2 it calculates per detected point 

- elevation spectrum and estimates the elevation angle (method 1),  

- finer azimuth-elevation spectrum and estimates both angles (method 2), 
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- peak expansion (method 2), 

- radial velocity of the detected points. 

The function flow diagram is shown in Figure 24. 

 

Figure 24 – 2D Capon BF run API flow diagram 

6.1.2.1 Processing step 1 

6.1.2.1.1 Static Clutter Removal 

The static clutter removal is performed by function RADARDEMO_aoaEst2DCaponBF_clutterRemoval(). It 

is called within RADARDEMO_aoaEst2DCaponBF_run() in the first processing step. It is called per range 

bin. The static clutter removal is performed on the Radar Cube matrix located in L3. The function computes 

the mean values of antenna symbols across the chirps per antenna. Then it subtracts the mean values 

from the symbols and outputs them to the L1 scratch memory for further processing in the chain. Note 

that the output data are stored in the floating-point format and from this point on, all the further 

processing is done in the floating point. It also outputs the mean values for the static scene processing. 

RADARDEMO_aoaEst2DCaponBF_run()

processingStepSelector

RADARDEMO_aoaEst2DCaponBF_clutterRemoval()

RADARDEMO_aoaEst2DCaponBF_covInv()
RADARDEMO_aoaEst2DCaponBF_raHeatmap()

Zoom in

Rn-1 calculated?
RADARDEMO_aoaEst2DCaponBF_covInv()

No

RADARDEMO_aoaEst2DCaponBF_aeEstElevOnly()
(output one  estimate)

No (wall-mount) Yes (ceil-mount)

Step 2Step 1

RADARDEMO_aoaEst2DCaponBF_dopperEstInput

All angle estimates processed 

No

End

Magnitude square, find max and update Doppler

DSPF_sp_fftSPxSP()

No
Local Max?

Compare to elevation
neighbors on 

azim-elev heatmap

RADARDEMO_aoaEst2DCaponBF_aeEstZoomin
(one or more estimates)

Yes

localMaxCheck > 0 

Yes

localMaxCheck?

 = 1  = 2

Compare to elevation 
and azimuth neighbors 

on coarse heatmap
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The function writes back the updated symbols to the Radar Cube matrix in a transposed form as illustrated 

in Figure 25. 

 

Figure 25 – Clutter removal function 

In the 3D people tracking demo, the orthogonality between the transmit antennas is achieved by 

employing both the time-division multiplexing (TDM) and binary phase modulation (BPM) techniques 

[4][5]. It is important to note that the 3D people tracking demo supports the BPM-MIMO scheme with 

only two TX antennas. In this mode, two TX antennas should transmit simultaneously in BPM mode, and 

the third TX antenna should be in TDM mode. Unlike in TDM-MIMO, where only one TX antenna is active 

per chirp interval, two transmit antennas are active in each chirp interval.  

For the BPM-MIMO mode, in the even time slots (0, 2, ...), both transmit antennas should be configured 

to transmit with positive phase, i.e. (TX1,TX2) = (+,+). In the odd time slots (1, 3, ...), the transmit antennas 

should be configured to transmit with phase (TX1,TX2) = (+,-). Hence, if the BPM mode is enabled, the 

signal processing chain needs to decode the received chirp pairs to separate the transmission from each 

TX antenna. RADARDEMO_aoaEst2DCaponBF_bpmDecoding() function is then called before the static 

clutter removal step to decode this modulation scheme. In this function, the MIMO demodulation block 

reads the data for a range gate and performs the MIMO demodulation, as summarized below. Output is 

the per range gate MIMO demodulated signal for all virtual RX channels. 

BPM-MIMO demodulation scheme: Let TX1 and TX2 represent chirp signals from two TX antennas. In time 

slot zero, a combined signal Sa= TX1+TX2 is transmitted. Similarly, in time slot one, a combined signal Sb= 

TX1-TX2 is transmitted. Using the corresponding received signals (Sa and Sb), at a specific received RX 

antenna, the components from the individual transmitters are separated out using 

▪ TX'1=(Sa+Sb)/2, and  
▪ TX'2=(Sa-Sb)/2. 

 

Static Clutter 
Removal

Radar Cube in L3, Complex16
Before clutter removal:
[range][chirp][antenna]
After clutter removal:
[range][antenna][chirp]

Output without Clutter 
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aoaEstBFInst->tempInputWOstatic
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6.1.2.1.2 Spatial Covariance Matrix Estimation and Inversion 

The spatial covariance matrix estimation and inversion is implemented by function 

RADARDEMO_aoaEst2DCaponBF_covInv().  The function first calculates the covariance matrix and then 

depending on the input flag it computes the inverse matrix. The output matrix is stored as the upper 

triangular matrix, row by row in memory. This function is used in both processing steps. The covariance 

matrix is computed as 

R𝑦𝑦 =
1

𝑁𝑐
∑ 𝐘𝑐

𝑁𝑐−1
𝑐=0 𝐘𝑐

𝐻,  𝐘𝑐 = [𝑦𝑐,0, … , 𝑦𝑐,𝑁𝑟−1]
𝑇

 

Where  

𝑁𝑐 - is number of chirps,  

𝐘𝑐 – is array of selected antenna symbols of chirp 𝑐 that are used in Capon beamforming spectrum 

estimation, 

𝑁𝑟  - is number of used selected antennas. 

A diagonal loading is applied to the R matrix to ensure stability 

R𝑦𝑦 = R𝑦𝑦 +  𝛾
𝑡𝑟(R𝑦𝑦)

𝑁𝑎
𝐈𝑵𝒓

 

The covariance matrix inversion is implemented using Cholesky decomposition. The method is proposed 

in [2]. Figure 26 illustrates the function input and output buffers.  

 

Figure 26 – Covariance matrix estimation and inverse 

The full floating-point implementation for matrix inversion takes 5k cycles for 8x8, or 12k cycles for 12x12. 

6.1.2.1.3 Range-angle heatmap generation  

This is done by function RADARDEMO_aoaEst2DCaponBF_raHeatmap(). It is called per range bin. It 

calculates MVDR angle spectrum according to following equations: 

Output without Clutter 
In L1 scratch, Complex16
[antenna][chirp]

Covariance 
Matrix  & 
Inverse

aoaEstBFInst->tempInputWOstatic
estOutput->invRnMatrices
Rxx

-1 in L2 (wall-mount),  in L3 (ceil-mount) 
Complexf [range][Rxx size]
Rxx size : upper triangular size

Rxx
-1 of range bin n

raHeatMap_handle->scratchPad, in L2 (processsing step 1)
aeEstimation_handle->scratchPad, in L1 (processing step 2)
Size: Two full Rxx matrices
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- for wall-mount using azimuth steering vectors, including only azimuth antennas, Nr=8 

𝑃𝑏(𝜐𝑖) =
1

𝐚𝐻(𝜐𝑖)𝑹𝒀𝒀
−𝟏𝐚(𝜐𝑖)

, 𝑖 = 0, … , 𝑁𝐴 − 1 

- for ceil-mount using coarse azimuth-elevation steering vectors, including all antennas, Nr=12 

𝑃𝑏(μ𝑖2, 𝜐𝑖1) =
1

𝐚𝐻(μ𝑖2,𝜐𝑖1)𝑹𝒀𝒀
−𝟏𝐚(μ𝑖2,𝜐𝑖1)

, 𝑖2 = 0, … , 𝑁𝐸 − 1, 𝑖1 = 0, … , 𝑁𝐴 − 1 

The calculation of one spectral point involves the calculation of vector by matrix by vector multiplication 

of the form 𝐯𝑯𝐀𝐯, where 𝐯 is an Nx1 vector, 𝐀 is an NxN positive semidefinite Hermitian matrix, and then 

taking the inverse of the product. This is the most cycle cost kernel in the implementation, because it is 

per range bin per angle bin, and the size of the matrix is large. It can be written into the following form: 

∑ 𝑑𝑖𝑎𝑔(𝐀) +  ∑ ∑ 2 ∗ 𝑅𝑒(𝑎𝑖,𝑗

𝑁−1

𝑗=𝑖+1

𝑁−2

𝑖=0

𝑁−1

𝑖=0

∗ 𝑣𝑖 ∗ 𝑐𝑜𝑛𝑗(𝑣𝑗)) 

The formula above is fully unrolled to scheduled loops to get better cycle performance at the cost of code 

memory usage. Currently only 4/8/12 antennas are supported fully unrolled. If there is a need to do other 

number of antennas, e.g., 6 or 10 antennas, additional code will need to be written in the similar fashion 

to get similar cycle profile at the cost of increased code memory. The final spectral point is obtained by 

taking the inverse of the result. The function outputs the angle spectrum to a temporary buffer that holds 

data only of the current range bin, as shown in Figure 27. From the temporary buffer the function 

copyTranspose() copies and transposes the result into the final range-angle heatmap to be processed by 

CFAR. It also outputs the maximum value and stores in the array of peak values per range bin, which is 

used later by CFAR for side-lobe threshold calculation. The final data arrangement in the heatmap, after 

all the range bins have been processed, is: 

- For wall-mount: [azimuth index] [range index], 

- For ceil-mount: [elevation index][azimuth index][range index]. 

 

Figure 27 – Range-Angle heatmap generation 
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6.1.2.2 Processing step 2 

The function is called after CFAR detection and it is called per detected point. It estimates the elevation 

(wall-mount) or refines the azimuth/elevation estimation (ceil-mount) and then it estimates radial velocity 

of the detected point based on a Doppler FFT. 

6.1.2.2.1 Wall-mount – Elevation Estimation 

In processing step 2 the inverse covariance matrix is recalculated including all virtual antennas, Nr=12, 

since in the first processing step Nr=8 antennas are used. In order to avoid repeated calculation, it sets the 

bit corresponding to the range index in the bitmask array, aeEstimation_handle->procRngBinMask, to 

indicate that the inverse covariance is calculated in case the following detected points have the same 

range index. The elevation spectrum is calculated by RADARDEMO_aoaEst2DCaponBF_aeEstElevOnly(). 

The relevant input/output information is shown in Figure 28. 

 

Figure 28 – Wall-mount elevation estimation 

The function calculates the elevation spectrum at detected azimuth angle 𝜐𝑗𝑀𝑎𝑥 as 

𝑃𝑏(μ𝑖, 𝜐𝑗𝑀𝑎𝑥) =
1

𝐚𝐻(μ𝑖,𝜐𝑗𝑀𝑎𝑥)𝑹𝒀𝒀
−𝟏𝐚(μ𝑖,𝜐𝑗𝑀𝑎𝑥)

, 𝑖 = 0, … , 𝑁𝐸 − 1 

Where the steering vectors are calculated on the fly as  

𝐚(μ𝑖, 𝜐𝑗𝑀𝑎𝑥) = 𝐚(μ𝑖) ∘ 𝐚(𝜐𝑗𝑀𝑎𝑥), 𝑖 = 0, … , 𝑁𝐸 − 1 

After finding the maximum in the elevation spectrum, the function calculates the beamforming weights 

𝒘 = 𝑹𝒀𝒀
−𝟏𝐚(μ𝑖𝑀𝑎𝑥, 𝜐𝑗𝑀𝑎𝑥) 

the coordinates μ𝑖𝑀𝑎𝑥 , 𝜐𝑗𝑀𝑎𝑥 

estOutput->invRnMatrices
Rxx

-1 in L2 (Wall-Mount),  in L3 (Ceil-Mount) 
Complexf [range][Rxx size]
Rxx-1 stored as upper triangular matrix

Rxx
-1 of range bin n

Peak Index in 
Azimuth Spectrum

Method 1: raHeatMap_handle->steeringVecAzim
                    raHeatMap_handle->steeringVecElev

Capon Spectral 
Estimation

tempHeatMapOut in L2
Elevation spectrum

Elevation Angle
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estOutput->bwFilter

Azimth, elevation = 
spherical(azimInd, MaxElevInd)
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μ𝑖𝑀𝑎𝑥 = 𝜇𝑖𝑛𝑖𝑡 + 𝑖𝑀𝑎𝑥 ∙ 𝜇𝑠𝑡𝑒𝑝 

𝜐𝑖𝑀𝑎𝑥 = 𝜐𝑖𝑛𝑖𝑡 + 𝑗𝑀𝑎𝑥 ∙ 𝜐𝑠𝑡𝑒𝑝 

and the spherical coordinates: 

Elevation: 𝜃𝑒𝑠𝑡 = sin−1(𝜇𝑖𝑀𝑎𝑥) 

Azimuth: 𝜑𝑒𝑠𝑡 = sin−1(𝜐𝑗𝑀𝑎𝑥/ cos(𝜃𝑒𝑠𝑡)) 

6.1.2.2.2 Ceil-mount 

In the ceil-mount scenario in processing step 2, after the CFAR detection, the refined azimuth elevation 

estimation is done by generating the zoomed-in heatmap around the detected point. Initially, as shown 

in Figure 24, if the checking for the detected peak being a local maximum on the coarse grid is enabled, 

(the filed localMaxCheck > 0 in CLI command dynamic2DAngleCfg), the function will compare the detected 

peak to its neighbors, and if it is not a local peak the inclusion of the point will be skipped. Otherwise, a 

zoomed-in heatmap using the Capon beamforming approach is generated. This is done by function 

RADARDEMO_aoaEst2DCaponBF_aeEstZoomin(). Since the covariance matrix is already calculated in the 

first processing step the function calculates the 2D zoomed-in heatmap around detected point. For 

detected point at (𝑖𝐶𝑜𝑎𝑟𝑠𝑒𝑀𝑎𝑥 , 𝑗𝐶𝑜𝑎𝑟𝑠𝑒𝑀𝑎𝑥), the 2D spectrum is calculated as 

𝑃𝑏(𝐮(𝑖, 𝑗)) =
1

𝐮𝐇(𝑖,𝑗)𝑹𝒀𝒀
−𝟏𝐮(𝑖,𝑗)

, 𝑖, 𝑗 = 0, … , 𝑁𝐸𝑧𝑜𝑜𝑚𝑖𝑛
− 1 

using the steering vectors 𝐮(𝑖, 𝑗) calculated on the fly as described in Section 6.1.1.1.2.2. After finding the 

peak position in the zoomed-in heatmap, the function calculates the beamforming weights 

𝒘 = 𝑹𝒀𝒀
−𝟏𝐮(𝑖𝑀𝑎𝑥, 𝑗𝑀𝑎𝑥) 

then the coordinates μ𝑖𝑀𝑎𝑥 , 𝜐𝑗𝑀𝑎𝑥 

μ𝑖𝑀𝑎𝑥 = 𝜇𝑖𝑛𝑖𝑡 + 𝜇𝑖𝑛𝑖𝑡
′ + 𝑖𝑀𝑎𝑥 ∙ 𝜇𝑠𝑡𝑒𝑝

′  

𝜐𝑖𝑀𝑎𝑥 = 𝜐𝑖𝑛𝑖𝑡 + 𝜐𝑖𝑛𝑖𝑡
′ + 𝑗𝑀𝑎𝑥 ∙ 𝜐𝑠𝑡𝑒𝑝

′  

and the spherical coordinates: 

Elevation: 𝜃𝑒𝑠𝑡 = sin−1(𝜇𝑖𝑀𝑎𝑥) 

Azimuth: 𝜑𝑒𝑠𝑡 = sin−1(𝜐𝑗𝑀𝑎𝑥/ cos(𝜃𝑒𝑠𝑡)) 

If the peak expansion is enabled, (the CLI command filed <peakExpSamples>  > 0), the neighbor points are 

included in the list of detected points if the following criteria are satisfied: 

- 𝑃𝑚𝑎𝑥/𝑃𝑛𝑜𝑖𝑠𝑒 is greater than SNR threshold, and 

- The neighbor point is greater than threshold 𝑇 = 𝑃𝑚𝑎𝑥 ∙ (𝑇𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 − 𝑆ℎ𝑎𝑝𝑛𝑒𝑠𝑠) 

Where  
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SNR threshold – is specified in the CLI command, the field <peakExpSNRThre>, 

𝑃𝑛𝑜𝑖𝑠𝑒 – is the noise estimated in the first pass of the CFAR detection,  

𝑆ℎ𝑎𝑟𝑝𝑛𝑒𝑠𝑠 =
𝑃𝑚𝑎𝑥−𝑃𝑚𝑖𝑛

𝑃𝑚𝑎𝑥+𝑃𝑚𝑖𝑛
  – is the peak sharpness in the zoomed-in heatmap, 

𝑃𝑚𝑎𝑥, 𝑃𝑚𝑖𝑛  – are the maximum and minimum values respectively in the zoomed-in heatmap, 

𝑇𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 – is relative threshold specified in the CLI command, the field <peakExpRelThre>. 

The above criteria for the peak expansion are heuristic with the intention to provide more points around 

the detected peak when the energy of the peak is higher and the detected peak shape is sharper in the 

observed zoomed-in area. 

Based on the CLI configuration field <peakExpSamples>, the candidate neighboring points for the peak 

expansion are shown as red dots in the example in Figure 29 for the peak shown as a blue dot. 

 

Figure 29 – Peak expansion candidates (red dots) in zoomed-in heatmap, for 
<peakExpSamples>=1 (left), and for <peakExpSamples>=2 (right). 

6.1.2.2.3 Radial Velocity Estimation 

The radial velocity estimation is performed on the detected points and neighboring points included 

through the peak expansion procedure. Before computing Doppler FFT the Capon beamforming is 

applied to all 12 antenna symbols at detected range. This is done by function 

RADARDEMO_aoaEst2DCaponBF_dopperEstInput().  The function calculates input to FFT as 

𝑦(𝑐) = 𝐰𝐻𝐗𝑐, 𝑐 = 0, … , 𝑁𝑐 − 1 

Where 𝑁𝑐 is number of chirps in a frame. The FFT is calculated using DSP library function 

DSPF_sp_fftSPxSP(). Note that before FFT calculation the real and imaginary are swapped since the library 

FFT function requires complex samples stored in order real first then imaginary, as opposed to the rest of 

the chain. The maximum peak is searched applied on the FFT output to find the radial velocity of detected 

point. To note that, when the fine motion mode is enabled (see Section 4.6.1 and [4]) and the processing 

chain runs on the multiple-frames radar cube, the points generated from dynamic tracks are filtered out 

based on a configurable Doppler threshold to improve the tracker's robustness. The processing chain then 



3D People Tracking Demo Software Implementation Guide – Rev 2.3 

47 
 

tags the extracted low Doppler points from the fine motion mode as fully static (i.e., forces their Doppler 

to zero). This approach helps the tracker to classify the extracted points as dynamic and static when 

applying a proper logic to dynamic and static tracks. 

 

Figure 30 – Doppler Input estimation and Doppler FFT 

6.1.3 RADARDEMO_aoaEst2DCaponBF_static_run() 

This function is used for the static scene processing. It calculates 3D range-azimuth-elevation heatmap 

using a Bartlett beamforming approach. The 2D azimuth-elevation heatmap is generated at lower or equal 

resolution compared to dynamic scene processing. In wall-mount scenario the grid is decimated in both 

directions. Figure 31 illustrates decimated grid, for decimation factor equal to 8 in both directions. In ceil-

mount scenario the azimuth-angle steering vector grid is same as in dynamic scene processing. This 

function is called per range bin. It is called at two places in the static scene processing chain, before and 

after the CFAR detection. It is refereed in the code as processing step 1 and processing step 2. 

 

Figure 31 – Decimated steering vector grid (for method 1) with decimated factor set to 8 in 
both dimensions. 
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The function flow diagram is shown in Figure 32. 

RADARDEMO_aoaEst2DCaponBF_static_run()

processingStepSelector
Processing step 2Procesing step 1

RADARDEMO_aoaEstimationBFSinglePeak_static()
Fine azimuth-elevation estimation

(2D center of mass)

End
 

Figure 32 – Static scene processing flow diagram 

6.1.3.1 Processing step 1 

 In step 1 the function is called for all range bins to construct the range-azimuth-elevation heatmap. The 

angle spectrum is calculated using Bartlett Beamforming approach. The input data are the averaged 

antennas across all chirps, per antenna, previously generated during the clutter removal processing: 

𝐘𝒓 = [𝑦̅0, … , 𝑦̅𝑁𝑅−1]
𝑻

 , 𝑟 = 0, … , 𝑁𝑟𝑎𝑛𝑔𝑒_𝑓𝑓𝑡 − 1 

The spectrum is calculated as 

𝑃𝑟(μ𝑖2, 𝜐𝑖1) = |𝐚𝐻(μ𝑖2, 𝜐𝑖1)𝐘𝒓|2, 𝑟 = 0, … , 𝑁𝑟𝑎𝑛𝑔𝑒_𝑓𝑓𝑡 − 1, 𝑖2 = 0, … , 𝑁𝐸
′ − 1, 𝑖1 = 0, … , 𝑁𝐴

′ − 1 

Where  

𝑁𝐸
′ =  ⌈𝑁𝐸 𝑀𝑒𝑙𝑒𝑣_𝑠𝑡𝑒𝑝_𝑑𝑒𝑐𝑖𝑚_𝑓𝑎𝑐𝑡𝑜𝑟⁄ ⌉, 𝑁𝐴

′ =  ⌈𝑁𝐴 𝑀𝑎𝑧𝑖𝑚_𝑠𝑡𝑒𝑝_𝑑𝑒𝑐𝑖𝑚_𝑓𝑎𝑐𝑡𝑜𝑟⁄ ⌉, 

and the steering vectors calculated on the fly using pre-calculated azimuth and elevation steering vectors 

as 

𝐚(μ𝑖2, 𝜐𝑖1) = 𝐚(μ𝑖2) ∘ 𝐚(𝜐𝑖1) 

The symbol ∘ denotes element-wise product. The final data arrangement in the heatmap, after all the 

range bins have been processed, is [elevation index][azimuth index][range index]. 

6.1.3.2 Processing step 2 

The goal of this step is to increase the accuracy of the detected points in the static scene. Among 

numerous ways of doing the interpolation, the approach using a two-dimensional center of mass is 

implemented. The function is called per detected point. The function refines the azimuth-elevation 

estimation by calculating the center of mass of the detected point and its neighbors on the coarse 

heatmap  𝑃(𝑖, 𝑗) as 

𝑖𝐶𝑂𝑀 =
∑ ∑ 𝑖 ∙ 𝑃(𝑖, 𝑗)

𝑗+1
𝑗=𝑗−1

𝑖+1
𝑖=𝑖−1

∑ ∑ 𝑃(𝑖, 𝑗)
𝑗+1
𝑗=𝑗−1

𝑖+1
𝑖=𝑖−1
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𝑗𝐶𝑂𝑀 =
∑ ∑ 𝑗 ∙ 𝑃(𝑖, 𝑗)

𝑗+1
𝑗=𝑗−1

𝑖+1
𝑖=𝑖−1

∑ ∑ 𝑃(𝑖, 𝑗)
𝑗+1
𝑗=𝑗−1

𝑖+1
𝑖=𝑖−1

 

Then the coordinates μ𝑖𝑀𝑎𝑥 , 𝜐𝑗𝑀𝑎𝑥 are calculated 

μ𝑖𝑀𝑎𝑥 = 𝜇𝑖𝑛𝑖𝑡 + 𝑖𝐶𝑂𝑀 ∙ 𝜇𝑠𝑡𝑒𝑝 ∙ 𝑀𝑒𝑙𝑒𝑣_𝑠𝑡𝑒𝑝_𝑑𝑒𝑐𝑖𝑚_𝑓𝑎𝑐𝑡𝑜𝑟 

𝜐𝑖𝑀𝑎𝑥 = 𝜐𝑖𝑛𝑖𝑡 + 𝑗𝐶𝑂𝑀 ∙ 𝜐𝑠𝑡𝑒𝑝 ∙ 𝑀𝑒𝑙𝑒𝑣_𝑠𝑡𝑒𝑝_𝑑𝑒𝑐𝑖𝑚_𝑓𝑎𝑐𝑡𝑜𝑟 

and the spherical coordinates 

Elevation: 𝜃𝑒𝑠𝑡 = sin−1(𝜇𝑖𝑀𝑎𝑥) 

Azimuth: 𝜑𝑒𝑠𝑡 = sin−1(𝜐𝑗𝑀𝑎𝑥/ cos(𝜃𝑒𝑠𝑡)) 

This is illustrated in Figure 33. 
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Figure 33 – Fine angle estimation as a center of mass on a coarse azimuth-elevation heatmap. 

6.2 CFAR detection module 

This module performs 2-pass CFAR detection algorithm in similar way in both scenarios wall-mount and 

ceil-mount. In wall mount scenario, the detection is applied on the 2D azimuth-range heatmap. In ceil-

mount scenario the 3D elevation-azimuth-range heatmap is treated as a 2D heatmap with azimuth and 

elevation dimension reduced to one dimension (angleInd = azimInd + elevInd * azimDim).  The CFAR 

detection module APIs are 

- RADARDEMO_detectionCFAR_create() 

- RADARDEMO_detectionCFAR_delete() 

- RADARDEMO_detectionCFAR_run() 
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6.2.1 RADARDEMO_detectionCFAR_create() 

This function initializes and configures the module. It allocates memory for its internal object and 

scratchpad memory for temporary detection list of the first pass CFAR detection. In the processing chain 

two instances are created, one for dynamic and the other for static scene processing. Note that internally 

the parameters for the second dimension are named using word Doppler although they are configured 

for the angle dimension. 

6.2.2 RADARDEMO_detectionCFAR_run() 

The run function calls different flavors of CFAR detection algorithms selected by CFAR type input 

parameter. In the 3D People tracking demo the configuration parameter cfarType is hardcoded to 

RADARDEMO_DETECTIONCFAR_RA_CASOCFAR. In this mode the CFAR function 

RADARDEMO_detectionCFAR_raCAAll() is used. Table 9 shows the hardcoded configuration parameters 

used in 3D People tracking demo. 

Parameter Dynamic scene Static scene 

CFAR type CFAR-CASO CFAR-CASO 

2-PASS CFAR  Enabled Disabled 

Neighbor Check  Enabled Enabled 

Table 9 – CFAR hardcoded configuration parameters 

The function flow diagram is shown in Figure 35. For each angle index, the function performs CFAR along 

the range bins, (along the rows in the example shown in Figure 34), and stores detections in the temporary 

list. Further processing depends on the second pass flag: 

Second pass is enabled: for each detected point from the temporary list, the CFAR across angle bins is 

applied. If the point is again detected, it is placed in the final list. If not, it checks for two conditions: the 

peak is greater than its neighbors in angle direction, and the peak is greater than the sidelobe threshold. 

If the conditions are satisfied, the point is added to the final list.  

Second pass is disabled: for each detected point from the temporary list, two conditions are checked: the 

peak is greater than its neighbors in both directions range and angle, and the peak is greater than the 

sidelobe threshold. If the conditions are satisfied, the point is added to the final list.   

This processing is repeated for all angle bins.  

The angle CFAR is calculating noise in cyclic mode: at the angle edges the noise window wraps around the 

angle dimension. 

The output list contains the following information per detected point 

- range index,  

- angle index, (note: in the function referred to as Doppler index) ,  

- noise,  used in later stage for fine SNR estimation (ceil-mount), 

- snr estimate, final estimate placed in the output detection list (wall-mount) 
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The output list is shared dynamic and static CFAR instances. Currently the size of the list is hardcoded, 

(defined by MAX_DYNAMIC_CFAR_PNTS ) and set to 150. The list is currently allocated according to 

MAX_DYNAMIC_CFAR_PNTS. Note that the maximum number of detected points for static scene 

MAX_STATIC_CFAR_PNTS, currently set also to 150, should not be set more than the size of the list. 

 

 

Figure 34 – Example of CFAR input range-angle heatmap in ceil-mount scenario 
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Figure 35 – 2Pass CFAR-CASO flow diagram 
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7 Application Layer Features 

7.1 Target Height Estimation 

The demo code is able to estimate the height of multiple targets in the scene. If the symbol 

HEIGHT_DETECTION_ENABLED is defined (which is done by default in both the 

3D_people_count68xx_mss and overhead_3d_people_count_68xx_mss projects), the device will 

estimate the height of each detected target though the following algorithm: 

For each target (i): 

 For the k tallest points associated with that target: 

ℎ𝑒𝑖𝑔ℎ𝑡𝑖
̂ = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑘 𝑡𝑎𝑙𝑙𝑒𝑠𝑡 𝑝𝑜𝑖𝑛𝑡𝑠)   

ℎ𝑒𝑖𝑔ℎ𝑡𝑖 = 𝛼 × ℎ𝑒𝑖𝑔ℎ𝑡𝑖
̂  + (1 − 𝛼) × ℎ𝑒𝑖𝑔ℎ𝑡𝑖 

The values of k and α may be tuned in height_detection.h The implementation of the algorithm is found 

in height_detection.c 

7.2 Expected Performance - Underestimation 

The code provided in the toolbox is expected to serve as a starting point for future development. At its 

current state, the algorithm tends to underestimate the height of users for two main reasons: stationary 

targets and algorithmic bias. Both are discussed below, as are some potential strategies for mitigation 

7.2.1 Stationary Targets 

The current height detection algorithm works best when the tracks (people) are moving throughout the 

detection region. Determining the height of stationary tracks is challenging because the radar will only 

detect moving points. In situations where people are stationary, such as sitting, reading or typing, TI has 

found that the person’s head can stay very stationary. In these cases, the detection layer will not always 

pick up their head, rather, it will pick up their torso, as breathing causes the chest to expand and 

contract. This will cause the algorithm to underestimate the height. 

7.2.2 Algorithmic Bias 

The current height detection algorithm also suffers from some bias in its design. The radar is consistently 

able to detect points from people in its field of view. However, it does not detect every point from every 

person in each frame. So, in times when the top of the person’s head is not detected, the algorithm will 

underestimate the height. However, there are very rarely times when the radar device will detect 

erroneous points above the person’s head, meaning that the probability of overestimating the person’s 

height in any given frame is quite small. Because the probability of underestimation is relatively much 

higher than the probability of overestimation, the algorithm will tend towards underestimates. 
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Figure 36 - Radar Height Detection Bias 

7.2.3 Mitigation Strategies 

TI recommends the following strategies for mitigating error in height estimation depending on the use 

case: 

7.2.3.1 Bias Correction 

In scenarios where people are likely to be very stationary, such as a workplace, the radar device could 

correct for its bias with a scaling factor added to every target’s height to account for underestimation. 

This would require data collection, and may depend on the movement level of the people in the scene. 

7.2.3.2 Increased Memory 

Another strategy a radar device could take to improve height detection would be to increase the 

memory of the estimate. The current alpha-filter implementation combines all data from previous 

frames into a single term, but more complicated models that store maxima over multiple frames have a 

higher probability of detecting head movements, increasing the probability of detecting the head along 

with the torso. 
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7.2.3.3 Pose Estimation 

In scenarios where people may be sitting or standing, the addition of a pose-estimation model may aid 

in height detection. Knowing whether a person is sitting vs standing, or stationary vs moving would help 

select how much of a correction factor to apply. This could even become a Machine Learning Model for 

combined pose estimation and height detection. 

8 Memory usage 

8.1 Memory Allocation 

In the demo code the memory allocation is achieved in a few ways: 

- Using memory allocation from the system heap in both domains, (using osal function 

MemoryP_ctrlAlloc()). The heap sizes can be tuned in pcount3D_mss.cfg (112KB or 130KB for ceil-

mount and wall-mount demos, respectively) and pcount3D_dss.cfg (11KB). This form of memory 

allocation is mostly used on MSS by the Tracker module. 

- Using simple OSAL memory allocation functions on DSS and MSS. 

8.1.1 OSAL memory management functions 

The OSAL memory management functions on DSS are used to allocate memory from three different 

memories L1, L2 and L3. The functions are located in radarOsal_malloc.c The three basic APIs are 

radarOsal_memInit(), radarOsal_memAlloc(), and radarOsal_memFree(). The size and the location of the 

heaps are defined in dss_main.c. Table 10 shows the heap sizes for three building options. The 

initialization is done as part of DSS DPM/DPC initialization. 

Heap Wall-mount Ceil-mount 

L1 0x2E00 (11.5KB) 0x1600 (5.5KB) 

L1 SCRATCH 0x1200 (4.5KB) 0x2A00 (10.5KB) 

L2 0x1A000 (104KB) 0x1FF00 (127.75KB) 

L2 SCRATCH 0x900 (2.25KB) 0x900 (2.25KB) 

L3 0x21000 (132KB) 0x13000 (76KB) 

Table 10 – DSP Memory heap and scratch memory 

Similar approach for memory allocation is used on MSS with the following APIs  

DPC_ObjDetRangeHwa_MemPoolAlloc() and DPC_ObjDetRangeHwa_MemPoolReset(). 

8.1.2 Allocating Memory for Radar Cube Matrix 

Radar Cube Memory is shared between MSS and DSS domains and it is located in L3 memory. The size of 

the radar cube memory is determined based on the CLI parameter configuration. On the MSS side, the 

Radar Cube memory is allocated in the L3 memory heap in DPC pre-start configuration function using the 

OSAL memory allocation function. The address is then passed to DPC on DSS domain. The MSS L3 memory 
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heap size should match the expected radar cube size since the Radar Cube is the only object allocated in 

it. The L3 memory heap size is defined in the c674x_linker.cmd by defining a variable 

MMWAVE_MSSUSED_L3RAM_SIZE with the value set based on the build option as shown in Table 11. 

  

 Wall-mount Ceil-mount 

MMWAVE_MSSUSED_L3RAM_SIZE 
(Radar Cube Size) 

576K 672K 

Table 11 – Radar Cube size defined by MMWAVE_MSSUSED_L3RAM_SIZE 

8.2 DSS Memory usage 

The DSS memory usage is summarized in Table 12. Note that the DSS has 32KB L1P memory which is used 

as part code RAM and part cache. Similarly, the 32KB DSS L1D memory is used as part data RAM and part 

data cache as defined in the table below. 

Memory Size Used Left Description 

L1P RAM 28K full  Fast signal processing code 

L1P cache 4K full  Program cache 

L1D RAM 16K full  Memory Heap, scratch 

L1D cache 16K full  Data cache 

L2S RAM 256K  9.4K Code: 102.7K,  

Processing chain data: 106.25K  

Framework and BIOS buffers and data structure (heap, 
stack etc): 37.65K 

L3 RAM 768K 719.5K 

(wall-
mount) 

759.5K 

(ceil-
mount) 

48.5K 

(wall-
mount) 

8.5K 

(ceil-
mount) 

Data:  

     708KB:  radar cube 576K, L3 Heap 132K (wall-
mount) 

     748KB:  radar cube 672K, L3 Heap 76K (ceil-mount) 

Slow system code: 11.4K 

Overlaid code including configuration code, one time 
init code (EDMA driver etc), unused algorithm code: 
~40K 

HS RAM 32K 13.125K  Very slow non runtime system code 

Table 12 - DSS Memory usage, (wall-mount) 

The DSS code is loaded in two memories L2 and L3 RAM as shown in Table 13. The four sections, .fastCode, 

.overlaidCode, .hsramCode, and .unUsedCode are loaded in L3 at the location overlapped with L3 data 

heap. The code in these sections is either executed or copied to different locations before this memory is 

used as a heap. The sections. fastCode and .hsramCode are copied at the init-time (using EDMA) to L1P 
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and HSRAM respectively since the bootloader can load the code only to L2/L3 memory. The difference in 

.text size between wall-mount and ceil-mount is because in the wall mount scenario the function 

RADARDEMO_aoaEst2DCaponBF_aeEstElevOnly() is used for Capon based elevation spectral estimation 

with fully unrolled loops to get better cycle performance. In the ceil-mount scenario, since this function is 

not used it is placed in .unUsedCode section. 

The memory maps for wall-mount and ceil-mount scenarios are shown in Figure 37 and Figure 38 

respectively. 

Section Size 
(wall-
mount) 

Size 
(ceil-
mount) 

Loaded to  Executed 
from 

Overlapped section in 
Page 1 

.text 102.6K 86.5K L2 L2 Part of signal processing 
code, framework, bios 
and SDK 

.fastCode 27.6K 27.6K L3 L1P Intense signal processing 
code executed in L1P 
RAM. Table 14 shows the 
functions placed to this 
section. 

.overlaidCode 32.8K 30.5K L3 L3 one-time  Initialization code, 
executed one time 

.hsramCode 18.9K 18.9K L3 HSRAM Slow system non-real 
time code 

.unUsedCode 7.5K 26K L3 Not used Linked but not used in 
demo 

.slowCode 11.4K 11.4K L3 L3 Non-real time critical 
code 

Table 13 – DSS code sections in L2 and L3 memory 

 

Function Name Description 

RADARDEMO_detectionCFAR_raCAAll() CFAR  

RADARDEMO_aoaEst2DCaponBF_raHeatmap() Range-angle heatmap generation  

RADARDEMO_aoaEst2DCaponBF_covInv() Per range bin, estimate the covariance matrices 
from input 1D FFT results, and calculate the 
inverse of these matrices. 

MATRIX_cholesky_flp_inv() Calculate the inverse of these matrices. 

RADARDEMO_aoaEst2DCaponBF_clutterRemoval() Per range bin, removal static clutter from the input 
signal. 

copyTranspose() Store angle bins per range to Range-angle 
heatmap 

Table 14 – Signal processing run-time critical code executed from L1P memory 

The placement of the functions into particular code sections other than default .text section is specified 

in pcount3D_dss_linker.cmd. The TI linker for both R4F and C674x produce the map files that contain a 
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module summary of all the object files included in the application. Users can use this as a guide towards 

identifying components/source code that could be optimized.  
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Figure 37 – DSS Memory usage – (wall-mount) 

 

Figure 38 – DSS Memory usage – (ceil-mount) 
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8.3 DSS Memory Heap Allocation 

Table 16, Table 17 and Table 18 illustrate memory heap allocations in L3, L2 and L1 respectively. Only two 

memory allocations are done by the object detection DPC running on DSS, (instance named “objDetObj-

>”), and all other allocations by the radar signal processing DPU, (instance named “inst->”) in the tables). 

The allocated sizes correspond to the configurations shown in Table 15. Please note the convention for 

FOV specification: the left and right numbers are the angle search extents and the middle number is the 

angle search step. The names of the module instances and arrays are according to the names in the source 

code. The DPU instance structure is shown in Figure 12.   

 

Configuration Parameters Wall-mount Ceil-mount 

Range FFT Size 128 64 

Number of Chirps per frame 3x96 3x224 

Azimuth FOV1 -70o : 0.75o : 70o -69o : 7o : 69o 

Elevation FOV -20o : 0.75o : 20o -62o : 7o : 62o 

Static scene Azimuth decimation factor 8 1 

Static scene Elevation decimation factor 8 1 

Ceil-mount zoom-in factor N/A 5 

Table 15 – Configuration parameters related to the memory allocation sizes shown in the 
following tables. 

 

Wall-Mount 
Size 

(Bytes) Ceil-Mount 
Size 

(Bytes) 

objDetObj->executeResult 15036 objDetObj->executeResult 15036 

objDetObj->stats  52 objDetObj->stats 52 

inst->localHeatmap 95744 aoaOutput->static_information 6144 

aoaOutput->static_information 12288 aoaOutput->invRnMatrices 39936 

inst->benchmarkPtr 12 inst->detectionCFAROutput 36 

benchmarkPtr->buffer 640 detectionCFAROutput->rangeInd 300 

    detectionCFAROutput->dopplerInd 300 

    detectionCFAROutput->snrEst 600 

    detectionCFAROutput->noise 600 

    inst->benchmarkPtr 12 

    benchmarkPtr->buffer 640 

Total 123772 Total 63656 

Table 16 – L3 Memory Heap Allocations 

                                                           
1 Note the convention for FOV specification: the left and right numbers are the angle search extents and the 

middle number is the approximate angle search step. 
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Wall-Mount 
Size 

(Bytes) Ceil-Mount 
Size 

(Bytes) 

raHeatMap_handle->steeringVecAzim 17952 raHeatMap_handle->steeringVec 27648 

raHeatMap_handle->steeringVecElev 5184 inst->localHeatmap 73728 

aoaOutput->invRnMatrices 79872 inst->dynamicCFARInstance 64 

inst->dynamicCFARInstance 64 inst->dynamicHeatmapPtr 1152 

inst->dynamicHeatmapPtr 748 inst->tempHeatMapOut 1152 

inst->staticCFARInstance 64     

inst->tempHeatMapOut 676     

Total 104560 Total 103744 

Table 17 – L2 Memory Heap Allocation 

Wall-Mount 
Size 

(Bytes) Ceil-Mount 
Size 

(Bytes) 

radarProcessInstance_t (inst) 140 radarProcessInstance_t (inst) 140 

inst->perRangeBinMax 516 inst->perRangeBinMax 260 

inst->aoaInstance 52 inst->aoaInstance 52 

raHeatMap_handle 56 raHeatMap_handle 56 

raHeatMap_handle->virtAntInd2Proc 8 raHeatMap_handle->virtAntInd2Proc 12 

aeEstimation_handle 88 aeEstimation_handle 88 

aeEstimation_handle->virtAntInd2Proc 12 aeEstimation_handle->virtAntInd2Proc 12 

aeEstimation_handle->procRngBinMask 16 aeEstimation_handle->steeringVecAzimInit 100 

handle->dopTwiddle 1024 aeEstimation_handle->steeringVecAzimStep 96 

inst->aoaInput 24 aeEstimation_handle->steeringVecElevInit 96 

inst->aoaOutput 44 aeEstimation_handle->steeringVecElevStep 96 

aoaOutput->azimEst 4 handle->dopTwiddle 2048 

aoaOutput->elevEst 4 inst->aoaInput 24 

aoaOutput->peakPow 4 inst->aoaOutput 44 

aoaOutput->bwFilter 96 aoaOutput->azimEst 36 

aoaOutput->dopplerIdx 2 aoaOutput->elevEst 36 

inst->detectionCFAROutput 36 aoaOutput->peakPow 36 

detectionCFAROutput->rangeInd 300 aoaOutput->bwFilter 864 

detectionCFAROutput->dopplerInd 300 aoaOutput->dopplerIdx 18 

detectionCFAROutput->snrEst 600 inst->detectionCFARInput 16 

detectionCFAROutput->noise 600     

inst->detectionCFARInput 16     

inst->staticHeatmapPtr 748     

Total 4690 Total 4130 



3D People Tracking Demo Software Implementation Guide – Rev 2.3 

62 
 

Table 18 – L1 Memory Heap Allocations 

8.4 MSS Memory Usage  

The MSS memory usage is shown in Table 19. 

Memory Size Used Left 

L2P 512K 147K 365K 

L2D 192K 162K 30K 

Table 19 – MSS Memory Usage 

9 Benchmarks 

The 3D People Tracking Demo measures on the fly the processing time of the detection layer, the tracker 

layer, and the data transfer time to the Host. These three measurements are sent per frame, as a part of 

the frame header (see Section 1.1 for packet header structure). These three measurements are denoted 

in Figure 11 as  

- activeFrameProcTimeInUsec - DSP low level signal processing time excluding chirping time, 

- trackingProcessingTimeInUsec - Group tracker processing time on R4F, and 

- uartSendingTimeInUsec - DMA transfer time to Host via UART. 

Also, within the low level signal processing chain, the additional measurements are tracked and kept 

internally within the structure radarProcessBenchmarkObj. The measurements include three main signal 

processing steps: 

1. Capon BF Step 1 - Includes clutter removal, covariance estimation and inverse, and range-angle 

heatmap generation, 

2. CFAR – 2Pass CFAR detection, and 

3. Capon BF Step 2 – Includes, per detected point, elevation estimation (wall-mount)/fine angle 

estimation (ceil-mount) and Doppler estimation. 

These measurements are collected and presented in the following two sections. The measurement 

procedure is explained in section. 

9.1 Benchmarks – (Wall-mount) 

The measurements results are collected for the following profile configuration, with and without static 

scene processing: Frame period = 55 msec, numAzimBins = 187 (-70o : 0.75o : 70o), numElevBins = 54 (-20o 

: 0.75o : 20o), Chirping time = 3*96*(30+59.1) usec = 25.7 msec. 
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9.1.1 Dynamic scene only 

 

9.1.2 Dynamic and static scene 
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9.2 Benchmarks – (Ceil-mount) 

The measurements results are collected for the following profile configuration, with and without static 

scene processing: Frame period = 120 msec, numAngleBins = 18*16 = 288 (numAzimbins  = 18 (-69o : 7o : 

69o), numElevBins = 16 (-62o : 7o : 62o)), Chirping time = 3*224*(60+50) usec = 73.9 msec. 

9.2.1 Dynamic scene only: 

 

9.2.2 Dynamic and static scene 
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9.2.3 Profiling Procedure –DSP, tracker and UART transfer time 

The measurements for the DSP and the tracker processing time and the UART transfer time are collected 

by running the demo code for several minutes with the random scene with few persons and objects 

moving in front of the sensor producing variable number of detected points and targets while recording 

the processing time of different components as a function of the number of detected points. The following 

code is added in the mss_main.c in the function (UART task) MmwDemo_uartTxTask(), inside the 

while(1) block at the very end of it (after the UART frame data transfer has been completed). 

void MmwDemo_uartTxTask(UArg arg0, UArg arg1) 
{ 
 
... 
 
 while(1) 
 { 
 
  ... 
 
  if(gMmwMssMCB.numDetectedPoints < (DOA_OUTPUT_MAXPOINTS+1)) 
  { 
   if(gDbgInterFrameTime[gMmwMssMCB.numDetectedPoints] < gMmwMssMCB.frameStatsFromDSP->interFrameExecTimeInUsec) 
     gDbgInterFrameTime[gMmwMssMCB.numDetectedPoints] = gMmwMssMCB.frameStatsFromDSP->interFrameExecTimeInUsec; 
 
   if(gDbgTrackerTime[gMmwMssMCB.numDetectedPoints] <  gMmwMssMCB.trackerProcessingTimeInUsec) 
     gDbgTrackerTime[gMmwMssMCB.numDetectedPoints] =  gMmwMssMCB.trackerProcessingTimeInUsec; 
 
   if (gDbgUartTime[gMmwMssMCB.numDetectedPoints] < gMmwMssMCB.uartProcessingTimeInUsec) 
     gDbgUartTime[gMmwMssMCB.numDetectedPoints] = gMmwMssMCB.uartProcessingTimeInUsec; 
  } 
 } 
} 

 

The three recording buffers are declared as  

volatile uint32_t gDbgInterFrameTime[DOA_OUTPUT_MAXPOINTS+1]; 
volatile uint32_t gDbgTrackerTime[DOA_OUTPUT_MAXPOINTS+1]; 
volatile uint32_t gDbgUartTime[DOA_OUTPUT_MAXPOINTS+1]; 
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The demo code is loaded and executed on the target using CCS (target configured in CCS development 

mode). The recording buffers were visually observed in CCS using the Graph tool until almost all bins had 

been populated. After the code was stopped, the buffers were extracted using the memory save option.  

Note that as the tracker task is the lowest priority task on MSS the measured processing time includes any 

preemption by higher priority tasks or interrupts. Also, note that the tracker processing time, collected as 

a function of detected points and not as function of detected targets, shows mainly that the tracker task 

is the least intensive processing task, and that it is not as time critical as the task on DSS running the low-

level signal processing chain. 

9.2.4 Profiling Procedure – three signal processing steps on DSP 

The profiling procedure for the three main signal processing steps on the DSP, Capon BF Step 1, CFAR, and 

Capon BF Step 2, is similar as described in the previous section. The following code has been added inside 

the function Pcount3DDemo_handleObjectDetResult() (running in the context of main MSS task) just 

before sending the DPM_ioctl() notification to the DSS that the results are handled. 

   radarProcessBenchmarkElem *benchmarkOut; 
    benchmarkOut = (radarProcessBenchmarkElem *) outputFromDSP->benchmarkOut; 
    benchmarkOut = (radarProcessBenchmarkElem *)SOC_translateAddress((uint32_t)benchmarkOut, 
                                                                     SOC_TranslateAddr_Dir_FROM_OTHER_CPU,  
                                                                     &retVal); 
    if (gDynHeatmpGenCycles[benchmarkOut->dynNumDetPnts] < benchmarkOut->dynHeatmpGenCycles) 
        gDynHeatmpGenCycles[benchmarkOut->dynNumDetPnts] = benchmarkOut->dynHeatmpGenCycles; 
 
    if (gDynCfarDetectionCycles[benchmarkOut->dynNumDetPnts] < benchmarkOut->dynCfarDetectionCycles) 
        gDynCfarDetectionCycles[benchmarkOut->dynNumDetPnts] = benchmarkOut->dynCfarDetectionCycles; 
 
    if (gDynAngleDopEstCycles[benchmarkOut->dynNumDetPnts] < benchmarkOut->dynAngleDopEstCycles) 
        gDynAngleDopEstCycles[benchmarkOut->dynNumDetPnts] = benchmarkOut->dynAngleDopEstCycles; 
 
 
    if (gStaticHeatmpGenCycles[benchmarkOut->staticNumDetPnts] < benchmarkOut->staticHeatmpGenCycles) 
        gStaticHeatmpGenCycles[benchmarkOut->staticNumDetPnts] = benchmarkOut->staticHeatmpGenCycles; 
 
    if (gStaticCfarDetectionCycles[benchmarkOut->staticNumDetPnts] < benchmarkOut->staticCfarDetectionCycles) 
        gStaticCfarDetectionCycles[benchmarkOut->staticNumDetPnts] = benchmarkOut->staticCfarDetectionCycles; 
 
    if (gStaticAngleEstCycles[benchmarkOut->staticNumDetPnts] < benchmarkOut->staticAngleEstCycles) 
        gStaticAngleEstCycles[benchmarkOut->staticNumDetPnts] = benchmarkOut->staticAngleEstCycles; 

     
The recording buffers are declared as 

int gDynHeatmpGenCycles[DOA_OUTPUT_MAXPOINTS + 1]; 
int gDynCfarDetectionCycles[DOA_OUTPUT_MAXPOINTS + 1]; 
int gDynAngleDopEstCycles[DOA_OUTPUT_MAXPOINTS + 1]; 
 
int gStaticHeatmpGenCycles[DOA_OUTPUT_MAXPOINTS + 1]; 
int gStaticCfarDetectionCycles[DOA_OUTPUT_MAXPOINTS + 1]; 
int gStaticAngleEstCycles[DOA_OUTPUT_MAXPOINTS + 1]; 
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10 UART and Output to the Host 

The demo outputs one packet of data every frame. The packet contains point cloud data of the current 

frame, and the group tracking data of the previous frame.  

The system design is to have a maximum of 150 dynamic CFAR detections, and 150 static CFAR detections, 

total of 300 points for wall-mount scenario, and total of 750 points for ceil-mount scenario after angle 

estimation and Doppler estimation. 

Data are sent out to Host via UART in compressed mode.  Point cloud data are sent as array of detected 

points (8 Bytes per point). The tracker data include the Target list (108-byte per 3D target) and the Target 

tag (1-byte per detected point).  

The UART is configured at 921600 bps in DMA mode. DMA mode allows other tasks to be executed in 

parallel while the data are transmitted to the Host. In the worst case sending maximum number of points 

and tracked targets would take: (8*750+108*20+750)*10/(921600) = 96.7ms.  

1.1 Output TLV Description 
The packet structure consists of fixed sized frame header, followed by variable number of TLVs (see Figure 

39). Each TLV has fixed header followed by variable size payload. The Byte order is Little Endian.  

 

Figure 39 – Data packet structure sent to Host 

1.1.1 Frame Header Structure 

The frame header is of fixed size (40bytes). The structure field definition is shown in MATLAB syntax 

below. 

frameHeaderStructType = struct(... 
    'magicWord',        {'uint64', 8}, ... %syncPattern in hex is: '02 01 04 03 06 05 08 07' 
    'version',          {'uint32', 4}, ... % Software Version 
    'totalPacketLen',   {'uint32', 4}, ... % In bytes, including header 
    'platform',         {'uint32', 4}, ... % 0xA6843 
    'frameNumber',      {'uint32', 4}, ... % Frame Number 
    'timeStamp',        {'uint32', 4}, ... % Message create time in cycles 
    'numDetectedObj',   {'uint32', 4}, ... % Number of detected objects in this frame 
    'numTLVs' ,         {'uint32', 4}, ... % Number of TLVs in this frame 
    'subFrameNumber',   {'uint32', 4});    % Sub-Frame number 

 

The field version is constructed as 

Frame 

Header
TL V TL V TL V

TLV1 TLV2
TLVn

…
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MMWAVE_SDK_VERSION_BUILD | (MMWAVE_SDK_VERSION_BUGFIX << 8) | 
(MMWAVE_SDK_VERSION_MINOR << 16) | (MMWAVE_SDK_VERSION_MAJOR << 24) 
 

The syncPattern is constructed as 
typecast(uint16([hex2dec('0102'),hex2dec('0304'),hex2dec('0506'),hex2dec('0708')]),'uint64'); 

 

1.1.2 TLV structure 

The TLV structure consists of  

Fixed Header (8bytes) followed by TLV specific payload. The TLV header structure is shown in MATLAB 

syntax below. 

tlvHeaderStruct = struct(... 
    'type',             {'uint32', 4}, ... % TLV object Type 
    'length',           {'uint32', 4});    % TLV object Length, in bytes, including TLV header 

1.1.3 Point Cloud TLV 

Type = MMWDEMO_OUTPUT_MSG_COMPRESSED_POINTS 

Length = sizeof (tlvHeaderStruct) + sizeof (pointCloudUnitStruct) + sizeof (pointStruct) x numberOfPoints 

Point cloud unit structure is defined as:  

pointCloudUnitStruct = struct(... 
    ‘elevationUnit',    {'float', 4}, ... % unit resolution of elevation report, in rad     
    'azimuthUnit',      {'float', 4}, ... % unit resolution of azimuth report, in rad 
    'dopplerUnit',      {'float', 4}, ... % unit resolution of Doppler report, in m/s 
    'rangeUnit',        {'float', 4}, ... % unit resolution of Range report, in m     
    'snrUnit',          {'float', 4});    % unit resolution of SNR report, ratio 

 

Each point (pointStruct) is defined as: 

pointStruct = struct(... 
    ‘elevation',        {'int8', 1}, ...   % Elevation report, in number of elevationUnit 
    'azimuth',          {'int8', 1}, ...   % Azimuth report, in number of azimuthUnit 
    'doppler',          {'int16', 1}, ...  % Doppler, in number of dopplerUint 
    'range',            {‘uint16', 2}, ... % Range, in number of rangeUint     
    'snr',              {‘uint16', 2});    % SNR, in number of snrUint 

 

 

1.1.4 Target List TLV 

Type = MMWDEMO_OUTPUT_MSG_TRACKERPROC_3D_TARGET_LIST 

Length = sizeof (tlvHeaderStruct) + sizeof (targetStruct) x numberOfTargets 

Each target is defined as: 

targetStruct3D = struct(... 
    'tid',  {'uint32', 4}, ...  % Track ID 
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    'posX',     {'float', 4}, ...    % Target position in X dimension, m 
    'posY',     {'float', 4}, ...    % Target position in Y dimension, m 
    'posZ',     {'float', 4}, ...    % Target position in Z dimension, m 
    'velX',     {'float', 4}, ...    % Target velocity in X dimension, m/s 
    'velY',     {'float', 4}, ...    % Target velocity in Y dimension, m/s 
    'velZ',     {'float', 4}, ...    % Target velocity in Z dimension, m/s 
    'accX',     {'float', 4}, ...    % Target acceleration in X dimension, m/s2 
    'accY',     {'float', 4}, ...    % Target acceleration in Y dimension, m/s2 
    'accZ',     {'float', 4}, ...    % Target acceleration in Z dimension, m/s2 
    'EC[16]',   {'float', 16*4}, ... % Tracking error covariance matrix, [4x4] in                     
                  % range/azimuth/elevation/doppler coordinates 
    'G',        {'float', 4},...     % Gating function gain 

    'confidenceLevel'  {'float', 4});% Confidence Level 

 

1.1.5 Target Index TLV 

Type = MMWDEMO_OUTPUT_MSG_TRACKERPROC_TARGET_INDEX 

Length = sizeof (tlvHeaderStruct) + numberOfPoints 

Payload is a byte array, where each byte is a Target ID 

targetIndex = struct(... 
'targetID',         {'uint8', 1}); % Track ID 

 

1.1.6 Target Height TLV 

Type = MMWDEMO_OUTPUT_MSG_TRACKERPROC_TARGET_HEIGHT 

Length = sizeof (tlvHeaderStruct) + sizeof(targetHeight) x numberOfTargets 

Each Target Height TLV consists of a single uint8 corresponding to the track number it refers to, then the 

maximum Z estimate given as a float and the minimum Z estimate given as a float. 

targetHeight = struct(... 

'targetID',  {'uint8', 1},... % Track ID  
'maxZ',      {'float', 4},... % Target maxZ estimate  
'minZ',      {'float', 4});  % Target minZ estimate 


